subr_kcpuset.c revision 1.17 1 1.17 ad /* $NetBSD: subr_kcpuset.c,v 1.17 2023/09/10 14:45:52 ad Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.17 ad * Copyright (c) 2011, 2023 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.1 rmind * Kernel CPU set implementation.
34 1.1 rmind *
35 1.1 rmind * Interface can be used by kernel subsystems as a unified dynamic CPU
36 1.1 rmind * bitset implementation handling many CPUs. Facility also supports early
37 1.1 rmind * use by MD code on boot, as it fixups bitsets on further boot.
38 1.1 rmind *
39 1.1 rmind * TODO:
40 1.1 rmind * - Handle "reverse" bitset on fixup/grow.
41 1.1 rmind */
42 1.1 rmind
43 1.1 rmind #include <sys/cdefs.h>
44 1.17 ad __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.17 2023/09/10 14:45:52 ad Exp $");
45 1.1 rmind
46 1.1 rmind #include <sys/param.h>
47 1.1 rmind #include <sys/types.h>
48 1.1 rmind
49 1.1 rmind #include <sys/atomic.h>
50 1.1 rmind #include <sys/sched.h>
51 1.1 rmind #include <sys/kcpuset.h>
52 1.17 ad #include <sys/kmem.h>
53 1.1 rmind
54 1.1 rmind /* Number of CPUs to support. */
55 1.1 rmind #define KC_MAXCPUS roundup2(MAXCPUS, 32)
56 1.1 rmind
57 1.1 rmind /*
58 1.1 rmind * Structure of dynamic CPU set in the kernel.
59 1.1 rmind */
60 1.1 rmind struct kcpuset {
61 1.1 rmind uint32_t bits[0];
62 1.1 rmind };
63 1.1 rmind
64 1.1 rmind typedef struct kcpuset_impl {
65 1.1 rmind /* Reference count. */
66 1.1 rmind u_int kc_refcnt;
67 1.16 skrll /* Next to free, if non-NULL (used when multiple references). */
68 1.1 rmind struct kcpuset * kc_next;
69 1.1 rmind /* Actual variable-sized field of bits. */
70 1.1 rmind struct kcpuset kc_field;
71 1.1 rmind } kcpuset_impl_t;
72 1.1 rmind
73 1.1 rmind #define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field))
74 1.1 rmind #define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75 1.9 matt #define KC_GETCSTRUCT(b) ((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
76 1.1 rmind
77 1.1 rmind /* Sizes of a single bitset. */
78 1.1 rmind #define KC_SHIFT 5
79 1.1 rmind #define KC_MASK 31
80 1.1 rmind
81 1.1 rmind /* An array of noted early kcpuset creations and data. */
82 1.1 rmind #define KC_SAVE_NITEMS 8
83 1.1 rmind
84 1.1 rmind /* Structures for early boot mechanism (must be statically initialised). */
85 1.1 rmind static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS];
86 1.1 rmind static uint32_t kc_bits_early[KC_SAVE_NITEMS];
87 1.1 rmind static int kc_last_idx = 0;
88 1.1 rmind static bool kc_initialised = false;
89 1.1 rmind
90 1.1 rmind #define KC_BITSIZE_EARLY sizeof(kc_bits_early[0])
91 1.4 rmind #define KC_NFIELDS_EARLY 1
92 1.1 rmind
93 1.1 rmind /*
94 1.1 rmind * The size of whole bitset fields and amount of fields.
95 1.1 rmind * The whole size must statically initialise for early case.
96 1.1 rmind */
97 1.1 rmind static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
98 1.1 rmind static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY;
99 1.17 ad static size_t kc_memsize __read_mostly;
100 1.1 rmind
101 1.3 rmind static kcpuset_t * kcpuset_create_raw(bool);
102 1.1 rmind
103 1.1 rmind /*
104 1.1 rmind * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
105 1.1 rmind * to dynamically allocated sets.
106 1.1 rmind */
107 1.1 rmind void
108 1.1 rmind kcpuset_sysinit(void)
109 1.1 rmind {
110 1.1 rmind kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
111 1.1 rmind int i, s;
112 1.1 rmind
113 1.1 rmind /* Set a kcpuset_t sizes. */
114 1.1 rmind kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
115 1.1 rmind kc_bitsize = sizeof(uint32_t) * kc_nfields;
116 1.17 ad kc_memsize = sizeof(kcpuset_impl_t) + kc_bitsize;
117 1.15 riastrad KASSERT(kc_nfields != 0);
118 1.15 riastrad KASSERT(kc_bitsize != 0);
119 1.1 rmind
120 1.1 rmind /* First, pre-allocate kcpuset entries. */
121 1.1 rmind for (i = 0; i < kc_last_idx; i++) {
122 1.3 rmind kcp = kcpuset_create_raw(true);
123 1.1 rmind kc_dynamic[i] = kcp;
124 1.1 rmind }
125 1.1 rmind
126 1.1 rmind /*
127 1.1 rmind * Prepare to convert all early noted kcpuset uses to dynamic sets.
128 1.1 rmind * All processors, except the one we are currently running (primary),
129 1.1 rmind * must not be spinned yet. Since MD facilities can use kcpuset,
130 1.1 rmind * raise the IPL to high.
131 1.1 rmind */
132 1.1 rmind KASSERT(mp_online == false);
133 1.1 rmind
134 1.1 rmind s = splhigh();
135 1.1 rmind for (i = 0; i < kc_last_idx; i++) {
136 1.1 rmind /*
137 1.1 rmind * Transfer the bits from early static storage to the kcpuset.
138 1.1 rmind */
139 1.1 rmind KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
140 1.1 rmind memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
141 1.1 rmind
142 1.1 rmind /*
143 1.1 rmind * Store the new pointer, pointing to the allocated kcpuset.
144 1.1 rmind * Note: we are not in an interrupt context and it is the only
145 1.1 rmind * CPU running - thus store is safe (e.g. no need for pointer
146 1.1 rmind * variable to be volatile).
147 1.1 rmind */
148 1.1 rmind *kc_noted_early[i] = kc_dynamic[i];
149 1.1 rmind }
150 1.1 rmind kc_initialised = true;
151 1.1 rmind kc_last_idx = 0;
152 1.1 rmind splx(s);
153 1.1 rmind }
154 1.1 rmind
155 1.1 rmind /*
156 1.1 rmind * kcpuset_early_ptr: note an early boot use by saving the pointer and
157 1.1 rmind * returning a pointer to a static, temporary bit field.
158 1.1 rmind */
159 1.1 rmind static kcpuset_t *
160 1.1 rmind kcpuset_early_ptr(kcpuset_t **kcptr)
161 1.1 rmind {
162 1.1 rmind kcpuset_t *kcp;
163 1.1 rmind int s;
164 1.1 rmind
165 1.1 rmind s = splhigh();
166 1.1 rmind if (kc_last_idx < KC_SAVE_NITEMS) {
167 1.1 rmind /*
168 1.1 rmind * Save the pointer, return pointer to static early field.
169 1.1 rmind * Need to zero it out.
170 1.1 rmind */
171 1.5 rmind kc_noted_early[kc_last_idx] = kcptr;
172 1.1 rmind kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
173 1.5 rmind kc_last_idx++;
174 1.1 rmind memset(kcp, 0, KC_BITSIZE_EARLY);
175 1.1 rmind KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
176 1.1 rmind } else {
177 1.1 rmind panic("kcpuset(9): all early-use entries exhausted; "
178 1.1 rmind "increase KC_SAVE_NITEMS\n");
179 1.1 rmind }
180 1.1 rmind splx(s);
181 1.1 rmind
182 1.1 rmind return kcp;
183 1.1 rmind }
184 1.1 rmind
185 1.1 rmind /*
186 1.1 rmind * Routines to create or destroy the CPU set.
187 1.1 rmind * Early boot case is handled.
188 1.1 rmind */
189 1.1 rmind
190 1.1 rmind static kcpuset_t *
191 1.3 rmind kcpuset_create_raw(bool zero)
192 1.1 rmind {
193 1.1 rmind kcpuset_impl_t *kc;
194 1.1 rmind
195 1.17 ad kc = kmem_alloc(kc_memsize, KM_SLEEP);
196 1.1 rmind kc->kc_refcnt = 1;
197 1.1 rmind kc->kc_next = NULL;
198 1.1 rmind
199 1.3 rmind if (zero) {
200 1.3 rmind memset(&kc->kc_field, 0, kc_bitsize);
201 1.3 rmind }
202 1.3 rmind
203 1.1 rmind /* Note: return pointer to the actual field of bits. */
204 1.1 rmind KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
205 1.1 rmind return &kc->kc_field;
206 1.1 rmind }
207 1.1 rmind
208 1.1 rmind void
209 1.3 rmind kcpuset_create(kcpuset_t **retkcp, bool zero)
210 1.1 rmind {
211 1.1 rmind if (__predict_false(!kc_initialised)) {
212 1.1 rmind /* Early boot use - special case. */
213 1.1 rmind *retkcp = kcpuset_early_ptr(retkcp);
214 1.1 rmind return;
215 1.1 rmind }
216 1.3 rmind *retkcp = kcpuset_create_raw(zero);
217 1.1 rmind }
218 1.1 rmind
219 1.1 rmind void
220 1.9 matt kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
221 1.9 matt {
222 1.9 matt kcpuset_create(retkcp, false);
223 1.9 matt memcpy(*retkcp, kcp, kc_bitsize);
224 1.9 matt }
225 1.9 matt
226 1.9 matt void
227 1.1 rmind kcpuset_destroy(kcpuset_t *kcp)
228 1.1 rmind {
229 1.17 ad const size_t size = kc_memsize;
230 1.2 rmind kcpuset_impl_t *kc;
231 1.1 rmind
232 1.1 rmind KASSERT(kc_initialised);
233 1.1 rmind KASSERT(kcp != NULL);
234 1.1 rmind
235 1.1 rmind do {
236 1.2 rmind kc = KC_GETSTRUCT(kcp);
237 1.2 rmind kcp = kc->kc_next;
238 1.17 ad kmem_free(kc, size);
239 1.2 rmind } while (kcp);
240 1.1 rmind }
241 1.1 rmind
242 1.1 rmind /*
243 1.4 rmind * Routines to reference/unreference the CPU set.
244 1.1 rmind * Note: early boot case is not supported by these routines.
245 1.1 rmind */
246 1.1 rmind
247 1.1 rmind void
248 1.1 rmind kcpuset_use(kcpuset_t *kcp)
249 1.1 rmind {
250 1.1 rmind kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
251 1.1 rmind
252 1.1 rmind KASSERT(kc_initialised);
253 1.1 rmind atomic_inc_uint(&kc->kc_refcnt);
254 1.1 rmind }
255 1.1 rmind
256 1.1 rmind void
257 1.1 rmind kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
258 1.1 rmind {
259 1.1 rmind kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
260 1.1 rmind
261 1.1 rmind KASSERT(kc_initialised);
262 1.1 rmind KASSERT(kc->kc_refcnt > 0);
263 1.1 rmind
264 1.14 riastrad membar_release();
265 1.1 rmind if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
266 1.1 rmind return;
267 1.1 rmind }
268 1.14 riastrad membar_acquire();
269 1.1 rmind KASSERT(kc->kc_next == NULL);
270 1.1 rmind if (lst == NULL) {
271 1.1 rmind kcpuset_destroy(kcp);
272 1.1 rmind return;
273 1.1 rmind }
274 1.1 rmind kc->kc_next = *lst;
275 1.1 rmind *lst = kcp;
276 1.1 rmind }
277 1.1 rmind
278 1.1 rmind /*
279 1.1 rmind * Routines to transfer the CPU set from / to userspace.
280 1.1 rmind * Note: early boot case is not supported by these routines.
281 1.1 rmind */
282 1.1 rmind
283 1.1 rmind int
284 1.1 rmind kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
285 1.1 rmind {
286 1.10 martin kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
287 1.1 rmind
288 1.1 rmind KASSERT(kc_initialised);
289 1.1 rmind KASSERT(kc->kc_refcnt > 0);
290 1.1 rmind KASSERT(kc->kc_next == NULL);
291 1.1 rmind
292 1.5 rmind if (len > kc_bitsize) { /* XXX */
293 1.1 rmind return EINVAL;
294 1.1 rmind }
295 1.5 rmind return copyin(ucp, kcp, len);
296 1.1 rmind }
297 1.1 rmind
298 1.1 rmind int
299 1.1 rmind kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
300 1.1 rmind {
301 1.10 martin kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
302 1.1 rmind
303 1.1 rmind KASSERT(kc_initialised);
304 1.1 rmind KASSERT(kc->kc_refcnt > 0);
305 1.1 rmind KASSERT(kc->kc_next == NULL);
306 1.1 rmind
307 1.5 rmind if (len > kc_bitsize) { /* XXX */
308 1.1 rmind return EINVAL;
309 1.1 rmind }
310 1.5 rmind return copyout(kcp, ucp, len);
311 1.1 rmind }
312 1.1 rmind
313 1.6 rmind void
314 1.8 rmind kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
315 1.6 rmind {
316 1.6 rmind size_t rlen = MIN(kc_bitsize, len);
317 1.6 rmind
318 1.6 rmind KASSERT(kcp != NULL);
319 1.6 rmind memcpy(bitfield, kcp->bits, rlen);
320 1.6 rmind }
321 1.6 rmind
322 1.1 rmind /*
323 1.4 rmind * Routines to change bit field - zero, fill, copy, set, unset, etc.
324 1.1 rmind */
325 1.4 rmind
326 1.1 rmind void
327 1.1 rmind kcpuset_zero(kcpuset_t *kcp)
328 1.1 rmind {
329 1.1 rmind
330 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
331 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
332 1.1 rmind memset(kcp, 0, kc_bitsize);
333 1.1 rmind }
334 1.1 rmind
335 1.1 rmind void
336 1.1 rmind kcpuset_fill(kcpuset_t *kcp)
337 1.1 rmind {
338 1.1 rmind
339 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
340 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
341 1.1 rmind memset(kcp, ~0, kc_bitsize);
342 1.1 rmind }
343 1.1 rmind
344 1.1 rmind void
345 1.9 matt kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
346 1.4 rmind {
347 1.4 rmind
348 1.4 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
349 1.4 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
350 1.4 rmind memcpy(dkcp, skcp, kc_bitsize);
351 1.4 rmind }
352 1.4 rmind
353 1.4 rmind void
354 1.1 rmind kcpuset_set(kcpuset_t *kcp, cpuid_t i)
355 1.1 rmind {
356 1.1 rmind const size_t j = i >> KC_SHIFT;
357 1.1 rmind
358 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
359 1.1 rmind KASSERT(j < kc_nfields);
360 1.1 rmind
361 1.12 msaitoh kcp->bits[j] |= __BIT(i & KC_MASK);
362 1.1 rmind }
363 1.1 rmind
364 1.1 rmind void
365 1.1 rmind kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
366 1.1 rmind {
367 1.1 rmind const size_t j = i >> KC_SHIFT;
368 1.1 rmind
369 1.9 matt KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
370 1.1 rmind KASSERT(j < kc_nfields);
371 1.1 rmind
372 1.12 msaitoh kcp->bits[j] &= ~(__BIT(i & KC_MASK));
373 1.1 rmind }
374 1.1 rmind
375 1.4 rmind bool
376 1.9 matt kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
377 1.1 rmind {
378 1.1 rmind const size_t j = i >> KC_SHIFT;
379 1.1 rmind
380 1.1 rmind KASSERT(kcp != NULL);
381 1.9 matt KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
382 1.9 matt KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
383 1.1 rmind KASSERT(j < kc_nfields);
384 1.1 rmind
385 1.12 msaitoh return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0;
386 1.1 rmind }
387 1.1 rmind
388 1.1 rmind bool
389 1.9 matt kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
390 1.4 rmind {
391 1.4 rmind const size_t j2 = i >> KC_SHIFT;
392 1.12 msaitoh const uint32_t mask = ~(__BIT(i & KC_MASK));
393 1.4 rmind
394 1.4 rmind for (size_t j = 0; j < kc_nfields; j++) {
395 1.4 rmind const uint32_t bits = kcp->bits[j];
396 1.4 rmind if (bits && (j != j2 || (bits & mask) != 0)) {
397 1.4 rmind return true;
398 1.4 rmind }
399 1.4 rmind }
400 1.4 rmind return false;
401 1.4 rmind }
402 1.4 rmind
403 1.4 rmind bool
404 1.9 matt kcpuset_iszero(const kcpuset_t *kcp)
405 1.1 rmind {
406 1.1 rmind
407 1.1 rmind for (size_t j = 0; j < kc_nfields; j++) {
408 1.1 rmind if (kcp->bits[j] != 0) {
409 1.1 rmind return false;
410 1.1 rmind }
411 1.1 rmind }
412 1.1 rmind return true;
413 1.1 rmind }
414 1.1 rmind
415 1.1 rmind bool
416 1.1 rmind kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
417 1.1 rmind {
418 1.1 rmind
419 1.1 rmind return memcmp(kcp1, kcp2, kc_bitsize) == 0;
420 1.1 rmind }
421 1.3 rmind
422 1.9 matt bool
423 1.9 matt kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
424 1.9 matt {
425 1.9 matt
426 1.9 matt for (size_t j = 0; j < kc_nfields; j++) {
427 1.9 matt if (kcp1->bits[j] & kcp2->bits[j])
428 1.9 matt return true;
429 1.9 matt }
430 1.9 matt return false;
431 1.9 matt }
432 1.9 matt
433 1.9 matt cpuid_t
434 1.9 matt kcpuset_ffs(const kcpuset_t *kcp)
435 1.9 matt {
436 1.9 matt
437 1.9 matt for (size_t j = 0; j < kc_nfields; j++) {
438 1.9 matt if (kcp->bits[j])
439 1.9 matt return 32 * j + ffs(kcp->bits[j]);
440 1.9 matt }
441 1.9 matt return 0;
442 1.9 matt }
443 1.9 matt
444 1.9 matt cpuid_t
445 1.9 matt kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
446 1.9 matt {
447 1.9 matt
448 1.9 matt for (size_t j = 0; j < kc_nfields; j++) {
449 1.9 matt uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
450 1.9 matt if (bits)
451 1.9 matt return 32 * j + ffs(bits);
452 1.9 matt }
453 1.9 matt return 0;
454 1.9 matt }
455 1.9 matt
456 1.3 rmind void
457 1.9 matt kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
458 1.3 rmind {
459 1.3 rmind
460 1.3 rmind for (size_t j = 0; j < kc_nfields; j++) {
461 1.3 rmind kcp1->bits[j] |= kcp2->bits[j];
462 1.3 rmind }
463 1.3 rmind }
464 1.3 rmind
465 1.5 rmind void
466 1.9 matt kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
467 1.5 rmind {
468 1.5 rmind
469 1.5 rmind for (size_t j = 0; j < kc_nfields; j++) {
470 1.5 rmind kcp1->bits[j] &= kcp2->bits[j];
471 1.5 rmind }
472 1.5 rmind }
473 1.5 rmind
474 1.9 matt void
475 1.9 matt kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
476 1.9 matt {
477 1.9 matt
478 1.9 matt for (size_t j = 0; j < kc_nfields; j++) {
479 1.9 matt kcp1->bits[j] &= ~kcp2->bits[j];
480 1.9 matt }
481 1.9 matt }
482 1.9 matt
483 1.4 rmind int
484 1.11 rmind kcpuset_countset(const kcpuset_t *kcp)
485 1.4 rmind {
486 1.4 rmind int count = 0;
487 1.4 rmind
488 1.4 rmind for (size_t j = 0; j < kc_nfields; j++) {
489 1.4 rmind count += popcount32(kcp->bits[j]);
490 1.4 rmind }
491 1.4 rmind return count;
492 1.4 rmind }
493 1.4 rmind
494 1.3 rmind /*
495 1.3 rmind * Routines to set/clear the flags atomically.
496 1.3 rmind */
497 1.3 rmind
498 1.3 rmind void
499 1.3 rmind kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
500 1.3 rmind {
501 1.3 rmind const size_t j = i >> KC_SHIFT;
502 1.3 rmind
503 1.3 rmind KASSERT(j < kc_nfields);
504 1.12 msaitoh atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK));
505 1.3 rmind }
506 1.3 rmind
507 1.3 rmind void
508 1.3 rmind kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
509 1.3 rmind {
510 1.3 rmind const size_t j = i >> KC_SHIFT;
511 1.3 rmind
512 1.3 rmind KASSERT(j < kc_nfields);
513 1.12 msaitoh atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK)));
514 1.3 rmind }
515 1.9 matt
516 1.9 matt void
517 1.9 matt kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
518 1.9 matt {
519 1.9 matt
520 1.9 matt for (size_t j = 0; j < kc_nfields; j++) {
521 1.9 matt if (kcp2->bits[j])
522 1.9 matt atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
523 1.9 matt }
524 1.9 matt }
525 1.9 matt
526 1.9 matt void
527 1.9 matt kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
528 1.9 matt {
529 1.9 matt
530 1.9 matt for (size_t j = 0; j < kc_nfields; j++) {
531 1.9 matt if (kcp2->bits[j])
532 1.9 matt atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
533 1.9 matt }
534 1.9 matt }
535 1.9 matt
536 1.9 matt void
537 1.9 matt kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
538 1.9 matt {
539 1.9 matt
540 1.9 matt for (size_t j = 0; j < kc_nfields; j++) {
541 1.9 matt if (kcp2->bits[j])
542 1.9 matt atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
543 1.9 matt }
544 1.9 matt }
545