1 1.20 ad /* $NetBSD: subr_kcpuset.c,v 1.20 2023/09/23 18:21:11 ad Exp $ */ 2 1.1 rmind 3 1.1 rmind /*- 4 1.20 ad * Copyright (c) 2011, 2023 The NetBSD Foundation, Inc. 5 1.1 rmind * All rights reserved. 6 1.1 rmind * 7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation 8 1.1 rmind * by Mindaugas Rasiukevicius. 9 1.1 rmind * 10 1.1 rmind * Redistribution and use in source and binary forms, with or without 11 1.1 rmind * modification, are permitted provided that the following conditions 12 1.1 rmind * are met: 13 1.1 rmind * 1. Redistributions of source code must retain the above copyright 14 1.1 rmind * notice, this list of conditions and the following disclaimer. 15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 rmind * notice, this list of conditions and the following disclaimer in the 17 1.1 rmind * documentation and/or other materials provided with the distribution. 18 1.1 rmind * 19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE. 30 1.1 rmind */ 31 1.1 rmind 32 1.1 rmind /* 33 1.1 rmind * Kernel CPU set implementation. 34 1.1 rmind * 35 1.1 rmind * Interface can be used by kernel subsystems as a unified dynamic CPU 36 1.1 rmind * bitset implementation handling many CPUs. Facility also supports early 37 1.1 rmind * use by MD code on boot, as it fixups bitsets on further boot. 38 1.1 rmind * 39 1.1 rmind * TODO: 40 1.1 rmind * - Handle "reverse" bitset on fixup/grow. 41 1.1 rmind */ 42 1.1 rmind 43 1.1 rmind #include <sys/cdefs.h> 44 1.20 ad __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.20 2023/09/23 18:21:11 ad Exp $"); 45 1.1 rmind 46 1.1 rmind #include <sys/param.h> 47 1.1 rmind #include <sys/types.h> 48 1.1 rmind 49 1.1 rmind #include <sys/atomic.h> 50 1.18 martin #include <sys/intr.h> 51 1.1 rmind #include <sys/sched.h> 52 1.1 rmind #include <sys/kcpuset.h> 53 1.20 ad #include <sys/kmem.h> 54 1.1 rmind 55 1.1 rmind /* Number of CPUs to support. */ 56 1.1 rmind #define KC_MAXCPUS roundup2(MAXCPUS, 32) 57 1.1 rmind 58 1.1 rmind /* 59 1.1 rmind * Structure of dynamic CPU set in the kernel. 60 1.1 rmind */ 61 1.1 rmind struct kcpuset { 62 1.1 rmind uint32_t bits[0]; 63 1.1 rmind }; 64 1.1 rmind 65 1.1 rmind typedef struct kcpuset_impl { 66 1.1 rmind /* Reference count. */ 67 1.1 rmind u_int kc_refcnt; 68 1.16 skrll /* Next to free, if non-NULL (used when multiple references). */ 69 1.1 rmind struct kcpuset * kc_next; 70 1.1 rmind /* Actual variable-sized field of bits. */ 71 1.1 rmind struct kcpuset kc_field; 72 1.1 rmind } kcpuset_impl_t; 73 1.1 rmind 74 1.1 rmind #define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field)) 75 1.1 rmind #define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF)) 76 1.9 matt #define KC_GETCSTRUCT(b) ((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF)) 77 1.1 rmind 78 1.1 rmind /* Sizes of a single bitset. */ 79 1.1 rmind #define KC_SHIFT 5 80 1.1 rmind #define KC_MASK 31 81 1.1 rmind 82 1.1 rmind /* An array of noted early kcpuset creations and data. */ 83 1.1 rmind #define KC_SAVE_NITEMS 8 84 1.1 rmind 85 1.1 rmind /* Structures for early boot mechanism (must be statically initialised). */ 86 1.1 rmind static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS]; 87 1.1 rmind static uint32_t kc_bits_early[KC_SAVE_NITEMS]; 88 1.1 rmind static int kc_last_idx = 0; 89 1.1 rmind static bool kc_initialised = false; 90 1.1 rmind 91 1.1 rmind #define KC_BITSIZE_EARLY sizeof(kc_bits_early[0]) 92 1.4 rmind #define KC_NFIELDS_EARLY 1 93 1.1 rmind 94 1.1 rmind /* 95 1.1 rmind * The size of whole bitset fields and amount of fields. 96 1.1 rmind * The whole size must statically initialise for early case. 97 1.1 rmind */ 98 1.1 rmind static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY; 99 1.1 rmind static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY; 100 1.20 ad static size_t kc_memsize __read_mostly; 101 1.1 rmind 102 1.3 rmind static kcpuset_t * kcpuset_create_raw(bool); 103 1.1 rmind 104 1.1 rmind /* 105 1.1 rmind * kcpuset_sysinit: initialize the subsystem, transfer early boot cases 106 1.1 rmind * to dynamically allocated sets. 107 1.1 rmind */ 108 1.1 rmind void 109 1.1 rmind kcpuset_sysinit(void) 110 1.1 rmind { 111 1.1 rmind kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp; 112 1.1 rmind int i, s; 113 1.1 rmind 114 1.1 rmind /* Set a kcpuset_t sizes. */ 115 1.1 rmind kc_nfields = (KC_MAXCPUS >> KC_SHIFT); 116 1.1 rmind kc_bitsize = sizeof(uint32_t) * kc_nfields; 117 1.20 ad kc_memsize = sizeof(kcpuset_impl_t) + kc_bitsize; 118 1.15 riastrad KASSERT(kc_nfields != 0); 119 1.15 riastrad KASSERT(kc_bitsize != 0); 120 1.1 rmind 121 1.1 rmind /* First, pre-allocate kcpuset entries. */ 122 1.1 rmind for (i = 0; i < kc_last_idx; i++) { 123 1.3 rmind kcp = kcpuset_create_raw(true); 124 1.1 rmind kc_dynamic[i] = kcp; 125 1.1 rmind } 126 1.1 rmind 127 1.1 rmind /* 128 1.1 rmind * Prepare to convert all early noted kcpuset uses to dynamic sets. 129 1.1 rmind * All processors, except the one we are currently running (primary), 130 1.1 rmind * must not be spinned yet. Since MD facilities can use kcpuset, 131 1.1 rmind * raise the IPL to high. 132 1.1 rmind */ 133 1.1 rmind KASSERT(mp_online == false); 134 1.1 rmind 135 1.1 rmind s = splhigh(); 136 1.1 rmind for (i = 0; i < kc_last_idx; i++) { 137 1.1 rmind /* 138 1.1 rmind * Transfer the bits from early static storage to the kcpuset. 139 1.1 rmind */ 140 1.1 rmind KASSERT(kc_bitsize >= KC_BITSIZE_EARLY); 141 1.1 rmind memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY); 142 1.1 rmind 143 1.1 rmind /* 144 1.1 rmind * Store the new pointer, pointing to the allocated kcpuset. 145 1.1 rmind * Note: we are not in an interrupt context and it is the only 146 1.1 rmind * CPU running - thus store is safe (e.g. no need for pointer 147 1.1 rmind * variable to be volatile). 148 1.1 rmind */ 149 1.1 rmind *kc_noted_early[i] = kc_dynamic[i]; 150 1.1 rmind } 151 1.1 rmind kc_initialised = true; 152 1.1 rmind kc_last_idx = 0; 153 1.1 rmind splx(s); 154 1.1 rmind } 155 1.1 rmind 156 1.1 rmind /* 157 1.1 rmind * kcpuset_early_ptr: note an early boot use by saving the pointer and 158 1.1 rmind * returning a pointer to a static, temporary bit field. 159 1.1 rmind */ 160 1.1 rmind static kcpuset_t * 161 1.1 rmind kcpuset_early_ptr(kcpuset_t **kcptr) 162 1.1 rmind { 163 1.1 rmind kcpuset_t *kcp; 164 1.1 rmind int s; 165 1.1 rmind 166 1.1 rmind s = splhigh(); 167 1.1 rmind if (kc_last_idx < KC_SAVE_NITEMS) { 168 1.1 rmind /* 169 1.1 rmind * Save the pointer, return pointer to static early field. 170 1.1 rmind * Need to zero it out. 171 1.1 rmind */ 172 1.5 rmind kc_noted_early[kc_last_idx] = kcptr; 173 1.1 rmind kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx]; 174 1.5 rmind kc_last_idx++; 175 1.1 rmind memset(kcp, 0, KC_BITSIZE_EARLY); 176 1.1 rmind KASSERT(kc_bitsize == KC_BITSIZE_EARLY); 177 1.1 rmind } else { 178 1.1 rmind panic("kcpuset(9): all early-use entries exhausted; " 179 1.1 rmind "increase KC_SAVE_NITEMS\n"); 180 1.1 rmind } 181 1.1 rmind splx(s); 182 1.1 rmind 183 1.1 rmind return kcp; 184 1.1 rmind } 185 1.1 rmind 186 1.1 rmind /* 187 1.1 rmind * Routines to create or destroy the CPU set. 188 1.1 rmind * Early boot case is handled. 189 1.1 rmind */ 190 1.1 rmind 191 1.1 rmind static kcpuset_t * 192 1.3 rmind kcpuset_create_raw(bool zero) 193 1.1 rmind { 194 1.1 rmind kcpuset_impl_t *kc; 195 1.1 rmind 196 1.20 ad kc = kmem_alloc(kc_memsize, KM_SLEEP); 197 1.1 rmind kc->kc_refcnt = 1; 198 1.1 rmind kc->kc_next = NULL; 199 1.1 rmind 200 1.3 rmind if (zero) { 201 1.3 rmind memset(&kc->kc_field, 0, kc_bitsize); 202 1.3 rmind } 203 1.3 rmind 204 1.1 rmind /* Note: return pointer to the actual field of bits. */ 205 1.1 rmind KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field); 206 1.1 rmind return &kc->kc_field; 207 1.1 rmind } 208 1.1 rmind 209 1.1 rmind void 210 1.3 rmind kcpuset_create(kcpuset_t **retkcp, bool zero) 211 1.1 rmind { 212 1.1 rmind if (__predict_false(!kc_initialised)) { 213 1.1 rmind /* Early boot use - special case. */ 214 1.1 rmind *retkcp = kcpuset_early_ptr(retkcp); 215 1.1 rmind return; 216 1.1 rmind } 217 1.3 rmind *retkcp = kcpuset_create_raw(zero); 218 1.1 rmind } 219 1.1 rmind 220 1.1 rmind void 221 1.9 matt kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp) 222 1.9 matt { 223 1.9 matt kcpuset_create(retkcp, false); 224 1.9 matt memcpy(*retkcp, kcp, kc_bitsize); 225 1.9 matt } 226 1.9 matt 227 1.9 matt void 228 1.1 rmind kcpuset_destroy(kcpuset_t *kcp) 229 1.1 rmind { 230 1.20 ad const size_t size = kc_memsize; 231 1.2 rmind kcpuset_impl_t *kc; 232 1.1 rmind 233 1.1 rmind KASSERT(kc_initialised); 234 1.1 rmind KASSERT(kcp != NULL); 235 1.1 rmind 236 1.1 rmind do { 237 1.2 rmind kc = KC_GETSTRUCT(kcp); 238 1.2 rmind kcp = kc->kc_next; 239 1.20 ad kmem_free(kc, size); 240 1.2 rmind } while (kcp); 241 1.1 rmind } 242 1.1 rmind 243 1.1 rmind /* 244 1.4 rmind * Routines to reference/unreference the CPU set. 245 1.1 rmind * Note: early boot case is not supported by these routines. 246 1.1 rmind */ 247 1.1 rmind 248 1.1 rmind void 249 1.1 rmind kcpuset_use(kcpuset_t *kcp) 250 1.1 rmind { 251 1.1 rmind kcpuset_impl_t *kc = KC_GETSTRUCT(kcp); 252 1.1 rmind 253 1.1 rmind KASSERT(kc_initialised); 254 1.1 rmind atomic_inc_uint(&kc->kc_refcnt); 255 1.1 rmind } 256 1.1 rmind 257 1.1 rmind void 258 1.1 rmind kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst) 259 1.1 rmind { 260 1.1 rmind kcpuset_impl_t *kc = KC_GETSTRUCT(kcp); 261 1.1 rmind 262 1.1 rmind KASSERT(kc_initialised); 263 1.1 rmind KASSERT(kc->kc_refcnt > 0); 264 1.1 rmind 265 1.14 riastrad membar_release(); 266 1.1 rmind if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) { 267 1.1 rmind return; 268 1.1 rmind } 269 1.14 riastrad membar_acquire(); 270 1.1 rmind KASSERT(kc->kc_next == NULL); 271 1.1 rmind if (lst == NULL) { 272 1.1 rmind kcpuset_destroy(kcp); 273 1.1 rmind return; 274 1.1 rmind } 275 1.1 rmind kc->kc_next = *lst; 276 1.1 rmind *lst = kcp; 277 1.1 rmind } 278 1.1 rmind 279 1.1 rmind /* 280 1.1 rmind * Routines to transfer the CPU set from / to userspace. 281 1.1 rmind * Note: early boot case is not supported by these routines. 282 1.1 rmind */ 283 1.1 rmind 284 1.1 rmind int 285 1.1 rmind kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len) 286 1.1 rmind { 287 1.10 martin kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp); 288 1.1 rmind 289 1.1 rmind KASSERT(kc_initialised); 290 1.1 rmind KASSERT(kc->kc_refcnt > 0); 291 1.1 rmind KASSERT(kc->kc_next == NULL); 292 1.1 rmind 293 1.5 rmind if (len > kc_bitsize) { /* XXX */ 294 1.1 rmind return EINVAL; 295 1.1 rmind } 296 1.5 rmind return copyin(ucp, kcp, len); 297 1.1 rmind } 298 1.1 rmind 299 1.1 rmind int 300 1.1 rmind kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len) 301 1.1 rmind { 302 1.10 martin kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp); 303 1.1 rmind 304 1.1 rmind KASSERT(kc_initialised); 305 1.1 rmind KASSERT(kc->kc_refcnt > 0); 306 1.1 rmind KASSERT(kc->kc_next == NULL); 307 1.1 rmind 308 1.5 rmind if (len > kc_bitsize) { /* XXX */ 309 1.1 rmind return EINVAL; 310 1.1 rmind } 311 1.5 rmind return copyout(kcp, ucp, len); 312 1.1 rmind } 313 1.1 rmind 314 1.6 rmind void 315 1.8 rmind kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len) 316 1.6 rmind { 317 1.6 rmind size_t rlen = MIN(kc_bitsize, len); 318 1.6 rmind 319 1.6 rmind KASSERT(kcp != NULL); 320 1.6 rmind memcpy(bitfield, kcp->bits, rlen); 321 1.6 rmind } 322 1.6 rmind 323 1.1 rmind /* 324 1.4 rmind * Routines to change bit field - zero, fill, copy, set, unset, etc. 325 1.1 rmind */ 326 1.4 rmind 327 1.1 rmind void 328 1.1 rmind kcpuset_zero(kcpuset_t *kcp) 329 1.1 rmind { 330 1.1 rmind 331 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0); 332 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL); 333 1.1 rmind memset(kcp, 0, kc_bitsize); 334 1.1 rmind } 335 1.1 rmind 336 1.1 rmind void 337 1.1 rmind kcpuset_fill(kcpuset_t *kcp) 338 1.1 rmind { 339 1.1 rmind 340 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0); 341 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL); 342 1.1 rmind memset(kcp, ~0, kc_bitsize); 343 1.1 rmind } 344 1.1 rmind 345 1.1 rmind void 346 1.9 matt kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp) 347 1.4 rmind { 348 1.4 rmind 349 1.4 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0); 350 1.4 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL); 351 1.4 rmind memcpy(dkcp, skcp, kc_bitsize); 352 1.4 rmind } 353 1.4 rmind 354 1.4 rmind void 355 1.1 rmind kcpuset_set(kcpuset_t *kcp, cpuid_t i) 356 1.1 rmind { 357 1.1 rmind const size_t j = i >> KC_SHIFT; 358 1.1 rmind 359 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL); 360 1.1 rmind KASSERT(j < kc_nfields); 361 1.1 rmind 362 1.12 msaitoh kcp->bits[j] |= __BIT(i & KC_MASK); 363 1.1 rmind } 364 1.1 rmind 365 1.1 rmind void 366 1.1 rmind kcpuset_clear(kcpuset_t *kcp, cpuid_t i) 367 1.1 rmind { 368 1.1 rmind const size_t j = i >> KC_SHIFT; 369 1.1 rmind 370 1.9 matt KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL); 371 1.1 rmind KASSERT(j < kc_nfields); 372 1.1 rmind 373 1.12 msaitoh kcp->bits[j] &= ~(__BIT(i & KC_MASK)); 374 1.1 rmind } 375 1.1 rmind 376 1.4 rmind bool 377 1.9 matt kcpuset_isset(const kcpuset_t *kcp, cpuid_t i) 378 1.1 rmind { 379 1.1 rmind const size_t j = i >> KC_SHIFT; 380 1.1 rmind 381 1.1 rmind KASSERT(kcp != NULL); 382 1.9 matt KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0); 383 1.9 matt KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL); 384 1.1 rmind KASSERT(j < kc_nfields); 385 1.1 rmind 386 1.12 msaitoh return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0; 387 1.1 rmind } 388 1.1 rmind 389 1.1 rmind bool 390 1.9 matt kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i) 391 1.4 rmind { 392 1.4 rmind const size_t j2 = i >> KC_SHIFT; 393 1.12 msaitoh const uint32_t mask = ~(__BIT(i & KC_MASK)); 394 1.4 rmind 395 1.4 rmind for (size_t j = 0; j < kc_nfields; j++) { 396 1.4 rmind const uint32_t bits = kcp->bits[j]; 397 1.4 rmind if (bits && (j != j2 || (bits & mask) != 0)) { 398 1.4 rmind return true; 399 1.4 rmind } 400 1.4 rmind } 401 1.4 rmind return false; 402 1.4 rmind } 403 1.4 rmind 404 1.4 rmind bool 405 1.9 matt kcpuset_iszero(const kcpuset_t *kcp) 406 1.1 rmind { 407 1.1 rmind 408 1.1 rmind for (size_t j = 0; j < kc_nfields; j++) { 409 1.1 rmind if (kcp->bits[j] != 0) { 410 1.1 rmind return false; 411 1.1 rmind } 412 1.1 rmind } 413 1.1 rmind return true; 414 1.1 rmind } 415 1.1 rmind 416 1.1 rmind bool 417 1.1 rmind kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2) 418 1.1 rmind { 419 1.1 rmind 420 1.1 rmind return memcmp(kcp1, kcp2, kc_bitsize) == 0; 421 1.1 rmind } 422 1.3 rmind 423 1.9 matt bool 424 1.9 matt kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2) 425 1.9 matt { 426 1.9 matt 427 1.9 matt for (size_t j = 0; j < kc_nfields; j++) { 428 1.9 matt if (kcp1->bits[j] & kcp2->bits[j]) 429 1.9 matt return true; 430 1.9 matt } 431 1.9 matt return false; 432 1.9 matt } 433 1.9 matt 434 1.9 matt cpuid_t 435 1.9 matt kcpuset_ffs(const kcpuset_t *kcp) 436 1.9 matt { 437 1.9 matt 438 1.9 matt for (size_t j = 0; j < kc_nfields; j++) { 439 1.9 matt if (kcp->bits[j]) 440 1.9 matt return 32 * j + ffs(kcp->bits[j]); 441 1.9 matt } 442 1.9 matt return 0; 443 1.9 matt } 444 1.9 matt 445 1.9 matt cpuid_t 446 1.9 matt kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2) 447 1.9 matt { 448 1.9 matt 449 1.9 matt for (size_t j = 0; j < kc_nfields; j++) { 450 1.9 matt uint32_t bits = kcp1->bits[j] & kcp2->bits[j]; 451 1.9 matt if (bits) 452 1.9 matt return 32 * j + ffs(bits); 453 1.9 matt } 454 1.9 matt return 0; 455 1.9 matt } 456 1.9 matt 457 1.3 rmind void 458 1.9 matt kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2) 459 1.3 rmind { 460 1.3 rmind 461 1.3 rmind for (size_t j = 0; j < kc_nfields; j++) { 462 1.3 rmind kcp1->bits[j] |= kcp2->bits[j]; 463 1.3 rmind } 464 1.3 rmind } 465 1.3 rmind 466 1.5 rmind void 467 1.9 matt kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2) 468 1.5 rmind { 469 1.5 rmind 470 1.5 rmind for (size_t j = 0; j < kc_nfields; j++) { 471 1.5 rmind kcp1->bits[j] &= kcp2->bits[j]; 472 1.5 rmind } 473 1.5 rmind } 474 1.5 rmind 475 1.9 matt void 476 1.9 matt kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2) 477 1.9 matt { 478 1.9 matt 479 1.9 matt for (size_t j = 0; j < kc_nfields; j++) { 480 1.9 matt kcp1->bits[j] &= ~kcp2->bits[j]; 481 1.9 matt } 482 1.9 matt } 483 1.9 matt 484 1.4 rmind int 485 1.11 rmind kcpuset_countset(const kcpuset_t *kcp) 486 1.4 rmind { 487 1.4 rmind int count = 0; 488 1.4 rmind 489 1.4 rmind for (size_t j = 0; j < kc_nfields; j++) { 490 1.4 rmind count += popcount32(kcp->bits[j]); 491 1.4 rmind } 492 1.4 rmind return count; 493 1.4 rmind } 494 1.4 rmind 495 1.3 rmind /* 496 1.3 rmind * Routines to set/clear the flags atomically. 497 1.3 rmind */ 498 1.3 rmind 499 1.3 rmind void 500 1.3 rmind kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i) 501 1.3 rmind { 502 1.3 rmind const size_t j = i >> KC_SHIFT; 503 1.3 rmind 504 1.3 rmind KASSERT(j < kc_nfields); 505 1.12 msaitoh atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK)); 506 1.3 rmind } 507 1.3 rmind 508 1.3 rmind void 509 1.3 rmind kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i) 510 1.3 rmind { 511 1.3 rmind const size_t j = i >> KC_SHIFT; 512 1.3 rmind 513 1.3 rmind KASSERT(j < kc_nfields); 514 1.12 msaitoh atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK))); 515 1.3 rmind } 516 1.9 matt 517 1.9 matt void 518 1.9 matt kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2) 519 1.9 matt { 520 1.9 matt 521 1.9 matt for (size_t j = 0; j < kc_nfields; j++) { 522 1.9 matt if (kcp2->bits[j]) 523 1.9 matt atomic_and_32(&kcp1->bits[j], kcp2->bits[j]); 524 1.9 matt } 525 1.9 matt } 526 1.9 matt 527 1.9 matt void 528 1.9 matt kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2) 529 1.9 matt { 530 1.9 matt 531 1.9 matt for (size_t j = 0; j < kc_nfields; j++) { 532 1.9 matt if (kcp2->bits[j]) 533 1.9 matt atomic_or_32(&kcp1->bits[j], kcp2->bits[j]); 534 1.9 matt } 535 1.9 matt } 536 1.9 matt 537 1.9 matt void 538 1.9 matt kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2) 539 1.9 matt { 540 1.9 matt 541 1.9 matt for (size_t j = 0; j < kc_nfields; j++) { 542 1.9 matt if (kcp2->bits[j]) 543 1.9 matt atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]); 544 1.9 matt } 545 1.9 matt } 546