subr_ipi.c revision 1.8 1 /* $NetBSD: subr_ipi.c,v 1.8 2020/09/08 16:00:35 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
34 * invoke functions with a constant argument and synchronous IPIs
35 * with the cross-call support.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.8 2020/09/08 16:00:35 riastradh Exp $");
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43
44 #include <sys/atomic.h>
45 #include <sys/evcnt.h>
46 #include <sys/cpu.h>
47 #include <sys/ipi.h>
48 #include <sys/intr.h>
49 #include <sys/kcpuset.h>
50 #include <sys/kmem.h>
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53
54 /*
55 * An array of the IPI handlers used for asynchronous invocation.
56 * The lock protects the slot allocation.
57 */
58
59 typedef struct {
60 ipi_func_t func;
61 void * arg;
62 } ipi_intr_t;
63
64 static kmutex_t ipi_mngmt_lock;
65 static ipi_intr_t ipi_intrs[IPI_MAXREG] __cacheline_aligned;
66
67 /*
68 * Per-CPU mailbox for IPI messages: it is a single cache line storing
69 * up to IPI_MSG_MAX messages. This interface is built on top of the
70 * synchronous IPIs.
71 */
72
73 #define IPI_MSG_SLOTS (CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
74 #define IPI_MSG_MAX IPI_MSG_SLOTS
75
76 typedef struct {
77 ipi_msg_t * msg[IPI_MSG_SLOTS];
78 } ipi_mbox_t;
79
80
81 /* Mailboxes for the synchronous IPIs. */
82 static ipi_mbox_t * ipi_mboxes __read_mostly;
83 static struct evcnt ipi_mboxfull_ev __cacheline_aligned;
84 static void ipi_msg_cpu_handler(void *);
85
86 /* Handler for the synchronous IPIs - it must be zero. */
87 #define IPI_SYNCH_ID 0
88
89 #ifndef MULTIPROCESSOR
90 #define cpu_ipi(ci) KASSERT(ci == NULL)
91 #endif
92
93 void
94 ipi_sysinit(void)
95 {
96
97 mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
98 memset(ipi_intrs, 0, sizeof(ipi_intrs));
99
100 /*
101 * Register the handler for synchronous IPIs. This mechanism
102 * is built on top of the asynchronous interface. Slot zero is
103 * reserved permanently; it is also handy to use zero as a failure
104 * for other registers (as it is potentially less error-prone).
105 */
106 ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
107
108 evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
109 "ipi", "full");
110 }
111
112 void
113 ipi_percpu_init(void)
114 {
115 const size_t len = ncpu * sizeof(ipi_mbox_t);
116
117 /* Initialise the per-CPU bit fields. */
118 for (u_int i = 0; i < ncpu; i++) {
119 struct cpu_info *ci = cpu_lookup(i);
120 memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
121 }
122
123 /* Allocate per-CPU IPI mailboxes. */
124 ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
125 KASSERT(ipi_mboxes != NULL);
126 }
127
128 /*
129 * ipi_register: register an asynchronous IPI handler.
130 *
131 * => Returns IPI ID which is greater than zero; on failure - zero.
132 */
133 u_int
134 ipi_register(ipi_func_t func, void *arg)
135 {
136 mutex_enter(&ipi_mngmt_lock);
137 for (u_int i = 0; i < IPI_MAXREG; i++) {
138 if (ipi_intrs[i].func == NULL) {
139 /* Register the function. */
140 ipi_intrs[i].func = func;
141 ipi_intrs[i].arg = arg;
142 mutex_exit(&ipi_mngmt_lock);
143
144 KASSERT(i != IPI_SYNCH_ID);
145 return i;
146 }
147 }
148 mutex_exit(&ipi_mngmt_lock);
149 printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
150 return 0;
151 }
152
153 /*
154 * ipi_unregister: release the IPI handler given the ID.
155 */
156 void
157 ipi_unregister(u_int ipi_id)
158 {
159 ipi_msg_t ipimsg = { .func = __FPTRCAST(ipi_func_t, nullop) };
160
161 KASSERT(ipi_id != IPI_SYNCH_ID);
162 KASSERT(ipi_id < IPI_MAXREG);
163
164 /* Release the slot. */
165 mutex_enter(&ipi_mngmt_lock);
166 KASSERT(ipi_intrs[ipi_id].func != NULL);
167 ipi_intrs[ipi_id].func = NULL;
168
169 /* Ensure that there are no IPIs in flight. */
170 kpreempt_disable();
171 ipi_broadcast(&ipimsg, false);
172 ipi_wait(&ipimsg);
173 kpreempt_enable();
174 mutex_exit(&ipi_mngmt_lock);
175 }
176
177 /*
178 * ipi_mark_pending: internal routine to mark an IPI pending on the
179 * specified CPU (which might be curcpu()).
180 */
181 static bool
182 ipi_mark_pending(u_int ipi_id, struct cpu_info *ci)
183 {
184 const u_int i = ipi_id >> IPI_BITW_SHIFT;
185 const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
186
187 KASSERT(ipi_id < IPI_MAXREG);
188 KASSERT(kpreempt_disabled());
189
190 /* Mark as pending and send an IPI. */
191 if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
192 atomic_or_32(&ci->ci_ipipend[i], bitm);
193 return true;
194 }
195 return false;
196 }
197
198 /*
199 * ipi_trigger: asynchronously send an IPI to the specified CPU.
200 */
201 void
202 ipi_trigger(u_int ipi_id, struct cpu_info *ci)
203 {
204
205 KASSERT(curcpu() != ci);
206 if (ipi_mark_pending(ipi_id, ci)) {
207 cpu_ipi(ci);
208 }
209 }
210
211 /*
212 * ipi_trigger_multi_internal: the guts of ipi_trigger_multi() and
213 * ipi_trigger_broadcast().
214 */
215 static void
216 ipi_trigger_multi_internal(u_int ipi_id, const kcpuset_t *target,
217 bool skip_self)
218 {
219 const cpuid_t selfid = cpu_index(curcpu());
220 CPU_INFO_ITERATOR cii;
221 struct cpu_info *ci;
222
223 KASSERT(kpreempt_disabled());
224 KASSERT(target != NULL);
225
226 for (CPU_INFO_FOREACH(cii, ci)) {
227 const cpuid_t cpuid = cpu_index(ci);
228
229 if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
230 continue;
231 }
232 ipi_trigger(ipi_id, ci);
233 }
234 if (!skip_self && kcpuset_isset(target, selfid)) {
235 ipi_mark_pending(ipi_id, curcpu());
236 int s = splhigh();
237 ipi_cpu_handler();
238 splx(s);
239 }
240 }
241
242 /*
243 * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
244 * CPUs given the target CPU set.
245 */
246 void
247 ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
248 {
249 ipi_trigger_multi_internal(ipi_id, target, false);
250 }
251
252 /*
253 * ipi_trigger_broadcast: same as ipi_trigger_multi() to kcpuset_attached,
254 * optionally skipping the sending CPU.
255 */
256 void
257 ipi_trigger_broadcast(u_int ipi_id, bool skip_self)
258 {
259 ipi_trigger_multi_internal(ipi_id, kcpuset_attached, skip_self);
260 }
261
262 /*
263 * put_msg: insert message into the mailbox.
264 */
265 static inline void
266 put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
267 {
268 int count = SPINLOCK_BACKOFF_MIN;
269 again:
270 for (u_int i = 0; i < IPI_MSG_MAX; i++) {
271 if (__predict_true(mbox->msg[i] == NULL) &&
272 atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
273 return;
274 }
275 }
276
277 /* All slots are full: we have to spin-wait. */
278 ipi_mboxfull_ev.ev_count++;
279 SPINLOCK_BACKOFF(count);
280 goto again;
281 }
282
283 /*
284 * ipi_cpu_handler: the IPI handler.
285 */
286 void
287 ipi_cpu_handler(void)
288 {
289 struct cpu_info * const ci = curcpu();
290
291 /*
292 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
293 * IPI ID numbers and execute functions in those slots.
294 */
295 for (u_int i = 0; i < IPI_BITWORDS; i++) {
296 uint32_t pending, bit;
297
298 if (ci->ci_ipipend[i] == 0) {
299 continue;
300 }
301 pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
302 #ifndef __HAVE_ATOMIC_AS_MEMBAR
303 membar_producer();
304 #endif
305 while ((bit = ffs(pending)) != 0) {
306 const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
307 ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
308
309 pending &= ~(1U << bit);
310 KASSERT(ipi_hdl->func != NULL);
311 ipi_hdl->func(ipi_hdl->arg);
312 }
313 }
314 }
315
316 /*
317 * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
318 * execute the passed functions and acknowledge the messages.
319 */
320 static void
321 ipi_msg_cpu_handler(void *arg __unused)
322 {
323 const struct cpu_info * const ci = curcpu();
324 ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
325
326 for (u_int i = 0; i < IPI_MSG_MAX; i++) {
327 ipi_msg_t *msg;
328
329 /* Get the message. */
330 if ((msg = mbox->msg[i]) == NULL) {
331 continue;
332 }
333 mbox->msg[i] = NULL;
334
335 /* Execute the handler. */
336 KASSERT(msg->func);
337 msg->func(msg->arg);
338
339 /* Ack the request. */
340 #ifndef __HAVE_ATOMIC_AS_MEMBAR
341 membar_producer();
342 #endif
343 atomic_dec_uint(&msg->_pending);
344 }
345 }
346
347 /*
348 * ipi_unicast: send an IPI to a single CPU.
349 *
350 * => The CPU must be remote; must not be local.
351 * => The caller must ipi_wait() on the message for completion.
352 */
353 void
354 ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
355 {
356 const cpuid_t id = cpu_index(ci);
357
358 KASSERT(msg->func != NULL);
359 KASSERT(kpreempt_disabled());
360 KASSERT(curcpu() != ci);
361
362 msg->_pending = 1;
363 membar_producer();
364
365 put_msg(&ipi_mboxes[id], msg);
366 ipi_trigger(IPI_SYNCH_ID, ci);
367 }
368
369 /*
370 * ipi_multicast: send an IPI to each CPU in the specified set.
371 *
372 * => The caller must ipi_wait() on the message for completion.
373 */
374 void
375 ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
376 {
377 const struct cpu_info * const self = curcpu();
378 CPU_INFO_ITERATOR cii;
379 struct cpu_info *ci;
380 u_int local;
381
382 KASSERT(msg->func != NULL);
383 KASSERT(kpreempt_disabled());
384
385 local = !!kcpuset_isset(target, cpu_index(self));
386 msg->_pending = kcpuset_countset(target) - local;
387 membar_producer();
388
389 for (CPU_INFO_FOREACH(cii, ci)) {
390 cpuid_t id;
391
392 if (__predict_false(ci == self)) {
393 continue;
394 }
395 id = cpu_index(ci);
396 if (!kcpuset_isset(target, id)) {
397 continue;
398 }
399 put_msg(&ipi_mboxes[id], msg);
400 ipi_trigger(IPI_SYNCH_ID, ci);
401 }
402 if (local) {
403 msg->func(msg->arg);
404 }
405 }
406
407 /*
408 * ipi_broadcast: send an IPI to all CPUs.
409 *
410 * => The caller must ipi_wait() on the message for completion.
411 */
412 void
413 ipi_broadcast(ipi_msg_t *msg, bool skip_self)
414 {
415 const struct cpu_info * const self = curcpu();
416 CPU_INFO_ITERATOR cii;
417 struct cpu_info *ci;
418
419 KASSERT(msg->func != NULL);
420 KASSERT(kpreempt_disabled());
421
422 msg->_pending = ncpu - 1;
423 membar_producer();
424
425 /* Broadcast IPIs for remote CPUs. */
426 for (CPU_INFO_FOREACH(cii, ci)) {
427 cpuid_t id;
428
429 if (__predict_false(ci == self)) {
430 continue;
431 }
432 id = cpu_index(ci);
433 put_msg(&ipi_mboxes[id], msg);
434 ipi_trigger(IPI_SYNCH_ID, ci);
435 }
436
437 if (!skip_self) {
438 /* Finally, execute locally. */
439 msg->func(msg->arg);
440 }
441 }
442
443 /*
444 * ipi_wait: spin-wait until the message is processed.
445 */
446 void
447 ipi_wait(ipi_msg_t *msg)
448 {
449 int count = SPINLOCK_BACKOFF_MIN;
450
451 while (msg->_pending) {
452 KASSERT(msg->_pending < ncpu);
453 SPINLOCK_BACKOFF(count);
454 }
455 }
456