subr_ipi.c revision 1.7 1 /* $NetBSD: subr_ipi.c,v 1.7 2019/10/16 18:29:49 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
34 * invoke functions with a constant argument and synchronous IPIs
35 * with the cross-call support.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.7 2019/10/16 18:29:49 christos Exp $");
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43
44 #include <sys/atomic.h>
45 #include <sys/evcnt.h>
46 #include <sys/cpu.h>
47 #include <sys/ipi.h>
48 #include <sys/intr.h>
49 #include <sys/kcpuset.h>
50 #include <sys/kmem.h>
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53
54 /*
55 * An array of the IPI handlers used for asynchronous invocation.
56 * The lock protects the slot allocation.
57 */
58
59 typedef struct {
60 ipi_func_t func;
61 void * arg;
62 } ipi_intr_t;
63
64 static kmutex_t ipi_mngmt_lock;
65 static ipi_intr_t ipi_intrs[IPI_MAXREG] __cacheline_aligned;
66
67 /*
68 * Per-CPU mailbox for IPI messages: it is a single cache line storing
69 * up to IPI_MSG_MAX messages. This interface is built on top of the
70 * synchronous IPIs.
71 */
72
73 #define IPI_MSG_SLOTS (CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
74 #define IPI_MSG_MAX IPI_MSG_SLOTS
75
76 typedef struct {
77 ipi_msg_t * msg[IPI_MSG_SLOTS];
78 } ipi_mbox_t;
79
80
81 /* Mailboxes for the synchronous IPIs. */
82 static ipi_mbox_t * ipi_mboxes __read_mostly;
83 static struct evcnt ipi_mboxfull_ev __cacheline_aligned;
84 static void ipi_msg_cpu_handler(void *);
85
86 /* Handler for the synchronous IPIs - it must be zero. */
87 #define IPI_SYNCH_ID 0
88
89 #ifndef MULTIPROCESSOR
90 #define cpu_ipi(ci) KASSERT(ci == NULL)
91 #endif
92
93 void
94 ipi_sysinit(void)
95 {
96 const size_t len = ncpu * sizeof(ipi_mbox_t);
97
98 /* Initialise the per-CPU bit fields. */
99 for (u_int i = 0; i < ncpu; i++) {
100 struct cpu_info *ci = cpu_lookup(i);
101 memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
102 }
103 mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
104 memset(ipi_intrs, 0, sizeof(ipi_intrs));
105
106 /* Allocate per-CPU IPI mailboxes. */
107 ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
108 KASSERT(ipi_mboxes != NULL);
109
110 /*
111 * Register the handler for synchronous IPIs. This mechanism
112 * is built on top of the asynchronous interface. Slot zero is
113 * reserved permanently; it is also handy to use zero as a failure
114 * for other registers (as it is potentially less error-prone).
115 */
116 ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
117
118 evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
119 "ipi", "full");
120 }
121
122 /*
123 * ipi_register: register an asynchronous IPI handler.
124 *
125 * => Returns IPI ID which is greater than zero; on failure - zero.
126 */
127 u_int
128 ipi_register(ipi_func_t func, void *arg)
129 {
130 mutex_enter(&ipi_mngmt_lock);
131 for (u_int i = 0; i < IPI_MAXREG; i++) {
132 if (ipi_intrs[i].func == NULL) {
133 /* Register the function. */
134 ipi_intrs[i].func = func;
135 ipi_intrs[i].arg = arg;
136 mutex_exit(&ipi_mngmt_lock);
137
138 KASSERT(i != IPI_SYNCH_ID);
139 return i;
140 }
141 }
142 mutex_exit(&ipi_mngmt_lock);
143 printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
144 return 0;
145 }
146
147 /*
148 * ipi_unregister: release the IPI handler given the ID.
149 */
150 void
151 ipi_unregister(u_int ipi_id)
152 {
153 ipi_msg_t ipimsg = { .func = __FPTRCAST(ipi_func_t, nullop) };
154
155 KASSERT(ipi_id != IPI_SYNCH_ID);
156 KASSERT(ipi_id < IPI_MAXREG);
157
158 /* Release the slot. */
159 mutex_enter(&ipi_mngmt_lock);
160 KASSERT(ipi_intrs[ipi_id].func != NULL);
161 ipi_intrs[ipi_id].func = NULL;
162
163 /* Ensure that there are no IPIs in flight. */
164 kpreempt_disable();
165 ipi_broadcast(&ipimsg, false);
166 ipi_wait(&ipimsg);
167 kpreempt_enable();
168 mutex_exit(&ipi_mngmt_lock);
169 }
170
171 /*
172 * ipi_mark_pending: internal routine to mark an IPI pending on the
173 * specified CPU (which might be curcpu()).
174 */
175 static bool
176 ipi_mark_pending(u_int ipi_id, struct cpu_info *ci)
177 {
178 const u_int i = ipi_id >> IPI_BITW_SHIFT;
179 const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
180
181 KASSERT(ipi_id < IPI_MAXREG);
182 KASSERT(kpreempt_disabled());
183
184 /* Mark as pending and send an IPI. */
185 if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
186 atomic_or_32(&ci->ci_ipipend[i], bitm);
187 return true;
188 }
189 return false;
190 }
191
192 /*
193 * ipi_trigger: asynchronously send an IPI to the specified CPU.
194 */
195 void
196 ipi_trigger(u_int ipi_id, struct cpu_info *ci)
197 {
198
199 KASSERT(curcpu() != ci);
200 if (ipi_mark_pending(ipi_id, ci)) {
201 cpu_ipi(ci);
202 }
203 }
204
205 /*
206 * ipi_trigger_multi_internal: the guts of ipi_trigger_multi() and
207 * ipi_trigger_broadcast().
208 */
209 static void
210 ipi_trigger_multi_internal(u_int ipi_id, const kcpuset_t *target,
211 bool skip_self)
212 {
213 const cpuid_t selfid = cpu_index(curcpu());
214 CPU_INFO_ITERATOR cii;
215 struct cpu_info *ci;
216
217 KASSERT(kpreempt_disabled());
218 KASSERT(target != NULL);
219
220 for (CPU_INFO_FOREACH(cii, ci)) {
221 const cpuid_t cpuid = cpu_index(ci);
222
223 if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
224 continue;
225 }
226 ipi_trigger(ipi_id, ci);
227 }
228 if (!skip_self && kcpuset_isset(target, selfid)) {
229 ipi_mark_pending(ipi_id, curcpu());
230 int s = splhigh();
231 ipi_cpu_handler();
232 splx(s);
233 }
234 }
235
236 /*
237 * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
238 * CPUs given the target CPU set.
239 */
240 void
241 ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
242 {
243 ipi_trigger_multi_internal(ipi_id, target, false);
244 }
245
246 /*
247 * ipi_trigger_broadcast: same as ipi_trigger_multi() to kcpuset_attached,
248 * optionally skipping the sending CPU.
249 */
250 void
251 ipi_trigger_broadcast(u_int ipi_id, bool skip_self)
252 {
253 ipi_trigger_multi_internal(ipi_id, kcpuset_attached, skip_self);
254 }
255
256 /*
257 * put_msg: insert message into the mailbox.
258 */
259 static inline void
260 put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
261 {
262 int count = SPINLOCK_BACKOFF_MIN;
263 again:
264 for (u_int i = 0; i < IPI_MSG_MAX; i++) {
265 if (__predict_true(mbox->msg[i] == NULL) &&
266 atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
267 return;
268 }
269 }
270
271 /* All slots are full: we have to spin-wait. */
272 ipi_mboxfull_ev.ev_count++;
273 SPINLOCK_BACKOFF(count);
274 goto again;
275 }
276
277 /*
278 * ipi_cpu_handler: the IPI handler.
279 */
280 void
281 ipi_cpu_handler(void)
282 {
283 struct cpu_info * const ci = curcpu();
284
285 /*
286 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
287 * IPI ID numbers and execute functions in those slots.
288 */
289 for (u_int i = 0; i < IPI_BITWORDS; i++) {
290 uint32_t pending, bit;
291
292 if (ci->ci_ipipend[i] == 0) {
293 continue;
294 }
295 pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
296 #ifndef __HAVE_ATOMIC_AS_MEMBAR
297 membar_producer();
298 #endif
299 while ((bit = ffs(pending)) != 0) {
300 const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
301 ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
302
303 pending &= ~(1U << bit);
304 KASSERT(ipi_hdl->func != NULL);
305 ipi_hdl->func(ipi_hdl->arg);
306 }
307 }
308 }
309
310 /*
311 * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
312 * execute the passed functions and acknowledge the messages.
313 */
314 static void
315 ipi_msg_cpu_handler(void *arg __unused)
316 {
317 const struct cpu_info * const ci = curcpu();
318 ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
319
320 for (u_int i = 0; i < IPI_MSG_MAX; i++) {
321 ipi_msg_t *msg;
322
323 /* Get the message. */
324 if ((msg = mbox->msg[i]) == NULL) {
325 continue;
326 }
327 mbox->msg[i] = NULL;
328
329 /* Execute the handler. */
330 KASSERT(msg->func);
331 msg->func(msg->arg);
332
333 /* Ack the request. */
334 #ifndef __HAVE_ATOMIC_AS_MEMBAR
335 membar_producer();
336 #endif
337 atomic_dec_uint(&msg->_pending);
338 }
339 }
340
341 /*
342 * ipi_unicast: send an IPI to a single CPU.
343 *
344 * => The CPU must be remote; must not be local.
345 * => The caller must ipi_wait() on the message for completion.
346 */
347 void
348 ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
349 {
350 const cpuid_t id = cpu_index(ci);
351
352 KASSERT(msg->func != NULL);
353 KASSERT(kpreempt_disabled());
354 KASSERT(curcpu() != ci);
355
356 msg->_pending = 1;
357 membar_producer();
358
359 put_msg(&ipi_mboxes[id], msg);
360 ipi_trigger(IPI_SYNCH_ID, ci);
361 }
362
363 /*
364 * ipi_multicast: send an IPI to each CPU in the specified set.
365 *
366 * => The caller must ipi_wait() on the message for completion.
367 */
368 void
369 ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
370 {
371 const struct cpu_info * const self = curcpu();
372 CPU_INFO_ITERATOR cii;
373 struct cpu_info *ci;
374 u_int local;
375
376 KASSERT(msg->func != NULL);
377 KASSERT(kpreempt_disabled());
378
379 local = !!kcpuset_isset(target, cpu_index(self));
380 msg->_pending = kcpuset_countset(target) - local;
381 membar_producer();
382
383 for (CPU_INFO_FOREACH(cii, ci)) {
384 cpuid_t id;
385
386 if (__predict_false(ci == self)) {
387 continue;
388 }
389 id = cpu_index(ci);
390 if (!kcpuset_isset(target, id)) {
391 continue;
392 }
393 put_msg(&ipi_mboxes[id], msg);
394 ipi_trigger(IPI_SYNCH_ID, ci);
395 }
396 if (local) {
397 msg->func(msg->arg);
398 }
399 }
400
401 /*
402 * ipi_broadcast: send an IPI to all CPUs.
403 *
404 * => The caller must ipi_wait() on the message for completion.
405 */
406 void
407 ipi_broadcast(ipi_msg_t *msg, bool skip_self)
408 {
409 const struct cpu_info * const self = curcpu();
410 CPU_INFO_ITERATOR cii;
411 struct cpu_info *ci;
412
413 KASSERT(msg->func != NULL);
414 KASSERT(kpreempt_disabled());
415
416 msg->_pending = ncpu - 1;
417 membar_producer();
418
419 /* Broadcast IPIs for remote CPUs. */
420 for (CPU_INFO_FOREACH(cii, ci)) {
421 cpuid_t id;
422
423 if (__predict_false(ci == self)) {
424 continue;
425 }
426 id = cpu_index(ci);
427 put_msg(&ipi_mboxes[id], msg);
428 ipi_trigger(IPI_SYNCH_ID, ci);
429 }
430
431 if (!skip_self) {
432 /* Finally, execute locally. */
433 msg->func(msg->arg);
434 }
435 }
436
437 /*
438 * ipi_wait: spin-wait until the message is processed.
439 */
440 void
441 ipi_wait(ipi_msg_t *msg)
442 {
443 int count = SPINLOCK_BACKOFF_MIN;
444
445 while (msg->_pending) {
446 KASSERT(msg->_pending < ncpu);
447 SPINLOCK_BACKOFF(count);
448 }
449 }
450