subr_kcpuset.c revision 1.8 1 1.8 rmind /* $NetBSD: subr_kcpuset.c,v 1.8 2012/09/16 22:09:33 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.1 rmind * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.1 rmind * Kernel CPU set implementation.
34 1.1 rmind *
35 1.1 rmind * Interface can be used by kernel subsystems as a unified dynamic CPU
36 1.1 rmind * bitset implementation handling many CPUs. Facility also supports early
37 1.1 rmind * use by MD code on boot, as it fixups bitsets on further boot.
38 1.1 rmind *
39 1.1 rmind * TODO:
40 1.1 rmind * - Handle "reverse" bitset on fixup/grow.
41 1.1 rmind */
42 1.1 rmind
43 1.1 rmind #include <sys/cdefs.h>
44 1.8 rmind __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.8 2012/09/16 22:09:33 rmind Exp $");
45 1.1 rmind
46 1.1 rmind #include <sys/param.h>
47 1.1 rmind #include <sys/types.h>
48 1.1 rmind
49 1.1 rmind #include <sys/atomic.h>
50 1.1 rmind #include <sys/sched.h>
51 1.1 rmind #include <sys/kcpuset.h>
52 1.1 rmind #include <sys/pool.h>
53 1.1 rmind
54 1.1 rmind /* Number of CPUs to support. */
55 1.1 rmind #define KC_MAXCPUS roundup2(MAXCPUS, 32)
56 1.1 rmind
57 1.1 rmind /*
58 1.1 rmind * Structure of dynamic CPU set in the kernel.
59 1.1 rmind */
60 1.1 rmind struct kcpuset {
61 1.1 rmind uint32_t bits[0];
62 1.1 rmind };
63 1.1 rmind
64 1.1 rmind typedef struct kcpuset_impl {
65 1.1 rmind /* Reference count. */
66 1.1 rmind u_int kc_refcnt;
67 1.1 rmind /* Next to free, if non-NULL (used when multiple references). */
68 1.1 rmind struct kcpuset * kc_next;
69 1.1 rmind /* Actual variable-sized field of bits. */
70 1.1 rmind struct kcpuset kc_field;
71 1.1 rmind } kcpuset_impl_t;
72 1.1 rmind
73 1.1 rmind #define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field))
74 1.1 rmind #define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75 1.1 rmind
76 1.1 rmind /* Sizes of a single bitset. */
77 1.1 rmind #define KC_SHIFT 5
78 1.1 rmind #define KC_MASK 31
79 1.1 rmind
80 1.1 rmind /* An array of noted early kcpuset creations and data. */
81 1.1 rmind #define KC_SAVE_NITEMS 8
82 1.1 rmind
83 1.1 rmind /* Structures for early boot mechanism (must be statically initialised). */
84 1.1 rmind static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS];
85 1.1 rmind static uint32_t kc_bits_early[KC_SAVE_NITEMS];
86 1.1 rmind static int kc_last_idx = 0;
87 1.1 rmind static bool kc_initialised = false;
88 1.1 rmind
89 1.1 rmind #define KC_BITSIZE_EARLY sizeof(kc_bits_early[0])
90 1.4 rmind #define KC_NFIELDS_EARLY 1
91 1.1 rmind
92 1.1 rmind /*
93 1.1 rmind * The size of whole bitset fields and amount of fields.
94 1.1 rmind * The whole size must statically initialise for early case.
95 1.1 rmind */
96 1.1 rmind static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
97 1.1 rmind static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY;
98 1.1 rmind
99 1.1 rmind static pool_cache_t kc_cache __read_mostly;
100 1.1 rmind
101 1.3 rmind static kcpuset_t * kcpuset_create_raw(bool);
102 1.1 rmind
103 1.1 rmind /*
104 1.1 rmind * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
105 1.1 rmind * to dynamically allocated sets.
106 1.1 rmind */
107 1.1 rmind void
108 1.1 rmind kcpuset_sysinit(void)
109 1.1 rmind {
110 1.1 rmind kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
111 1.1 rmind int i, s;
112 1.1 rmind
113 1.1 rmind /* Set a kcpuset_t sizes. */
114 1.1 rmind kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
115 1.1 rmind kc_bitsize = sizeof(uint32_t) * kc_nfields;
116 1.4 rmind KASSERT(kc_nfields != 0 && kc_bitsize != 0);
117 1.1 rmind
118 1.1 rmind kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
119 1.1 rmind coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
120 1.1 rmind
121 1.1 rmind /* First, pre-allocate kcpuset entries. */
122 1.1 rmind for (i = 0; i < kc_last_idx; i++) {
123 1.3 rmind kcp = kcpuset_create_raw(true);
124 1.1 rmind kc_dynamic[i] = kcp;
125 1.1 rmind }
126 1.1 rmind
127 1.1 rmind /*
128 1.1 rmind * Prepare to convert all early noted kcpuset uses to dynamic sets.
129 1.1 rmind * All processors, except the one we are currently running (primary),
130 1.1 rmind * must not be spinned yet. Since MD facilities can use kcpuset,
131 1.1 rmind * raise the IPL to high.
132 1.1 rmind */
133 1.1 rmind KASSERT(mp_online == false);
134 1.1 rmind
135 1.1 rmind s = splhigh();
136 1.1 rmind for (i = 0; i < kc_last_idx; i++) {
137 1.1 rmind /*
138 1.1 rmind * Transfer the bits from early static storage to the kcpuset.
139 1.1 rmind */
140 1.1 rmind KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
141 1.1 rmind memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
142 1.1 rmind
143 1.1 rmind /*
144 1.1 rmind * Store the new pointer, pointing to the allocated kcpuset.
145 1.1 rmind * Note: we are not in an interrupt context and it is the only
146 1.1 rmind * CPU running - thus store is safe (e.g. no need for pointer
147 1.1 rmind * variable to be volatile).
148 1.1 rmind */
149 1.1 rmind *kc_noted_early[i] = kc_dynamic[i];
150 1.1 rmind }
151 1.1 rmind kc_initialised = true;
152 1.1 rmind kc_last_idx = 0;
153 1.1 rmind splx(s);
154 1.1 rmind }
155 1.1 rmind
156 1.1 rmind /*
157 1.1 rmind * kcpuset_early_ptr: note an early boot use by saving the pointer and
158 1.1 rmind * returning a pointer to a static, temporary bit field.
159 1.1 rmind */
160 1.1 rmind static kcpuset_t *
161 1.1 rmind kcpuset_early_ptr(kcpuset_t **kcptr)
162 1.1 rmind {
163 1.1 rmind kcpuset_t *kcp;
164 1.1 rmind int s;
165 1.1 rmind
166 1.1 rmind s = splhigh();
167 1.1 rmind if (kc_last_idx < KC_SAVE_NITEMS) {
168 1.1 rmind /*
169 1.1 rmind * Save the pointer, return pointer to static early field.
170 1.1 rmind * Need to zero it out.
171 1.1 rmind */
172 1.5 rmind kc_noted_early[kc_last_idx] = kcptr;
173 1.1 rmind kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
174 1.5 rmind kc_last_idx++;
175 1.1 rmind memset(kcp, 0, KC_BITSIZE_EARLY);
176 1.1 rmind KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
177 1.1 rmind } else {
178 1.1 rmind panic("kcpuset(9): all early-use entries exhausted; "
179 1.1 rmind "increase KC_SAVE_NITEMS\n");
180 1.1 rmind }
181 1.1 rmind splx(s);
182 1.1 rmind
183 1.1 rmind return kcp;
184 1.1 rmind }
185 1.1 rmind
186 1.1 rmind /*
187 1.1 rmind * Routines to create or destroy the CPU set.
188 1.1 rmind * Early boot case is handled.
189 1.1 rmind */
190 1.1 rmind
191 1.1 rmind static kcpuset_t *
192 1.3 rmind kcpuset_create_raw(bool zero)
193 1.1 rmind {
194 1.1 rmind kcpuset_impl_t *kc;
195 1.1 rmind
196 1.1 rmind kc = pool_cache_get(kc_cache, PR_WAITOK);
197 1.1 rmind kc->kc_refcnt = 1;
198 1.1 rmind kc->kc_next = NULL;
199 1.1 rmind
200 1.3 rmind if (zero) {
201 1.3 rmind memset(&kc->kc_field, 0, kc_bitsize);
202 1.3 rmind }
203 1.3 rmind
204 1.1 rmind /* Note: return pointer to the actual field of bits. */
205 1.1 rmind KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
206 1.1 rmind return &kc->kc_field;
207 1.1 rmind }
208 1.1 rmind
209 1.1 rmind void
210 1.3 rmind kcpuset_create(kcpuset_t **retkcp, bool zero)
211 1.1 rmind {
212 1.1 rmind if (__predict_false(!kc_initialised)) {
213 1.1 rmind /* Early boot use - special case. */
214 1.1 rmind *retkcp = kcpuset_early_ptr(retkcp);
215 1.1 rmind return;
216 1.1 rmind }
217 1.3 rmind *retkcp = kcpuset_create_raw(zero);
218 1.1 rmind }
219 1.1 rmind
220 1.1 rmind void
221 1.1 rmind kcpuset_destroy(kcpuset_t *kcp)
222 1.1 rmind {
223 1.2 rmind kcpuset_impl_t *kc;
224 1.1 rmind
225 1.1 rmind KASSERT(kc_initialised);
226 1.1 rmind KASSERT(kcp != NULL);
227 1.1 rmind
228 1.1 rmind do {
229 1.2 rmind kc = KC_GETSTRUCT(kcp);
230 1.2 rmind kcp = kc->kc_next;
231 1.1 rmind pool_cache_put(kc_cache, kc);
232 1.2 rmind } while (kcp);
233 1.1 rmind }
234 1.1 rmind
235 1.1 rmind /*
236 1.4 rmind * Routines to reference/unreference the CPU set.
237 1.1 rmind * Note: early boot case is not supported by these routines.
238 1.1 rmind */
239 1.1 rmind
240 1.1 rmind void
241 1.1 rmind kcpuset_use(kcpuset_t *kcp)
242 1.1 rmind {
243 1.1 rmind kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
244 1.1 rmind
245 1.1 rmind KASSERT(kc_initialised);
246 1.1 rmind atomic_inc_uint(&kc->kc_refcnt);
247 1.1 rmind }
248 1.1 rmind
249 1.1 rmind void
250 1.1 rmind kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
251 1.1 rmind {
252 1.1 rmind kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
253 1.1 rmind
254 1.1 rmind KASSERT(kc_initialised);
255 1.1 rmind KASSERT(kc->kc_refcnt > 0);
256 1.1 rmind
257 1.1 rmind if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
258 1.1 rmind return;
259 1.1 rmind }
260 1.1 rmind KASSERT(kc->kc_next == NULL);
261 1.1 rmind if (lst == NULL) {
262 1.1 rmind kcpuset_destroy(kcp);
263 1.1 rmind return;
264 1.1 rmind }
265 1.1 rmind kc->kc_next = *lst;
266 1.1 rmind *lst = kcp;
267 1.1 rmind }
268 1.1 rmind
269 1.1 rmind /*
270 1.1 rmind * Routines to transfer the CPU set from / to userspace.
271 1.1 rmind * Note: early boot case is not supported by these routines.
272 1.1 rmind */
273 1.1 rmind
274 1.1 rmind int
275 1.1 rmind kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
276 1.1 rmind {
277 1.5 rmind kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
278 1.1 rmind
279 1.1 rmind KASSERT(kc_initialised);
280 1.1 rmind KASSERT(kc->kc_refcnt > 0);
281 1.1 rmind KASSERT(kc->kc_next == NULL);
282 1.1 rmind
283 1.5 rmind if (len > kc_bitsize) { /* XXX */
284 1.1 rmind return EINVAL;
285 1.1 rmind }
286 1.5 rmind return copyin(ucp, kcp, len);
287 1.1 rmind }
288 1.1 rmind
289 1.1 rmind int
290 1.1 rmind kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
291 1.1 rmind {
292 1.5 rmind kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
293 1.1 rmind
294 1.1 rmind KASSERT(kc_initialised);
295 1.1 rmind KASSERT(kc->kc_refcnt > 0);
296 1.1 rmind KASSERT(kc->kc_next == NULL);
297 1.1 rmind
298 1.5 rmind if (len > kc_bitsize) { /* XXX */
299 1.1 rmind return EINVAL;
300 1.1 rmind }
301 1.5 rmind return copyout(kcp, ucp, len);
302 1.1 rmind }
303 1.1 rmind
304 1.6 rmind void
305 1.8 rmind kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
306 1.6 rmind {
307 1.6 rmind size_t rlen = MIN(kc_bitsize, len);
308 1.6 rmind
309 1.6 rmind KASSERT(kcp != NULL);
310 1.6 rmind memcpy(bitfield, kcp->bits, rlen);
311 1.6 rmind }
312 1.6 rmind
313 1.1 rmind /*
314 1.4 rmind * Routines to change bit field - zero, fill, copy, set, unset, etc.
315 1.1 rmind */
316 1.4 rmind
317 1.1 rmind void
318 1.1 rmind kcpuset_zero(kcpuset_t *kcp)
319 1.1 rmind {
320 1.1 rmind
321 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
322 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
323 1.1 rmind memset(kcp, 0, kc_bitsize);
324 1.1 rmind }
325 1.1 rmind
326 1.1 rmind void
327 1.1 rmind kcpuset_fill(kcpuset_t *kcp)
328 1.1 rmind {
329 1.1 rmind
330 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
331 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
332 1.1 rmind memset(kcp, ~0, kc_bitsize);
333 1.1 rmind }
334 1.1 rmind
335 1.1 rmind void
336 1.4 rmind kcpuset_copy(kcpuset_t *dkcp, kcpuset_t *skcp)
337 1.4 rmind {
338 1.4 rmind
339 1.4 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
340 1.4 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
341 1.4 rmind memcpy(dkcp, skcp, kc_bitsize);
342 1.4 rmind }
343 1.4 rmind
344 1.4 rmind void
345 1.1 rmind kcpuset_set(kcpuset_t *kcp, cpuid_t i)
346 1.1 rmind {
347 1.1 rmind const size_t j = i >> KC_SHIFT;
348 1.1 rmind
349 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
350 1.1 rmind KASSERT(j < kc_nfields);
351 1.1 rmind
352 1.1 rmind kcp->bits[j] |= 1 << (i & KC_MASK);
353 1.1 rmind }
354 1.1 rmind
355 1.1 rmind void
356 1.1 rmind kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
357 1.1 rmind {
358 1.1 rmind const size_t j = i >> KC_SHIFT;
359 1.1 rmind
360 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
361 1.1 rmind KASSERT(j < kc_nfields);
362 1.1 rmind
363 1.1 rmind kcp->bits[j] &= ~(1 << (i & KC_MASK));
364 1.1 rmind }
365 1.1 rmind
366 1.4 rmind bool
367 1.1 rmind kcpuset_isset(kcpuset_t *kcp, cpuid_t i)
368 1.1 rmind {
369 1.1 rmind const size_t j = i >> KC_SHIFT;
370 1.1 rmind
371 1.1 rmind KASSERT(kcp != NULL);
372 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
373 1.1 rmind KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
374 1.1 rmind KASSERT(j < kc_nfields);
375 1.1 rmind
376 1.1 rmind return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
377 1.1 rmind }
378 1.1 rmind
379 1.1 rmind bool
380 1.4 rmind kcpuset_isotherset(kcpuset_t *kcp, cpuid_t i)
381 1.4 rmind {
382 1.4 rmind const size_t j2 = i >> KC_SHIFT;
383 1.4 rmind const uint32_t mask = ~(1 << (i & KC_MASK));
384 1.4 rmind
385 1.4 rmind for (size_t j = 0; j < kc_nfields; j++) {
386 1.4 rmind const uint32_t bits = kcp->bits[j];
387 1.4 rmind if (bits && (j != j2 || (bits & mask) != 0)) {
388 1.4 rmind return true;
389 1.4 rmind }
390 1.4 rmind }
391 1.4 rmind return false;
392 1.4 rmind }
393 1.4 rmind
394 1.4 rmind bool
395 1.1 rmind kcpuset_iszero(kcpuset_t *kcp)
396 1.1 rmind {
397 1.1 rmind
398 1.1 rmind for (size_t j = 0; j < kc_nfields; j++) {
399 1.1 rmind if (kcp->bits[j] != 0) {
400 1.1 rmind return false;
401 1.1 rmind }
402 1.1 rmind }
403 1.1 rmind return true;
404 1.1 rmind }
405 1.1 rmind
406 1.1 rmind bool
407 1.1 rmind kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
408 1.1 rmind {
409 1.1 rmind
410 1.1 rmind return memcmp(kcp1, kcp2, kc_bitsize) == 0;
411 1.1 rmind }
412 1.3 rmind
413 1.3 rmind void
414 1.3 rmind kcpuset_merge(kcpuset_t *kcp1, kcpuset_t *kcp2)
415 1.3 rmind {
416 1.3 rmind
417 1.3 rmind for (size_t j = 0; j < kc_nfields; j++) {
418 1.3 rmind kcp1->bits[j] |= kcp2->bits[j];
419 1.3 rmind }
420 1.3 rmind }
421 1.3 rmind
422 1.5 rmind void
423 1.5 rmind kcpuset_intersect(kcpuset_t *kcp1, kcpuset_t *kcp2)
424 1.5 rmind {
425 1.5 rmind
426 1.5 rmind for (size_t j = 0; j < kc_nfields; j++) {
427 1.5 rmind kcp1->bits[j] &= kcp2->bits[j];
428 1.5 rmind }
429 1.5 rmind }
430 1.5 rmind
431 1.4 rmind int
432 1.4 rmind kcpuset_countset(kcpuset_t *kcp)
433 1.4 rmind {
434 1.4 rmind int count = 0;
435 1.4 rmind
436 1.4 rmind for (size_t j = 0; j < kc_nfields; j++) {
437 1.4 rmind count += popcount32(kcp->bits[j]);
438 1.4 rmind }
439 1.4 rmind return count;
440 1.4 rmind }
441 1.4 rmind
442 1.3 rmind /*
443 1.3 rmind * Routines to set/clear the flags atomically.
444 1.3 rmind */
445 1.3 rmind
446 1.3 rmind void
447 1.3 rmind kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
448 1.3 rmind {
449 1.3 rmind const size_t j = i >> KC_SHIFT;
450 1.3 rmind
451 1.3 rmind KASSERT(j < kc_nfields);
452 1.3 rmind atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
453 1.3 rmind }
454 1.3 rmind
455 1.3 rmind void
456 1.3 rmind kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
457 1.3 rmind {
458 1.3 rmind const size_t j = i >> KC_SHIFT;
459 1.3 rmind
460 1.3 rmind KASSERT(j < kc_nfields);
461 1.3 rmind atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
462 1.3 rmind }
463