Home | History | Annotate | Line # | Download | only in kern
subr_ipi.c revision 1.2.8.1
      1 /*	$NetBSD: subr_ipi.c,v 1.2.8.1 2015/04/06 15:18:20 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
     34  * invoke functions with a constant argument and synchronous IPIs
     35  * with the cross-call support.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.2.8.1 2015/04/06 15:18:20 skrll Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 
     44 #include <sys/atomic.h>
     45 #include <sys/evcnt.h>
     46 #include <sys/cpu.h>
     47 #include <sys/ipi.h>
     48 #include <sys/intr.h>
     49 #include <sys/kcpuset.h>
     50 #include <sys/kmem.h>
     51 #include <sys/lock.h>
     52 #include <sys/mutex.h>
     53 
     54 /*
     55  * An array of the IPI handlers used for asynchronous invocation.
     56  * The lock protects the slot allocation.
     57  */
     58 
     59 typedef struct {
     60 	ipi_func_t	func;
     61 	void *		arg;
     62 } ipi_intr_t;
     63 
     64 static kmutex_t		ipi_mngmt_lock;
     65 static ipi_intr_t	ipi_intrs[IPI_MAXREG]	__cacheline_aligned;
     66 
     67 /*
     68  * Per-CPU mailbox for IPI messages: it is a single cache line storing
     69  * up to IPI_MSG_MAX messages.  This interface is built on top of the
     70  * synchronous IPIs.
     71  */
     72 
     73 #define	IPI_MSG_SLOTS	(CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
     74 #define	IPI_MSG_MAX	IPI_MSG_SLOTS
     75 
     76 typedef struct {
     77 	ipi_msg_t *	msg[IPI_MSG_SLOTS];
     78 } ipi_mbox_t;
     79 
     80 
     81 /* Mailboxes for the synchronous IPIs. */
     82 static ipi_mbox_t *	ipi_mboxes	__read_mostly;
     83 static struct evcnt	ipi_mboxfull_ev	__cacheline_aligned;
     84 static void		ipi_msg_cpu_handler(void *);
     85 
     86 /* Handler for the synchronous IPIs - it must be zero. */
     87 #define	IPI_SYNCH_ID	0
     88 
     89 #ifndef MULTIPROCESSOR
     90 #define	cpu_ipi(ci)	KASSERT(ci == NULL)
     91 #endif
     92 
     93 void
     94 ipi_sysinit(void)
     95 {
     96 	const size_t len = ncpu * sizeof(ipi_mbox_t);
     97 
     98 	/* Initialise the per-CPU bit fields. */
     99 	for (u_int i = 0; i < ncpu; i++) {
    100 		struct cpu_info *ci = cpu_lookup(i);
    101 		memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
    102 	}
    103 	mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
    104 	memset(ipi_intrs, 0, sizeof(ipi_intrs));
    105 
    106 	/* Allocate per-CPU IPI mailboxes. */
    107 	ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
    108 	KASSERT(ipi_mboxes != NULL);
    109 
    110 	/*
    111 	 * Register the handler for synchronous IPIs.  This mechanism
    112 	 * is built on top of the asynchronous interface.  Slot zero is
    113 	 * reserved permanently; it is also handy to use zero as a failure
    114 	 * for other registers (as it is potentially less error-prone).
    115 	 */
    116 	ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
    117 
    118 	evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
    119 	   "ipi", "full");
    120 }
    121 
    122 /*
    123  * ipi_register: register an asynchronous IPI handler.
    124  *
    125  * => Returns IPI ID which is greater than zero; on failure - zero.
    126  */
    127 u_int
    128 ipi_register(ipi_func_t func, void *arg)
    129 {
    130 	mutex_enter(&ipi_mngmt_lock);
    131 	for (u_int i = 0; i < IPI_MAXREG; i++) {
    132 		if (ipi_intrs[i].func == NULL) {
    133 			/* Register the function. */
    134 			ipi_intrs[i].func = func;
    135 			ipi_intrs[i].arg = arg;
    136 			mutex_exit(&ipi_mngmt_lock);
    137 
    138 			KASSERT(i != IPI_SYNCH_ID);
    139 			return i;
    140 		}
    141 	}
    142 	mutex_exit(&ipi_mngmt_lock);
    143 	printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
    144 	return 0;
    145 }
    146 
    147 /*
    148  * ipi_unregister: release the IPI handler given the ID.
    149  */
    150 void
    151 ipi_unregister(u_int ipi_id)
    152 {
    153 	ipi_msg_t ipimsg = { .func = (ipi_func_t)nullop };
    154 
    155 	KASSERT(ipi_id != IPI_SYNCH_ID);
    156 	KASSERT(ipi_id < IPI_MAXREG);
    157 
    158 	/* Release the slot. */
    159 	mutex_enter(&ipi_mngmt_lock);
    160 	KASSERT(ipi_intrs[ipi_id].func != NULL);
    161 	ipi_intrs[ipi_id].func = NULL;
    162 
    163 	/* Ensure that there are no IPIs in flight. */
    164 	kpreempt_disable();
    165 	ipi_broadcast(&ipimsg);
    166 	ipi_wait(&ipimsg);
    167 	kpreempt_enable();
    168 	mutex_exit(&ipi_mngmt_lock);
    169 }
    170 
    171 /*
    172  * ipi_trigger: asynchronously send an IPI to the specified CPU.
    173  */
    174 void
    175 ipi_trigger(u_int ipi_id, struct cpu_info *ci)
    176 {
    177 	const u_int i = ipi_id >> IPI_BITW_SHIFT;
    178 	const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
    179 
    180 	KASSERT(ipi_id < IPI_MAXREG);
    181 	KASSERT(kpreempt_disabled());
    182 	KASSERT(curcpu() != ci);
    183 
    184 	/* Mark as pending and send an IPI. */
    185 	if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
    186 		atomic_or_32(&ci->ci_ipipend[i], bitm);
    187 		cpu_ipi(ci);
    188 	}
    189 }
    190 
    191 /*
    192  * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
    193  * CPUs given the target CPU set.
    194  */
    195 void
    196 ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
    197 {
    198 	const cpuid_t selfid = cpu_index(curcpu());
    199 	CPU_INFO_ITERATOR cii;
    200 	struct cpu_info *ci;
    201 
    202 	KASSERT(kpreempt_disabled());
    203 	KASSERT(target != NULL);
    204 
    205 	for (CPU_INFO_FOREACH(cii, ci)) {
    206 		const cpuid_t cpuid = cpu_index(ci);
    207 
    208 		if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
    209 			continue;
    210 		}
    211 		ipi_trigger(ipi_id, ci);
    212 	}
    213 	if (kcpuset_isset(target, selfid)) {
    214 		int s = splhigh();
    215 		ipi_cpu_handler();
    216 		splx(s);
    217 	}
    218 }
    219 
    220 /*
    221  * put_msg: insert message into the mailbox.
    222  */
    223 static inline void
    224 put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
    225 {
    226 	int count = SPINLOCK_BACKOFF_MIN;
    227 again:
    228 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
    229 		if (__predict_true(mbox->msg[i] == NULL) &&
    230 		    atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
    231 			return;
    232 		}
    233 	}
    234 
    235 	/* All slots are full: we have to spin-wait. */
    236 	ipi_mboxfull_ev.ev_count++;
    237 	SPINLOCK_BACKOFF(count);
    238 	goto again;
    239 }
    240 
    241 /*
    242  * ipi_cpu_handler: the IPI handler.
    243  */
    244 void
    245 ipi_cpu_handler(void)
    246 {
    247 	struct cpu_info * const ci = curcpu();
    248 
    249 	/*
    250 	 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
    251 	 * IPI ID numbers and execute functions in those slots.
    252 	 */
    253 	for (u_int i = 0; i < IPI_BITWORDS; i++) {
    254 		uint32_t pending, bit;
    255 
    256 		if (ci->ci_ipipend[i] == 0) {
    257 			continue;
    258 		}
    259 		pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
    260 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    261 		membar_producer();
    262 #endif
    263 		while ((bit = ffs(pending)) != 0) {
    264 			const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
    265 			ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
    266 
    267 			pending &= ~(1U << bit);
    268 			KASSERT(ipi_hdl->func != NULL);
    269 			ipi_hdl->func(ipi_hdl->arg);
    270 		}
    271 	}
    272 }
    273 
    274 /*
    275  * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
    276  * execute the passed functions and acknowledge the messages.
    277  */
    278 static void
    279 ipi_msg_cpu_handler(void *arg __unused)
    280 {
    281 	const struct cpu_info * const ci = curcpu();
    282 	ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
    283 
    284 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
    285 		ipi_msg_t *msg;
    286 
    287 		/* Get the message. */
    288 		if ((msg = mbox->msg[i]) == NULL) {
    289 			continue;
    290 		}
    291 		mbox->msg[i] = NULL;
    292 
    293 		/* Execute the handler. */
    294 		KASSERT(msg->func);
    295 		msg->func(msg->arg);
    296 
    297 		/* Ack the request. */
    298 		atomic_dec_uint(&msg->_pending);
    299 	}
    300 }
    301 
    302 /*
    303  * ipi_unicast: send an IPI to a single CPU.
    304  *
    305  * => The CPU must be remote; must not be local.
    306  * => The caller must ipi_wait() on the message for completion.
    307  */
    308 void
    309 ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
    310 {
    311 	const cpuid_t id = cpu_index(ci);
    312 
    313 	KASSERT(msg->func != NULL);
    314 	KASSERT(kpreempt_disabled());
    315 	KASSERT(curcpu() != ci);
    316 
    317 	msg->_pending = 1;
    318 	membar_producer();
    319 
    320 	put_msg(&ipi_mboxes[id], msg);
    321 	ipi_trigger(IPI_SYNCH_ID, ci);
    322 }
    323 
    324 /*
    325  * ipi_multicast: send an IPI to each CPU in the specified set.
    326  *
    327  * => The caller must ipi_wait() on the message for completion.
    328  */
    329 void
    330 ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
    331 {
    332 	const struct cpu_info * const self = curcpu();
    333 	CPU_INFO_ITERATOR cii;
    334 	struct cpu_info *ci;
    335 	u_int local;
    336 
    337 	KASSERT(msg->func != NULL);
    338 	KASSERT(kpreempt_disabled());
    339 
    340 	local = !!kcpuset_isset(target, cpu_index(self));
    341 	msg->_pending = kcpuset_countset(target) - local;
    342 	membar_producer();
    343 
    344 	for (CPU_INFO_FOREACH(cii, ci)) {
    345 		cpuid_t id;
    346 
    347 		if (__predict_false(ci == self)) {
    348 			continue;
    349 		}
    350 		id = cpu_index(ci);
    351 		if (!kcpuset_isset(target, id)) {
    352 			continue;
    353 		}
    354 		put_msg(&ipi_mboxes[id], msg);
    355 		ipi_trigger(IPI_SYNCH_ID, ci);
    356 	}
    357 	if (local) {
    358 		msg->func(msg->arg);
    359 	}
    360 }
    361 
    362 /*
    363  * ipi_broadcast: send an IPI to all CPUs.
    364  *
    365  * => The caller must ipi_wait() on the message for completion.
    366  */
    367 void
    368 ipi_broadcast(ipi_msg_t *msg)
    369 {
    370 	const struct cpu_info * const self = curcpu();
    371 	CPU_INFO_ITERATOR cii;
    372 	struct cpu_info *ci;
    373 
    374 	KASSERT(msg->func != NULL);
    375 	KASSERT(kpreempt_disabled());
    376 
    377 	msg->_pending = ncpu - 1;
    378 	membar_producer();
    379 
    380 	/* Broadcast IPIs for remote CPUs. */
    381 	for (CPU_INFO_FOREACH(cii, ci)) {
    382 		cpuid_t id;
    383 
    384 		if (__predict_false(ci == self)) {
    385 			continue;
    386 		}
    387 		id = cpu_index(ci);
    388 		put_msg(&ipi_mboxes[id], msg);
    389 		ipi_trigger(IPI_SYNCH_ID, ci);
    390 	}
    391 
    392 	/* Finally, execute locally. */
    393 	msg->func(msg->arg);
    394 }
    395 
    396 /*
    397  * ipi_wait: spin-wait until the message is processed.
    398  */
    399 void
    400 ipi_wait(ipi_msg_t *msg)
    401 {
    402 	int count = SPINLOCK_BACKOFF_MIN;
    403 
    404 	while (msg->_pending) {
    405 		KASSERT(msg->_pending < ncpu);
    406 		SPINLOCK_BACKOFF(count);
    407 	}
    408 }
    409