Home | History | Annotate | Line # | Download | only in kern
subr_ipi.c revision 1.3
      1  1.3  rmind /*	$NetBSD: subr_ipi.c,v 1.3 2015/01/18 23:16:35 rmind Exp $	*/
      2  1.1  rmind 
      3  1.1  rmind /*-
      4  1.1  rmind  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  1.1  rmind  * All rights reserved.
      6  1.1  rmind  *
      7  1.1  rmind  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1  rmind  * by Mindaugas Rasiukevicius.
      9  1.1  rmind  *
     10  1.1  rmind  * Redistribution and use in source and binary forms, with or without
     11  1.1  rmind  * modification, are permitted provided that the following conditions
     12  1.1  rmind  * are met:
     13  1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     14  1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     15  1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  rmind  *    documentation and/or other materials provided with the distribution.
     18  1.1  rmind  *
     19  1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1  rmind  */
     31  1.1  rmind 
     32  1.1  rmind /*
     33  1.2  rmind  * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
     34  1.2  rmind  * invoke functions with a constant argument and synchronous IPIs
     35  1.2  rmind  * with the cross-call support.
     36  1.1  rmind  */
     37  1.1  rmind 
     38  1.1  rmind #include <sys/cdefs.h>
     39  1.3  rmind __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.3 2015/01/18 23:16:35 rmind Exp $");
     40  1.1  rmind 
     41  1.1  rmind #include <sys/param.h>
     42  1.1  rmind #include <sys/types.h>
     43  1.1  rmind 
     44  1.1  rmind #include <sys/atomic.h>
     45  1.1  rmind #include <sys/evcnt.h>
     46  1.1  rmind #include <sys/cpu.h>
     47  1.1  rmind #include <sys/ipi.h>
     48  1.3  rmind #include <sys/intr.h>
     49  1.1  rmind #include <sys/kcpuset.h>
     50  1.1  rmind #include <sys/kmem.h>
     51  1.1  rmind #include <sys/lock.h>
     52  1.2  rmind #include <sys/mutex.h>
     53  1.2  rmind 
     54  1.2  rmind /*
     55  1.2  rmind  * An array of the IPI handlers used for asynchronous invocation.
     56  1.2  rmind  * The lock protects the slot allocation.
     57  1.2  rmind  */
     58  1.2  rmind 
     59  1.2  rmind typedef struct {
     60  1.2  rmind 	ipi_func_t	func;
     61  1.2  rmind 	void *		arg;
     62  1.2  rmind } ipi_intr_t;
     63  1.2  rmind 
     64  1.2  rmind static kmutex_t		ipi_mngmt_lock;
     65  1.2  rmind static ipi_intr_t	ipi_intrs[IPI_MAXREG]	__cacheline_aligned;
     66  1.1  rmind 
     67  1.1  rmind /*
     68  1.1  rmind  * Per-CPU mailbox for IPI messages: it is a single cache line storing
     69  1.2  rmind  * up to IPI_MSG_MAX messages.  This interface is built on top of the
     70  1.2  rmind  * synchronous IPIs.
     71  1.1  rmind  */
     72  1.1  rmind 
     73  1.1  rmind #define	IPI_MSG_SLOTS	(CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
     74  1.1  rmind #define	IPI_MSG_MAX	IPI_MSG_SLOTS
     75  1.1  rmind 
     76  1.1  rmind typedef struct {
     77  1.1  rmind 	ipi_msg_t *	msg[IPI_MSG_SLOTS];
     78  1.1  rmind } ipi_mbox_t;
     79  1.1  rmind 
     80  1.2  rmind 
     81  1.2  rmind /* Mailboxes for the synchronous IPIs. */
     82  1.1  rmind static ipi_mbox_t *	ipi_mboxes	__read_mostly;
     83  1.1  rmind static struct evcnt	ipi_mboxfull_ev	__cacheline_aligned;
     84  1.2  rmind static void		ipi_msg_cpu_handler(void *);
     85  1.2  rmind 
     86  1.2  rmind /* Handler for the synchronous IPIs - it must be zero. */
     87  1.2  rmind #define	IPI_SYNCH_ID	0
     88  1.1  rmind 
     89  1.1  rmind #ifndef MULTIPROCESSOR
     90  1.1  rmind #define	cpu_ipi(ci)	KASSERT(ci == NULL)
     91  1.1  rmind #endif
     92  1.1  rmind 
     93  1.1  rmind void
     94  1.1  rmind ipi_sysinit(void)
     95  1.1  rmind {
     96  1.1  rmind 	const size_t len = ncpu * sizeof(ipi_mbox_t);
     97  1.1  rmind 
     98  1.2  rmind 	/* Initialise the per-CPU bit fields. */
     99  1.2  rmind 	for (u_int i = 0; i < ncpu; i++) {
    100  1.2  rmind 		struct cpu_info *ci = cpu_lookup(i);
    101  1.2  rmind 		memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
    102  1.2  rmind 	}
    103  1.2  rmind 	mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
    104  1.2  rmind 	memset(ipi_intrs, 0, sizeof(ipi_intrs));
    105  1.2  rmind 
    106  1.1  rmind 	/* Allocate per-CPU IPI mailboxes. */
    107  1.1  rmind 	ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
    108  1.1  rmind 	KASSERT(ipi_mboxes != NULL);
    109  1.1  rmind 
    110  1.2  rmind 	/*
    111  1.2  rmind 	 * Register the handler for synchronous IPIs.  This mechanism
    112  1.2  rmind 	 * is built on top of the asynchronous interface.  Slot zero is
    113  1.2  rmind 	 * reserved permanently; it is also handy to use zero as a failure
    114  1.2  rmind 	 * for other registers (as it is potentially less error-prone).
    115  1.2  rmind 	 */
    116  1.2  rmind 	ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
    117  1.2  rmind 
    118  1.1  rmind 	evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
    119  1.1  rmind 	   "ipi", "full");
    120  1.1  rmind }
    121  1.1  rmind 
    122  1.1  rmind /*
    123  1.2  rmind  * ipi_register: register an asynchronous IPI handler.
    124  1.2  rmind  *
    125  1.2  rmind  * => Returns IPI ID which is greater than zero; on failure - zero.
    126  1.2  rmind  */
    127  1.2  rmind u_int
    128  1.2  rmind ipi_register(ipi_func_t func, void *arg)
    129  1.2  rmind {
    130  1.2  rmind 	mutex_enter(&ipi_mngmt_lock);
    131  1.2  rmind 	for (u_int i = 0; i < IPI_MAXREG; i++) {
    132  1.2  rmind 		if (ipi_intrs[i].func == NULL) {
    133  1.2  rmind 			/* Register the function. */
    134  1.2  rmind 			ipi_intrs[i].func = func;
    135  1.2  rmind 			ipi_intrs[i].arg = arg;
    136  1.2  rmind 			mutex_exit(&ipi_mngmt_lock);
    137  1.2  rmind 
    138  1.2  rmind 			KASSERT(i != IPI_SYNCH_ID);
    139  1.2  rmind 			return i;
    140  1.2  rmind 		}
    141  1.2  rmind 	}
    142  1.2  rmind 	mutex_exit(&ipi_mngmt_lock);
    143  1.2  rmind 	printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
    144  1.2  rmind 	return 0;
    145  1.2  rmind }
    146  1.2  rmind 
    147  1.2  rmind /*
    148  1.2  rmind  * ipi_unregister: release the IPI handler given the ID.
    149  1.2  rmind  */
    150  1.2  rmind void
    151  1.2  rmind ipi_unregister(u_int ipi_id)
    152  1.2  rmind {
    153  1.2  rmind 	ipi_msg_t ipimsg = { .func = (ipi_func_t)nullop };
    154  1.2  rmind 
    155  1.2  rmind 	KASSERT(ipi_id != IPI_SYNCH_ID);
    156  1.2  rmind 	KASSERT(ipi_id < IPI_MAXREG);
    157  1.2  rmind 
    158  1.2  rmind 	/* Release the slot. */
    159  1.2  rmind 	mutex_enter(&ipi_mngmt_lock);
    160  1.2  rmind 	KASSERT(ipi_intrs[ipi_id].func != NULL);
    161  1.2  rmind 	ipi_intrs[ipi_id].func = NULL;
    162  1.2  rmind 
    163  1.2  rmind 	/* Ensure that there are no IPIs in flight. */
    164  1.2  rmind 	kpreempt_disable();
    165  1.2  rmind 	ipi_broadcast(&ipimsg);
    166  1.2  rmind 	ipi_wait(&ipimsg);
    167  1.2  rmind 	kpreempt_enable();
    168  1.2  rmind 	mutex_exit(&ipi_mngmt_lock);
    169  1.2  rmind }
    170  1.2  rmind 
    171  1.2  rmind /*
    172  1.2  rmind  * ipi_trigger: asynchronously send an IPI to the specified CPU.
    173  1.2  rmind  */
    174  1.2  rmind void
    175  1.2  rmind ipi_trigger(u_int ipi_id, struct cpu_info *ci)
    176  1.2  rmind {
    177  1.2  rmind 	const u_int i = ipi_id >> IPI_BITW_SHIFT;
    178  1.2  rmind 	const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
    179  1.2  rmind 
    180  1.2  rmind 	KASSERT(ipi_id < IPI_MAXREG);
    181  1.2  rmind 	KASSERT(kpreempt_disabled());
    182  1.2  rmind 	KASSERT(curcpu() != ci);
    183  1.2  rmind 
    184  1.2  rmind 	/* Mark as pending and send an IPI. */
    185  1.2  rmind 	if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
    186  1.2  rmind 		atomic_or_32(&ci->ci_ipipend[i], bitm);
    187  1.2  rmind 		cpu_ipi(ci);
    188  1.2  rmind 	}
    189  1.2  rmind }
    190  1.2  rmind 
    191  1.2  rmind /*
    192  1.3  rmind  * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
    193  1.3  rmind  * CPUs given the target CPU set.
    194  1.3  rmind  */
    195  1.3  rmind void
    196  1.3  rmind ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
    197  1.3  rmind {
    198  1.3  rmind 	const cpuid_t selfid = cpu_index(curcpu());
    199  1.3  rmind 	CPU_INFO_ITERATOR cii;
    200  1.3  rmind 	struct cpu_info *ci;
    201  1.3  rmind 
    202  1.3  rmind 	KASSERT(kpreempt_disabled());
    203  1.3  rmind 	KASSERT(target != NULL);
    204  1.3  rmind 
    205  1.3  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    206  1.3  rmind 		const cpuid_t cpuid = cpu_index(ci);
    207  1.3  rmind 
    208  1.3  rmind 		if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
    209  1.3  rmind 			continue;
    210  1.3  rmind 		}
    211  1.3  rmind 		ipi_trigger(ipi_id, ci);
    212  1.3  rmind 	}
    213  1.3  rmind 	if (kcpuset_isset(target, selfid)) {
    214  1.3  rmind 		int s = splhigh();
    215  1.3  rmind 		ipi_cpu_handler();
    216  1.3  rmind 		splx(s);
    217  1.3  rmind 	}
    218  1.3  rmind }
    219  1.3  rmind 
    220  1.3  rmind /*
    221  1.1  rmind  * put_msg: insert message into the mailbox.
    222  1.1  rmind  */
    223  1.1  rmind static inline void
    224  1.1  rmind put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
    225  1.1  rmind {
    226  1.1  rmind 	int count = SPINLOCK_BACKOFF_MIN;
    227  1.1  rmind again:
    228  1.1  rmind 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
    229  1.1  rmind 		if (__predict_true(mbox->msg[i] == NULL) &&
    230  1.1  rmind 		    atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
    231  1.1  rmind 			return;
    232  1.1  rmind 		}
    233  1.1  rmind 	}
    234  1.1  rmind 
    235  1.1  rmind 	/* All slots are full: we have to spin-wait. */
    236  1.1  rmind 	ipi_mboxfull_ev.ev_count++;
    237  1.1  rmind 	SPINLOCK_BACKOFF(count);
    238  1.1  rmind 	goto again;
    239  1.1  rmind }
    240  1.1  rmind 
    241  1.1  rmind /*
    242  1.1  rmind  * ipi_cpu_handler: the IPI handler.
    243  1.1  rmind  */
    244  1.1  rmind void
    245  1.1  rmind ipi_cpu_handler(void)
    246  1.1  rmind {
    247  1.2  rmind 	struct cpu_info * const ci = curcpu();
    248  1.2  rmind 
    249  1.2  rmind 	/*
    250  1.2  rmind 	 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
    251  1.2  rmind 	 * IPI ID numbers and execute functions in those slots.
    252  1.2  rmind 	 */
    253  1.2  rmind 	for (u_int i = 0; i < IPI_BITWORDS; i++) {
    254  1.2  rmind 		uint32_t pending, bit;
    255  1.2  rmind 
    256  1.2  rmind 		if (ci->ci_ipipend[i] == 0) {
    257  1.2  rmind 			continue;
    258  1.2  rmind 		}
    259  1.2  rmind 		pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
    260  1.2  rmind #ifndef __HAVE_ATOMIC_AS_MEMBAR
    261  1.2  rmind 		membar_producer();
    262  1.2  rmind #endif
    263  1.2  rmind 		while ((bit = ffs(pending)) != 0) {
    264  1.2  rmind 			const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
    265  1.2  rmind 			ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
    266  1.2  rmind 
    267  1.2  rmind 			pending &= ~(1U << bit);
    268  1.2  rmind 			KASSERT(ipi_hdl->func != NULL);
    269  1.2  rmind 			ipi_hdl->func(ipi_hdl->arg);
    270  1.2  rmind 		}
    271  1.2  rmind 	}
    272  1.2  rmind }
    273  1.2  rmind 
    274  1.2  rmind /*
    275  1.2  rmind  * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
    276  1.2  rmind  * execute the passed functions and acknowledge the messages.
    277  1.2  rmind  */
    278  1.2  rmind static void
    279  1.2  rmind ipi_msg_cpu_handler(void *arg __unused)
    280  1.2  rmind {
    281  1.1  rmind 	const struct cpu_info * const ci = curcpu();
    282  1.1  rmind 	ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
    283  1.1  rmind 
    284  1.1  rmind 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
    285  1.1  rmind 		ipi_msg_t *msg;
    286  1.1  rmind 
    287  1.1  rmind 		/* Get the message. */
    288  1.1  rmind 		if ((msg = mbox->msg[i]) == NULL) {
    289  1.1  rmind 			continue;
    290  1.1  rmind 		}
    291  1.1  rmind 		mbox->msg[i] = NULL;
    292  1.1  rmind 
    293  1.1  rmind 		/* Execute the handler. */
    294  1.1  rmind 		KASSERT(msg->func);
    295  1.1  rmind 		msg->func(msg->arg);
    296  1.1  rmind 
    297  1.1  rmind 		/* Ack the request. */
    298  1.1  rmind 		atomic_dec_uint(&msg->_pending);
    299  1.1  rmind 	}
    300  1.1  rmind }
    301  1.1  rmind 
    302  1.1  rmind /*
    303  1.1  rmind  * ipi_unicast: send an IPI to a single CPU.
    304  1.1  rmind  *
    305  1.1  rmind  * => The CPU must be remote; must not be local.
    306  1.1  rmind  * => The caller must ipi_wait() on the message for completion.
    307  1.1  rmind  */
    308  1.1  rmind void
    309  1.1  rmind ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
    310  1.1  rmind {
    311  1.1  rmind 	const cpuid_t id = cpu_index(ci);
    312  1.1  rmind 
    313  1.1  rmind 	KASSERT(msg->func != NULL);
    314  1.1  rmind 	KASSERT(kpreempt_disabled());
    315  1.1  rmind 	KASSERT(curcpu() != ci);
    316  1.1  rmind 
    317  1.1  rmind 	msg->_pending = 1;
    318  1.1  rmind 	membar_producer();
    319  1.1  rmind 
    320  1.1  rmind 	put_msg(&ipi_mboxes[id], msg);
    321  1.2  rmind 	ipi_trigger(IPI_SYNCH_ID, ci);
    322  1.1  rmind }
    323  1.1  rmind 
    324  1.1  rmind /*
    325  1.1  rmind  * ipi_multicast: send an IPI to each CPU in the specified set.
    326  1.1  rmind  *
    327  1.1  rmind  * => The caller must ipi_wait() on the message for completion.
    328  1.1  rmind  */
    329  1.1  rmind void
    330  1.1  rmind ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
    331  1.1  rmind {
    332  1.1  rmind 	const struct cpu_info * const self = curcpu();
    333  1.1  rmind 	CPU_INFO_ITERATOR cii;
    334  1.1  rmind 	struct cpu_info *ci;
    335  1.1  rmind 	u_int local;
    336  1.1  rmind 
    337  1.1  rmind 	KASSERT(msg->func != NULL);
    338  1.1  rmind 	KASSERT(kpreempt_disabled());
    339  1.1  rmind 
    340  1.1  rmind 	local = !!kcpuset_isset(target, cpu_index(self));
    341  1.1  rmind 	msg->_pending = kcpuset_countset(target) - local;
    342  1.1  rmind 	membar_producer();
    343  1.1  rmind 
    344  1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    345  1.1  rmind 		cpuid_t id;
    346  1.1  rmind 
    347  1.1  rmind 		if (__predict_false(ci == self)) {
    348  1.1  rmind 			continue;
    349  1.1  rmind 		}
    350  1.1  rmind 		id = cpu_index(ci);
    351  1.1  rmind 		if (!kcpuset_isset(target, id)) {
    352  1.1  rmind 			continue;
    353  1.1  rmind 		}
    354  1.1  rmind 		put_msg(&ipi_mboxes[id], msg);
    355  1.2  rmind 		ipi_trigger(IPI_SYNCH_ID, ci);
    356  1.1  rmind 	}
    357  1.1  rmind 	if (local) {
    358  1.1  rmind 		msg->func(msg->arg);
    359  1.1  rmind 	}
    360  1.1  rmind }
    361  1.1  rmind 
    362  1.1  rmind /*
    363  1.1  rmind  * ipi_broadcast: send an IPI to all CPUs.
    364  1.1  rmind  *
    365  1.1  rmind  * => The caller must ipi_wait() on the message for completion.
    366  1.1  rmind  */
    367  1.1  rmind void
    368  1.1  rmind ipi_broadcast(ipi_msg_t *msg)
    369  1.1  rmind {
    370  1.1  rmind 	const struct cpu_info * const self = curcpu();
    371  1.1  rmind 	CPU_INFO_ITERATOR cii;
    372  1.1  rmind 	struct cpu_info *ci;
    373  1.1  rmind 
    374  1.1  rmind 	KASSERT(msg->func != NULL);
    375  1.1  rmind 	KASSERT(kpreempt_disabled());
    376  1.1  rmind 
    377  1.1  rmind 	msg->_pending = ncpu - 1;
    378  1.1  rmind 	membar_producer();
    379  1.1  rmind 
    380  1.1  rmind 	/* Broadcast IPIs for remote CPUs. */
    381  1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    382  1.1  rmind 		cpuid_t id;
    383  1.1  rmind 
    384  1.1  rmind 		if (__predict_false(ci == self)) {
    385  1.1  rmind 			continue;
    386  1.1  rmind 		}
    387  1.1  rmind 		id = cpu_index(ci);
    388  1.1  rmind 		put_msg(&ipi_mboxes[id], msg);
    389  1.2  rmind 		ipi_trigger(IPI_SYNCH_ID, ci);
    390  1.1  rmind 	}
    391  1.1  rmind 
    392  1.1  rmind 	/* Finally, execute locally. */
    393  1.1  rmind 	msg->func(msg->arg);
    394  1.1  rmind }
    395  1.1  rmind 
    396  1.1  rmind /*
    397  1.1  rmind  * ipi_wait: spin-wait until the message is processed.
    398  1.1  rmind  */
    399  1.1  rmind void
    400  1.1  rmind ipi_wait(ipi_msg_t *msg)
    401  1.1  rmind {
    402  1.1  rmind 	int count = SPINLOCK_BACKOFF_MIN;
    403  1.1  rmind 
    404  1.1  rmind 	while (msg->_pending) {
    405  1.1  rmind 		KASSERT(msg->_pending < ncpu);
    406  1.1  rmind 		SPINLOCK_BACKOFF(count);
    407  1.1  rmind 	}
    408  1.1  rmind }
    409