Home | History | Annotate | Line # | Download | only in kern
subr_ipi.c revision 1.9
      1 /*	$NetBSD: subr_ipi.c,v 1.9 2020/11/27 20:11:33 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
     34  * invoke functions with a constant argument and synchronous IPIs
     35  * with the cross-call support.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.9 2020/11/27 20:11:33 riastradh Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 
     44 #include <sys/atomic.h>
     45 #include <sys/evcnt.h>
     46 #include <sys/cpu.h>
     47 #include <sys/ipi.h>
     48 #include <sys/intr.h>
     49 #include <sys/kcpuset.h>
     50 #include <sys/kmem.h>
     51 #include <sys/lock.h>
     52 #include <sys/mutex.h>
     53 
     54 /*
     55  * An array of the IPI handlers used for asynchronous invocation.
     56  * The lock protects the slot allocation.
     57  */
     58 
     59 typedef struct {
     60 	ipi_func_t	func;
     61 	void *		arg;
     62 } ipi_intr_t;
     63 
     64 static kmutex_t		ipi_mngmt_lock;
     65 static ipi_intr_t	ipi_intrs[IPI_MAXREG]	__cacheline_aligned;
     66 
     67 /*
     68  * Per-CPU mailbox for IPI messages: it is a single cache line storing
     69  * up to IPI_MSG_MAX messages.  This interface is built on top of the
     70  * synchronous IPIs.
     71  */
     72 
     73 #define	IPI_MSG_SLOTS	(CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
     74 #define	IPI_MSG_MAX	IPI_MSG_SLOTS
     75 
     76 typedef struct {
     77 	ipi_msg_t *	msg[IPI_MSG_SLOTS];
     78 } ipi_mbox_t;
     79 
     80 
     81 /* Mailboxes for the synchronous IPIs. */
     82 static ipi_mbox_t *	ipi_mboxes	__read_mostly;
     83 static struct evcnt	ipi_mboxfull_ev	__cacheline_aligned;
     84 static void		ipi_msg_cpu_handler(void *);
     85 
     86 /* Handler for the synchronous IPIs - it must be zero. */
     87 #define	IPI_SYNCH_ID	0
     88 
     89 #ifndef MULTIPROCESSOR
     90 #define	cpu_ipi(ci)	KASSERT(ci == NULL)
     91 #endif
     92 
     93 void
     94 ipi_sysinit(void)
     95 {
     96 
     97 	mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
     98 	memset(ipi_intrs, 0, sizeof(ipi_intrs));
     99 
    100 	/*
    101 	 * Register the handler for synchronous IPIs.  This mechanism
    102 	 * is built on top of the asynchronous interface.  Slot zero is
    103 	 * reserved permanently; it is also handy to use zero as a failure
    104 	 * for other registers (as it is potentially less error-prone).
    105 	 */
    106 	ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
    107 
    108 	evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
    109 	   "ipi", "full");
    110 }
    111 
    112 void
    113 ipi_percpu_init(void)
    114 {
    115 	const size_t len = ncpu * sizeof(ipi_mbox_t);
    116 
    117 	/* Initialise the per-CPU bit fields. */
    118 	for (u_int i = 0; i < ncpu; i++) {
    119 		struct cpu_info *ci = cpu_lookup(i);
    120 		memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
    121 	}
    122 
    123 	/* Allocate per-CPU IPI mailboxes. */
    124 	ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
    125 	KASSERT(ipi_mboxes != NULL);
    126 }
    127 
    128 /*
    129  * ipi_register: register an asynchronous IPI handler.
    130  *
    131  * => Returns IPI ID which is greater than zero; on failure - zero.
    132  */
    133 u_int
    134 ipi_register(ipi_func_t func, void *arg)
    135 {
    136 	mutex_enter(&ipi_mngmt_lock);
    137 	for (u_int i = 0; i < IPI_MAXREG; i++) {
    138 		if (ipi_intrs[i].func == NULL) {
    139 			/* Register the function. */
    140 			ipi_intrs[i].func = func;
    141 			ipi_intrs[i].arg = arg;
    142 			mutex_exit(&ipi_mngmt_lock);
    143 
    144 			KASSERT(i != IPI_SYNCH_ID);
    145 			return i;
    146 		}
    147 	}
    148 	mutex_exit(&ipi_mngmt_lock);
    149 	printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
    150 	return 0;
    151 }
    152 
    153 /*
    154  * ipi_unregister: release the IPI handler given the ID.
    155  */
    156 void
    157 ipi_unregister(u_int ipi_id)
    158 {
    159 	ipi_msg_t ipimsg = { .func = __FPTRCAST(ipi_func_t, nullop) };
    160 
    161 	KASSERT(ipi_id != IPI_SYNCH_ID);
    162 	KASSERT(ipi_id < IPI_MAXREG);
    163 
    164 	/* Release the slot. */
    165 	mutex_enter(&ipi_mngmt_lock);
    166 	KASSERT(ipi_intrs[ipi_id].func != NULL);
    167 	ipi_intrs[ipi_id].func = NULL;
    168 
    169 	/* Ensure that there are no IPIs in flight. */
    170 	kpreempt_disable();
    171 	ipi_broadcast(&ipimsg, false);
    172 	ipi_wait(&ipimsg);
    173 	kpreempt_enable();
    174 	mutex_exit(&ipi_mngmt_lock);
    175 }
    176 
    177 /*
    178  * ipi_mark_pending: internal routine to mark an IPI pending on the
    179  * specified CPU (which might be curcpu()).
    180  */
    181 static bool
    182 ipi_mark_pending(u_int ipi_id, struct cpu_info *ci)
    183 {
    184 	const u_int i = ipi_id >> IPI_BITW_SHIFT;
    185 	const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
    186 
    187 	KASSERT(ipi_id < IPI_MAXREG);
    188 	KASSERT(kpreempt_disabled());
    189 
    190 	/* Mark as pending and return true if not previously marked. */
    191 	if ((atomic_load_acquire(&ci->ci_ipipend[i]) & bitm) == 0) {
    192 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    193 		membar_exit();
    194 #endif
    195 		atomic_or_32(&ci->ci_ipipend[i], bitm);
    196 		return true;
    197 	}
    198 	return false;
    199 }
    200 
    201 /*
    202  * ipi_trigger: asynchronously send an IPI to the specified CPU.
    203  */
    204 void
    205 ipi_trigger(u_int ipi_id, struct cpu_info *ci)
    206 {
    207 
    208 	KASSERT(curcpu() != ci);
    209 	if (ipi_mark_pending(ipi_id, ci)) {
    210 		cpu_ipi(ci);
    211 	}
    212 }
    213 
    214 /*
    215  * ipi_trigger_multi_internal: the guts of ipi_trigger_multi() and
    216  * ipi_trigger_broadcast().
    217  */
    218 static void
    219 ipi_trigger_multi_internal(u_int ipi_id, const kcpuset_t *target,
    220     bool skip_self)
    221 {
    222 	const cpuid_t selfid = cpu_index(curcpu());
    223 	CPU_INFO_ITERATOR cii;
    224 	struct cpu_info *ci;
    225 
    226 	KASSERT(kpreempt_disabled());
    227 	KASSERT(target != NULL);
    228 
    229 	for (CPU_INFO_FOREACH(cii, ci)) {
    230 		const cpuid_t cpuid = cpu_index(ci);
    231 
    232 		if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
    233 			continue;
    234 		}
    235 		ipi_trigger(ipi_id, ci);
    236 	}
    237 	if (!skip_self && kcpuset_isset(target, selfid)) {
    238 		ipi_mark_pending(ipi_id, curcpu());
    239 		int s = splhigh();
    240 		ipi_cpu_handler();
    241 		splx(s);
    242 	}
    243 }
    244 
    245 /*
    246  * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
    247  * CPUs given the target CPU set.
    248  */
    249 void
    250 ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
    251 {
    252 	ipi_trigger_multi_internal(ipi_id, target, false);
    253 }
    254 
    255 /*
    256  * ipi_trigger_broadcast: same as ipi_trigger_multi() to kcpuset_attached,
    257  * optionally skipping the sending CPU.
    258  */
    259 void
    260 ipi_trigger_broadcast(u_int ipi_id, bool skip_self)
    261 {
    262 	ipi_trigger_multi_internal(ipi_id, kcpuset_attached, skip_self);
    263 }
    264 
    265 /*
    266  * put_msg: insert message into the mailbox.
    267  *
    268  * Caller is responsible for issuing membar_exit first.
    269  */
    270 static inline void
    271 put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
    272 {
    273 	int count = SPINLOCK_BACKOFF_MIN;
    274 again:
    275 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
    276 		if (atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
    277 			return;
    278 		}
    279 	}
    280 
    281 	/* All slots are full: we have to spin-wait. */
    282 	ipi_mboxfull_ev.ev_count++;
    283 	SPINLOCK_BACKOFF(count);
    284 	goto again;
    285 }
    286 
    287 /*
    288  * ipi_cpu_handler: the IPI handler.
    289  */
    290 void
    291 ipi_cpu_handler(void)
    292 {
    293 	struct cpu_info * const ci = curcpu();
    294 
    295 	/*
    296 	 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
    297 	 * IPI ID numbers and execute functions in those slots.
    298 	 */
    299 	for (u_int i = 0; i < IPI_BITWORDS; i++) {
    300 		uint32_t pending, bit;
    301 
    302 		if (atomic_load_relaxed(&ci->ci_ipipend[i]) == 0) {
    303 			continue;
    304 		}
    305 		pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
    306 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    307 		membar_enter();
    308 #endif
    309 		while ((bit = ffs(pending)) != 0) {
    310 			const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
    311 			ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
    312 
    313 			pending &= ~(1U << bit);
    314 			KASSERT(ipi_hdl->func != NULL);
    315 			ipi_hdl->func(ipi_hdl->arg);
    316 		}
    317 	}
    318 }
    319 
    320 /*
    321  * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
    322  * execute the passed functions and acknowledge the messages.
    323  */
    324 static void
    325 ipi_msg_cpu_handler(void *arg __unused)
    326 {
    327 	const struct cpu_info * const ci = curcpu();
    328 	ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
    329 
    330 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
    331 		ipi_msg_t *msg;
    332 
    333 		/* Get the message. */
    334 		if ((msg = atomic_load_acquire(&mbox->msg[i])) == NULL) {
    335 			continue;
    336 		}
    337 		atomic_store_relaxed(&mbox->msg[i], NULL);
    338 
    339 		/* Execute the handler. */
    340 		KASSERT(msg->func);
    341 		msg->func(msg->arg);
    342 
    343 		/* Ack the request. */
    344 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    345 		membar_exit();
    346 #endif
    347 		atomic_dec_uint(&msg->_pending);
    348 	}
    349 }
    350 
    351 /*
    352  * ipi_unicast: send an IPI to a single CPU.
    353  *
    354  * => The CPU must be remote; must not be local.
    355  * => The caller must ipi_wait() on the message for completion.
    356  */
    357 void
    358 ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
    359 {
    360 	const cpuid_t id = cpu_index(ci);
    361 
    362 	KASSERT(msg->func != NULL);
    363 	KASSERT(kpreempt_disabled());
    364 	KASSERT(curcpu() != ci);
    365 
    366 	msg->_pending = 1;
    367 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    368 	membar_exit();
    369 #endif
    370 
    371 	put_msg(&ipi_mboxes[id], msg);
    372 	ipi_trigger(IPI_SYNCH_ID, ci);
    373 }
    374 
    375 /*
    376  * ipi_multicast: send an IPI to each CPU in the specified set.
    377  *
    378  * => The caller must ipi_wait() on the message for completion.
    379  */
    380 void
    381 ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
    382 {
    383 	const struct cpu_info * const self = curcpu();
    384 	CPU_INFO_ITERATOR cii;
    385 	struct cpu_info *ci;
    386 	u_int local;
    387 
    388 	KASSERT(msg->func != NULL);
    389 	KASSERT(kpreempt_disabled());
    390 
    391 	local = !!kcpuset_isset(target, cpu_index(self));
    392 	msg->_pending = kcpuset_countset(target) - local;
    393 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    394 	membar_exit();
    395 #endif
    396 
    397 	for (CPU_INFO_FOREACH(cii, ci)) {
    398 		cpuid_t id;
    399 
    400 		if (__predict_false(ci == self)) {
    401 			continue;
    402 		}
    403 		id = cpu_index(ci);
    404 		if (!kcpuset_isset(target, id)) {
    405 			continue;
    406 		}
    407 		put_msg(&ipi_mboxes[id], msg);
    408 		ipi_trigger(IPI_SYNCH_ID, ci);
    409 	}
    410 	if (local) {
    411 		msg->func(msg->arg);
    412 	}
    413 }
    414 
    415 /*
    416  * ipi_broadcast: send an IPI to all CPUs.
    417  *
    418  * => The caller must ipi_wait() on the message for completion.
    419  */
    420 void
    421 ipi_broadcast(ipi_msg_t *msg, bool skip_self)
    422 {
    423 	const struct cpu_info * const self = curcpu();
    424 	CPU_INFO_ITERATOR cii;
    425 	struct cpu_info *ci;
    426 
    427 	KASSERT(msg->func != NULL);
    428 	KASSERT(kpreempt_disabled());
    429 
    430 	msg->_pending = ncpu - 1;
    431 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    432 	membar_exit();
    433 #endif
    434 
    435 	/* Broadcast IPIs for remote CPUs. */
    436 	for (CPU_INFO_FOREACH(cii, ci)) {
    437 		cpuid_t id;
    438 
    439 		if (__predict_false(ci == self)) {
    440 			continue;
    441 		}
    442 		id = cpu_index(ci);
    443 		put_msg(&ipi_mboxes[id], msg);
    444 		ipi_trigger(IPI_SYNCH_ID, ci);
    445 	}
    446 
    447 	if (!skip_self) {
    448 		/* Finally, execute locally. */
    449 		msg->func(msg->arg);
    450 	}
    451 }
    452 
    453 /*
    454  * ipi_wait: spin-wait until the message is processed.
    455  */
    456 void
    457 ipi_wait(ipi_msg_t *msg)
    458 {
    459 	int count = SPINLOCK_BACKOFF_MIN;
    460 
    461 	while (atomic_load_acquire(&msg->_pending)) {
    462 		KASSERT(atomic_load_relaxed(&msg->_pending) < ncpu);
    463 		SPINLOCK_BACKOFF(count);
    464 	}
    465 }
    466