subr_ipi.c revision 1.2.6.2 1 /* $NetBSD: subr_ipi.c,v 1.2.6.2 2014/08/20 00:04:29 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
34 * invoke functions with a constant argument and synchronous IPIs
35 * with the cross-call support.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.2.6.2 2014/08/20 00:04:29 tls Exp $");
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43
44 #include <sys/atomic.h>
45 #include <sys/evcnt.h>
46 #include <sys/cpu.h>
47 #include <sys/ipi.h>
48 #include <sys/kcpuset.h>
49 #include <sys/kmem.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52
53 /*
54 * An array of the IPI handlers used for asynchronous invocation.
55 * The lock protects the slot allocation.
56 */
57
58 typedef struct {
59 ipi_func_t func;
60 void * arg;
61 } ipi_intr_t;
62
63 static kmutex_t ipi_mngmt_lock;
64 static ipi_intr_t ipi_intrs[IPI_MAXREG] __cacheline_aligned;
65
66 /*
67 * Per-CPU mailbox for IPI messages: it is a single cache line storing
68 * up to IPI_MSG_MAX messages. This interface is built on top of the
69 * synchronous IPIs.
70 */
71
72 #define IPI_MSG_SLOTS (CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
73 #define IPI_MSG_MAX IPI_MSG_SLOTS
74
75 typedef struct {
76 ipi_msg_t * msg[IPI_MSG_SLOTS];
77 } ipi_mbox_t;
78
79
80 /* Mailboxes for the synchronous IPIs. */
81 static ipi_mbox_t * ipi_mboxes __read_mostly;
82 static struct evcnt ipi_mboxfull_ev __cacheline_aligned;
83 static void ipi_msg_cpu_handler(void *);
84
85 /* Handler for the synchronous IPIs - it must be zero. */
86 #define IPI_SYNCH_ID 0
87
88 #ifndef MULTIPROCESSOR
89 #define cpu_ipi(ci) KASSERT(ci == NULL)
90 #endif
91
92 void
93 ipi_sysinit(void)
94 {
95 const size_t len = ncpu * sizeof(ipi_mbox_t);
96
97 /* Initialise the per-CPU bit fields. */
98 for (u_int i = 0; i < ncpu; i++) {
99 struct cpu_info *ci = cpu_lookup(i);
100 memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
101 }
102 mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
103 memset(ipi_intrs, 0, sizeof(ipi_intrs));
104
105 /* Allocate per-CPU IPI mailboxes. */
106 ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
107 KASSERT(ipi_mboxes != NULL);
108
109 /*
110 * Register the handler for synchronous IPIs. This mechanism
111 * is built on top of the asynchronous interface. Slot zero is
112 * reserved permanently; it is also handy to use zero as a failure
113 * for other registers (as it is potentially less error-prone).
114 */
115 ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
116
117 evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
118 "ipi", "full");
119 }
120
121 /*
122 * ipi_register: register an asynchronous IPI handler.
123 *
124 * => Returns IPI ID which is greater than zero; on failure - zero.
125 */
126 u_int
127 ipi_register(ipi_func_t func, void *arg)
128 {
129 mutex_enter(&ipi_mngmt_lock);
130 for (u_int i = 0; i < IPI_MAXREG; i++) {
131 if (ipi_intrs[i].func == NULL) {
132 /* Register the function. */
133 ipi_intrs[i].func = func;
134 ipi_intrs[i].arg = arg;
135 mutex_exit(&ipi_mngmt_lock);
136
137 KASSERT(i != IPI_SYNCH_ID);
138 return i;
139 }
140 }
141 mutex_exit(&ipi_mngmt_lock);
142 printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
143 return 0;
144 }
145
146 /*
147 * ipi_unregister: release the IPI handler given the ID.
148 */
149 void
150 ipi_unregister(u_int ipi_id)
151 {
152 ipi_msg_t ipimsg = { .func = (ipi_func_t)nullop };
153
154 KASSERT(ipi_id != IPI_SYNCH_ID);
155 KASSERT(ipi_id < IPI_MAXREG);
156
157 /* Release the slot. */
158 mutex_enter(&ipi_mngmt_lock);
159 KASSERT(ipi_intrs[ipi_id].func != NULL);
160 ipi_intrs[ipi_id].func = NULL;
161
162 /* Ensure that there are no IPIs in flight. */
163 kpreempt_disable();
164 ipi_broadcast(&ipimsg);
165 ipi_wait(&ipimsg);
166 kpreempt_enable();
167 mutex_exit(&ipi_mngmt_lock);
168 }
169
170 /*
171 * ipi_trigger: asynchronously send an IPI to the specified CPU.
172 */
173 void
174 ipi_trigger(u_int ipi_id, struct cpu_info *ci)
175 {
176 const u_int i = ipi_id >> IPI_BITW_SHIFT;
177 const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
178
179 KASSERT(ipi_id < IPI_MAXREG);
180 KASSERT(kpreempt_disabled());
181 KASSERT(curcpu() != ci);
182
183 /* Mark as pending and send an IPI. */
184 if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
185 atomic_or_32(&ci->ci_ipipend[i], bitm);
186 cpu_ipi(ci);
187 }
188 }
189
190 /*
191 * put_msg: insert message into the mailbox.
192 */
193 static inline void
194 put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
195 {
196 int count = SPINLOCK_BACKOFF_MIN;
197 again:
198 for (u_int i = 0; i < IPI_MSG_MAX; i++) {
199 if (__predict_true(mbox->msg[i] == NULL) &&
200 atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
201 return;
202 }
203 }
204
205 /* All slots are full: we have to spin-wait. */
206 ipi_mboxfull_ev.ev_count++;
207 SPINLOCK_BACKOFF(count);
208 goto again;
209 }
210
211 /*
212 * ipi_cpu_handler: the IPI handler.
213 */
214 void
215 ipi_cpu_handler(void)
216 {
217 struct cpu_info * const ci = curcpu();
218
219 /*
220 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
221 * IPI ID numbers and execute functions in those slots.
222 */
223 for (u_int i = 0; i < IPI_BITWORDS; i++) {
224 uint32_t pending, bit;
225
226 if (ci->ci_ipipend[i] == 0) {
227 continue;
228 }
229 pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
230 #ifndef __HAVE_ATOMIC_AS_MEMBAR
231 membar_producer();
232 #endif
233 while ((bit = ffs(pending)) != 0) {
234 const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
235 ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
236
237 pending &= ~(1U << bit);
238 KASSERT(ipi_hdl->func != NULL);
239 ipi_hdl->func(ipi_hdl->arg);
240 }
241 }
242 }
243
244 /*
245 * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
246 * execute the passed functions and acknowledge the messages.
247 */
248 static void
249 ipi_msg_cpu_handler(void *arg __unused)
250 {
251 const struct cpu_info * const ci = curcpu();
252 ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
253
254 for (u_int i = 0; i < IPI_MSG_MAX; i++) {
255 ipi_msg_t *msg;
256
257 /* Get the message. */
258 if ((msg = mbox->msg[i]) == NULL) {
259 continue;
260 }
261 mbox->msg[i] = NULL;
262
263 /* Execute the handler. */
264 KASSERT(msg->func);
265 msg->func(msg->arg);
266
267 /* Ack the request. */
268 atomic_dec_uint(&msg->_pending);
269 }
270 }
271
272 /*
273 * ipi_unicast: send an IPI to a single CPU.
274 *
275 * => The CPU must be remote; must not be local.
276 * => The caller must ipi_wait() on the message for completion.
277 */
278 void
279 ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
280 {
281 const cpuid_t id = cpu_index(ci);
282
283 KASSERT(msg->func != NULL);
284 KASSERT(kpreempt_disabled());
285 KASSERT(curcpu() != ci);
286
287 msg->_pending = 1;
288 membar_producer();
289
290 put_msg(&ipi_mboxes[id], msg);
291 ipi_trigger(IPI_SYNCH_ID, ci);
292 }
293
294 /*
295 * ipi_multicast: send an IPI to each CPU in the specified set.
296 *
297 * => The caller must ipi_wait() on the message for completion.
298 */
299 void
300 ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
301 {
302 const struct cpu_info * const self = curcpu();
303 CPU_INFO_ITERATOR cii;
304 struct cpu_info *ci;
305 u_int local;
306
307 KASSERT(msg->func != NULL);
308 KASSERT(kpreempt_disabled());
309
310 local = !!kcpuset_isset(target, cpu_index(self));
311 msg->_pending = kcpuset_countset(target) - local;
312 membar_producer();
313
314 for (CPU_INFO_FOREACH(cii, ci)) {
315 cpuid_t id;
316
317 if (__predict_false(ci == self)) {
318 continue;
319 }
320 id = cpu_index(ci);
321 if (!kcpuset_isset(target, id)) {
322 continue;
323 }
324 put_msg(&ipi_mboxes[id], msg);
325 ipi_trigger(IPI_SYNCH_ID, ci);
326 }
327 if (local) {
328 msg->func(msg->arg);
329 }
330 }
331
332 /*
333 * ipi_broadcast: send an IPI to all CPUs.
334 *
335 * => The caller must ipi_wait() on the message for completion.
336 */
337 void
338 ipi_broadcast(ipi_msg_t *msg)
339 {
340 const struct cpu_info * const self = curcpu();
341 CPU_INFO_ITERATOR cii;
342 struct cpu_info *ci;
343
344 KASSERT(msg->func != NULL);
345 KASSERT(kpreempt_disabled());
346
347 msg->_pending = ncpu - 1;
348 membar_producer();
349
350 /* Broadcast IPIs for remote CPUs. */
351 for (CPU_INFO_FOREACH(cii, ci)) {
352 cpuid_t id;
353
354 if (__predict_false(ci == self)) {
355 continue;
356 }
357 id = cpu_index(ci);
358 put_msg(&ipi_mboxes[id], msg);
359 ipi_trigger(IPI_SYNCH_ID, ci);
360 }
361
362 /* Finally, execute locally. */
363 msg->func(msg->arg);
364 }
365
366 /*
367 * ipi_wait: spin-wait until the message is processed.
368 */
369 void
370 ipi_wait(ipi_msg_t *msg)
371 {
372 int count = SPINLOCK_BACKOFF_MIN;
373
374 while (msg->_pending) {
375 KASSERT(msg->_pending < ncpu);
376 SPINLOCK_BACKOFF(count);
377 }
378 }
379