Home | History | Annotate | Line # | Download | only in kern
subr_kcpuset.c revision 1.8.2.1
      1  1.8.2.1  rmind /*	$NetBSD: subr_kcpuset.c,v 1.8.2.1 2013/08/28 23:59:35 rmind Exp $	*/
      2      1.1  rmind 
      3      1.1  rmind /*-
      4      1.1  rmind  * Copyright (c) 2011 The NetBSD Foundation, Inc.
      5      1.1  rmind  * All rights reserved.
      6      1.1  rmind  *
      7      1.1  rmind  * This code is derived from software contributed to The NetBSD Foundation
      8      1.1  rmind  * by Mindaugas Rasiukevicius.
      9      1.1  rmind  *
     10      1.1  rmind  * Redistribution and use in source and binary forms, with or without
     11      1.1  rmind  * modification, are permitted provided that the following conditions
     12      1.1  rmind  * are met:
     13      1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     14      1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     15      1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     17      1.1  rmind  *    documentation and/or other materials provided with the distribution.
     18      1.1  rmind  *
     19      1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     30      1.1  rmind  */
     31      1.1  rmind 
     32      1.1  rmind /*
     33      1.1  rmind  * Kernel CPU set implementation.
     34      1.1  rmind  *
     35      1.1  rmind  * Interface can be used by kernel subsystems as a unified dynamic CPU
     36      1.1  rmind  * bitset implementation handling many CPUs.  Facility also supports early
     37      1.1  rmind  * use by MD code on boot, as it fixups bitsets on further boot.
     38      1.1  rmind  *
     39      1.1  rmind  * TODO:
     40      1.1  rmind  * - Handle "reverse" bitset on fixup/grow.
     41      1.1  rmind  */
     42      1.1  rmind 
     43      1.1  rmind #include <sys/cdefs.h>
     44  1.8.2.1  rmind __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.8.2.1 2013/08/28 23:59:35 rmind Exp $");
     45      1.1  rmind 
     46      1.1  rmind #include <sys/param.h>
     47      1.1  rmind #include <sys/types.h>
     48      1.1  rmind 
     49      1.1  rmind #include <sys/atomic.h>
     50      1.1  rmind #include <sys/sched.h>
     51      1.1  rmind #include <sys/kcpuset.h>
     52      1.1  rmind #include <sys/pool.h>
     53      1.1  rmind 
     54      1.1  rmind /* Number of CPUs to support. */
     55      1.1  rmind #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
     56      1.1  rmind 
     57      1.1  rmind /*
     58      1.1  rmind  * Structure of dynamic CPU set in the kernel.
     59      1.1  rmind  */
     60      1.1  rmind struct kcpuset {
     61      1.1  rmind 	uint32_t		bits[0];
     62      1.1  rmind };
     63      1.1  rmind 
     64      1.1  rmind typedef struct kcpuset_impl {
     65      1.1  rmind 	/* Reference count. */
     66      1.1  rmind 	u_int			kc_refcnt;
     67      1.1  rmind 	/* Next to free, if non-NULL (used when multiple references). */
     68      1.1  rmind 	struct kcpuset *	kc_next;
     69      1.1  rmind 	/* Actual variable-sized field of bits. */
     70      1.1  rmind 	struct kcpuset		kc_field;
     71      1.1  rmind } kcpuset_impl_t;
     72      1.1  rmind 
     73      1.1  rmind #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
     74      1.1  rmind #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
     75  1.8.2.1  rmind #define	KC_GETCSTRUCT(b)	((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
     76      1.1  rmind 
     77      1.1  rmind /* Sizes of a single bitset. */
     78      1.1  rmind #define	KC_SHIFT		5
     79      1.1  rmind #define	KC_MASK			31
     80      1.1  rmind 
     81      1.1  rmind /* An array of noted early kcpuset creations and data. */
     82      1.1  rmind #define	KC_SAVE_NITEMS		8
     83      1.1  rmind 
     84      1.1  rmind /* Structures for early boot mechanism (must be statically initialised). */
     85      1.1  rmind static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
     86      1.1  rmind static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
     87      1.1  rmind static int			kc_last_idx = 0;
     88      1.1  rmind static bool			kc_initialised = false;
     89      1.1  rmind 
     90      1.1  rmind #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
     91      1.4  rmind #define	KC_NFIELDS_EARLY	1
     92      1.1  rmind 
     93      1.1  rmind /*
     94      1.1  rmind  * The size of whole bitset fields and amount of fields.
     95      1.1  rmind  * The whole size must statically initialise for early case.
     96      1.1  rmind  */
     97      1.1  rmind static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
     98      1.1  rmind static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
     99      1.1  rmind 
    100      1.1  rmind static pool_cache_t		kc_cache __read_mostly;
    101      1.1  rmind 
    102      1.3  rmind static kcpuset_t *		kcpuset_create_raw(bool);
    103      1.1  rmind 
    104      1.1  rmind /*
    105      1.1  rmind  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
    106      1.1  rmind  * to dynamically allocated sets.
    107      1.1  rmind  */
    108      1.1  rmind void
    109      1.1  rmind kcpuset_sysinit(void)
    110      1.1  rmind {
    111      1.1  rmind 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
    112      1.1  rmind 	int i, s;
    113      1.1  rmind 
    114      1.1  rmind 	/* Set a kcpuset_t sizes. */
    115      1.1  rmind 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
    116      1.1  rmind 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
    117      1.4  rmind 	KASSERT(kc_nfields != 0 && kc_bitsize != 0);
    118      1.1  rmind 
    119      1.1  rmind 	kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
    120      1.1  rmind 	    coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
    121      1.1  rmind 
    122      1.1  rmind 	/* First, pre-allocate kcpuset entries. */
    123      1.1  rmind 	for (i = 0; i < kc_last_idx; i++) {
    124      1.3  rmind 		kcp = kcpuset_create_raw(true);
    125      1.1  rmind 		kc_dynamic[i] = kcp;
    126      1.1  rmind 	}
    127      1.1  rmind 
    128      1.1  rmind 	/*
    129      1.1  rmind 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
    130      1.1  rmind 	 * All processors, except the one we are currently running (primary),
    131      1.1  rmind 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
    132      1.1  rmind 	 * raise the IPL to high.
    133      1.1  rmind 	 */
    134      1.1  rmind 	KASSERT(mp_online == false);
    135      1.1  rmind 
    136      1.1  rmind 	s = splhigh();
    137      1.1  rmind 	for (i = 0; i < kc_last_idx; i++) {
    138      1.1  rmind 		/*
    139      1.1  rmind 		 * Transfer the bits from early static storage to the kcpuset.
    140      1.1  rmind 		 */
    141      1.1  rmind 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
    142      1.1  rmind 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
    143      1.1  rmind 
    144      1.1  rmind 		/*
    145      1.1  rmind 		 * Store the new pointer, pointing to the allocated kcpuset.
    146      1.1  rmind 		 * Note: we are not in an interrupt context and it is the only
    147      1.1  rmind 		 * CPU running - thus store is safe (e.g. no need for pointer
    148      1.1  rmind 		 * variable to be volatile).
    149      1.1  rmind 		 */
    150      1.1  rmind 		*kc_noted_early[i] = kc_dynamic[i];
    151      1.1  rmind 	}
    152      1.1  rmind 	kc_initialised = true;
    153      1.1  rmind 	kc_last_idx = 0;
    154      1.1  rmind 	splx(s);
    155      1.1  rmind }
    156      1.1  rmind 
    157      1.1  rmind /*
    158      1.1  rmind  * kcpuset_early_ptr: note an early boot use by saving the pointer and
    159      1.1  rmind  * returning a pointer to a static, temporary bit field.
    160      1.1  rmind  */
    161      1.1  rmind static kcpuset_t *
    162      1.1  rmind kcpuset_early_ptr(kcpuset_t **kcptr)
    163      1.1  rmind {
    164      1.1  rmind 	kcpuset_t *kcp;
    165      1.1  rmind 	int s;
    166      1.1  rmind 
    167      1.1  rmind 	s = splhigh();
    168      1.1  rmind 	if (kc_last_idx < KC_SAVE_NITEMS) {
    169      1.1  rmind 		/*
    170      1.1  rmind 		 * Save the pointer, return pointer to static early field.
    171      1.1  rmind 		 * Need to zero it out.
    172      1.1  rmind 		 */
    173      1.5  rmind 		kc_noted_early[kc_last_idx] = kcptr;
    174      1.1  rmind 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
    175      1.5  rmind 		kc_last_idx++;
    176      1.1  rmind 		memset(kcp, 0, KC_BITSIZE_EARLY);
    177      1.1  rmind 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
    178      1.1  rmind 	} else {
    179      1.1  rmind 		panic("kcpuset(9): all early-use entries exhausted; "
    180      1.1  rmind 		    "increase KC_SAVE_NITEMS\n");
    181      1.1  rmind 	}
    182      1.1  rmind 	splx(s);
    183      1.1  rmind 
    184      1.1  rmind 	return kcp;
    185      1.1  rmind }
    186      1.1  rmind 
    187      1.1  rmind /*
    188      1.1  rmind  * Routines to create or destroy the CPU set.
    189      1.1  rmind  * Early boot case is handled.
    190      1.1  rmind  */
    191      1.1  rmind 
    192      1.1  rmind static kcpuset_t *
    193      1.3  rmind kcpuset_create_raw(bool zero)
    194      1.1  rmind {
    195      1.1  rmind 	kcpuset_impl_t *kc;
    196      1.1  rmind 
    197      1.1  rmind 	kc = pool_cache_get(kc_cache, PR_WAITOK);
    198      1.1  rmind 	kc->kc_refcnt = 1;
    199      1.1  rmind 	kc->kc_next = NULL;
    200      1.1  rmind 
    201      1.3  rmind 	if (zero) {
    202      1.3  rmind 		memset(&kc->kc_field, 0, kc_bitsize);
    203      1.3  rmind 	}
    204      1.3  rmind 
    205      1.1  rmind 	/* Note: return pointer to the actual field of bits. */
    206      1.1  rmind 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
    207      1.1  rmind 	return &kc->kc_field;
    208      1.1  rmind }
    209      1.1  rmind 
    210      1.1  rmind void
    211      1.3  rmind kcpuset_create(kcpuset_t **retkcp, bool zero)
    212      1.1  rmind {
    213      1.1  rmind 	if (__predict_false(!kc_initialised)) {
    214      1.1  rmind 		/* Early boot use - special case. */
    215      1.1  rmind 		*retkcp = kcpuset_early_ptr(retkcp);
    216      1.1  rmind 		return;
    217      1.1  rmind 	}
    218      1.3  rmind 	*retkcp = kcpuset_create_raw(zero);
    219      1.1  rmind }
    220      1.1  rmind 
    221      1.1  rmind void
    222  1.8.2.1  rmind kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
    223  1.8.2.1  rmind {
    224  1.8.2.1  rmind 	kcpuset_create(retkcp, false);
    225  1.8.2.1  rmind 	memcpy(*retkcp, kcp, kc_bitsize);
    226  1.8.2.1  rmind }
    227  1.8.2.1  rmind 
    228  1.8.2.1  rmind void
    229      1.1  rmind kcpuset_destroy(kcpuset_t *kcp)
    230      1.1  rmind {
    231      1.2  rmind 	kcpuset_impl_t *kc;
    232      1.1  rmind 
    233      1.1  rmind 	KASSERT(kc_initialised);
    234      1.1  rmind 	KASSERT(kcp != NULL);
    235      1.1  rmind 
    236      1.1  rmind 	do {
    237      1.2  rmind 		kc = KC_GETSTRUCT(kcp);
    238      1.2  rmind 		kcp = kc->kc_next;
    239      1.1  rmind 		pool_cache_put(kc_cache, kc);
    240      1.2  rmind 	} while (kcp);
    241      1.1  rmind }
    242      1.1  rmind 
    243      1.1  rmind /*
    244      1.4  rmind  * Routines to reference/unreference the CPU set.
    245      1.1  rmind  * Note: early boot case is not supported by these routines.
    246      1.1  rmind  */
    247      1.1  rmind 
    248      1.1  rmind void
    249      1.1  rmind kcpuset_use(kcpuset_t *kcp)
    250      1.1  rmind {
    251      1.1  rmind 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    252      1.1  rmind 
    253      1.1  rmind 	KASSERT(kc_initialised);
    254      1.1  rmind 	atomic_inc_uint(&kc->kc_refcnt);
    255      1.1  rmind }
    256      1.1  rmind 
    257      1.1  rmind void
    258      1.1  rmind kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
    259      1.1  rmind {
    260      1.1  rmind 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    261      1.1  rmind 
    262      1.1  rmind 	KASSERT(kc_initialised);
    263      1.1  rmind 	KASSERT(kc->kc_refcnt > 0);
    264      1.1  rmind 
    265      1.1  rmind 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
    266      1.1  rmind 		return;
    267      1.1  rmind 	}
    268      1.1  rmind 	KASSERT(kc->kc_next == NULL);
    269      1.1  rmind 	if (lst == NULL) {
    270      1.1  rmind 		kcpuset_destroy(kcp);
    271      1.1  rmind 		return;
    272      1.1  rmind 	}
    273      1.1  rmind 	kc->kc_next = *lst;
    274      1.1  rmind 	*lst = kcp;
    275      1.1  rmind }
    276      1.1  rmind 
    277      1.1  rmind /*
    278      1.1  rmind  * Routines to transfer the CPU set from / to userspace.
    279      1.1  rmind  * Note: early boot case is not supported by these routines.
    280      1.1  rmind  */
    281      1.1  rmind 
    282      1.1  rmind int
    283      1.1  rmind kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
    284      1.1  rmind {
    285      1.5  rmind 	kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
    286      1.1  rmind 
    287      1.1  rmind 	KASSERT(kc_initialised);
    288      1.1  rmind 	KASSERT(kc->kc_refcnt > 0);
    289      1.1  rmind 	KASSERT(kc->kc_next == NULL);
    290      1.1  rmind 
    291      1.5  rmind 	if (len > kc_bitsize) { /* XXX */
    292      1.1  rmind 		return EINVAL;
    293      1.1  rmind 	}
    294      1.5  rmind 	return copyin(ucp, kcp, len);
    295      1.1  rmind }
    296      1.1  rmind 
    297      1.1  rmind int
    298      1.1  rmind kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
    299      1.1  rmind {
    300      1.5  rmind 	kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
    301      1.1  rmind 
    302      1.1  rmind 	KASSERT(kc_initialised);
    303      1.1  rmind 	KASSERT(kc->kc_refcnt > 0);
    304      1.1  rmind 	KASSERT(kc->kc_next == NULL);
    305      1.1  rmind 
    306      1.5  rmind 	if (len > kc_bitsize) { /* XXX */
    307      1.1  rmind 		return EINVAL;
    308      1.1  rmind 	}
    309      1.5  rmind 	return copyout(kcp, ucp, len);
    310      1.1  rmind }
    311      1.1  rmind 
    312      1.6  rmind void
    313      1.8  rmind kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
    314      1.6  rmind {
    315      1.6  rmind 	size_t rlen = MIN(kc_bitsize, len);
    316      1.6  rmind 
    317      1.6  rmind 	KASSERT(kcp != NULL);
    318      1.6  rmind 	memcpy(bitfield, kcp->bits, rlen);
    319      1.6  rmind }
    320      1.6  rmind 
    321      1.1  rmind /*
    322      1.4  rmind  * Routines to change bit field - zero, fill, copy, set, unset, etc.
    323      1.1  rmind  */
    324      1.4  rmind 
    325      1.1  rmind void
    326      1.1  rmind kcpuset_zero(kcpuset_t *kcp)
    327      1.1  rmind {
    328      1.1  rmind 
    329      1.1  rmind 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    330      1.1  rmind 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    331      1.1  rmind 	memset(kcp, 0, kc_bitsize);
    332      1.1  rmind }
    333      1.1  rmind 
    334      1.1  rmind void
    335      1.1  rmind kcpuset_fill(kcpuset_t *kcp)
    336      1.1  rmind {
    337      1.1  rmind 
    338      1.1  rmind 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    339      1.1  rmind 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    340      1.1  rmind 	memset(kcp, ~0, kc_bitsize);
    341      1.1  rmind }
    342      1.1  rmind 
    343      1.1  rmind void
    344  1.8.2.1  rmind kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
    345      1.4  rmind {
    346      1.4  rmind 
    347      1.4  rmind 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
    348      1.4  rmind 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
    349      1.4  rmind 	memcpy(dkcp, skcp, kc_bitsize);
    350      1.4  rmind }
    351      1.4  rmind 
    352      1.4  rmind void
    353      1.1  rmind kcpuset_set(kcpuset_t *kcp, cpuid_t i)
    354      1.1  rmind {
    355      1.1  rmind 	const size_t j = i >> KC_SHIFT;
    356      1.1  rmind 
    357      1.1  rmind 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    358      1.1  rmind 	KASSERT(j < kc_nfields);
    359      1.1  rmind 
    360      1.1  rmind 	kcp->bits[j] |= 1 << (i & KC_MASK);
    361      1.1  rmind }
    362      1.1  rmind 
    363      1.1  rmind void
    364      1.1  rmind kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
    365      1.1  rmind {
    366      1.1  rmind 	const size_t j = i >> KC_SHIFT;
    367      1.1  rmind 
    368  1.8.2.1  rmind 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    369      1.1  rmind 	KASSERT(j < kc_nfields);
    370      1.1  rmind 
    371      1.1  rmind 	kcp->bits[j] &= ~(1 << (i & KC_MASK));
    372      1.1  rmind }
    373      1.1  rmind 
    374      1.4  rmind bool
    375  1.8.2.1  rmind kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
    376      1.1  rmind {
    377      1.1  rmind 	const size_t j = i >> KC_SHIFT;
    378      1.1  rmind 
    379      1.1  rmind 	KASSERT(kcp != NULL);
    380  1.8.2.1  rmind 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
    381  1.8.2.1  rmind 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    382      1.1  rmind 	KASSERT(j < kc_nfields);
    383      1.1  rmind 
    384      1.1  rmind 	return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
    385      1.1  rmind }
    386      1.1  rmind 
    387      1.1  rmind bool
    388  1.8.2.1  rmind kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
    389      1.4  rmind {
    390      1.4  rmind 	const size_t j2 = i >> KC_SHIFT;
    391      1.4  rmind 	const uint32_t mask = ~(1 << (i & KC_MASK));
    392      1.4  rmind 
    393      1.4  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    394      1.4  rmind 		const uint32_t bits = kcp->bits[j];
    395      1.4  rmind 		if (bits && (j != j2 || (bits & mask) != 0)) {
    396      1.4  rmind 			return true;
    397      1.4  rmind 		}
    398      1.4  rmind 	}
    399      1.4  rmind 	return false;
    400      1.4  rmind }
    401      1.4  rmind 
    402      1.4  rmind bool
    403  1.8.2.1  rmind kcpuset_iszero(const kcpuset_t *kcp)
    404      1.1  rmind {
    405      1.1  rmind 
    406      1.1  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    407      1.1  rmind 		if (kcp->bits[j] != 0) {
    408      1.1  rmind 			return false;
    409      1.1  rmind 		}
    410      1.1  rmind 	}
    411      1.1  rmind 	return true;
    412      1.1  rmind }
    413      1.1  rmind 
    414      1.1  rmind bool
    415      1.1  rmind kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    416      1.1  rmind {
    417      1.1  rmind 
    418      1.1  rmind 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
    419      1.1  rmind }
    420      1.3  rmind 
    421  1.8.2.1  rmind bool
    422  1.8.2.1  rmind kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    423  1.8.2.1  rmind {
    424  1.8.2.1  rmind 
    425  1.8.2.1  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    426  1.8.2.1  rmind 		if (kcp1->bits[j] & kcp2->bits[j])
    427  1.8.2.1  rmind 			return true;
    428  1.8.2.1  rmind 	}
    429  1.8.2.1  rmind 	return false;
    430  1.8.2.1  rmind }
    431  1.8.2.1  rmind 
    432  1.8.2.1  rmind cpuid_t
    433  1.8.2.1  rmind kcpuset_ffs(const kcpuset_t *kcp)
    434  1.8.2.1  rmind {
    435  1.8.2.1  rmind 
    436  1.8.2.1  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    437  1.8.2.1  rmind 		if (kcp->bits[j])
    438  1.8.2.1  rmind 			return 32 * j + ffs(kcp->bits[j]);
    439  1.8.2.1  rmind 	}
    440  1.8.2.1  rmind 	return 0;
    441  1.8.2.1  rmind }
    442  1.8.2.1  rmind 
    443  1.8.2.1  rmind cpuid_t
    444  1.8.2.1  rmind kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    445  1.8.2.1  rmind {
    446  1.8.2.1  rmind 
    447  1.8.2.1  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    448  1.8.2.1  rmind 		uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
    449  1.8.2.1  rmind 		if (bits)
    450  1.8.2.1  rmind 			return 32 * j + ffs(bits);
    451  1.8.2.1  rmind 	}
    452  1.8.2.1  rmind 	return 0;
    453  1.8.2.1  rmind }
    454  1.8.2.1  rmind 
    455      1.3  rmind void
    456  1.8.2.1  rmind kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    457      1.3  rmind {
    458      1.3  rmind 
    459      1.3  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    460      1.3  rmind 		kcp1->bits[j] |= kcp2->bits[j];
    461      1.3  rmind 	}
    462      1.3  rmind }
    463      1.3  rmind 
    464      1.5  rmind void
    465  1.8.2.1  rmind kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    466      1.5  rmind {
    467      1.5  rmind 
    468      1.5  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    469      1.5  rmind 		kcp1->bits[j] &= kcp2->bits[j];
    470      1.5  rmind 	}
    471      1.5  rmind }
    472      1.5  rmind 
    473  1.8.2.1  rmind void
    474  1.8.2.1  rmind kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    475  1.8.2.1  rmind {
    476  1.8.2.1  rmind 
    477  1.8.2.1  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    478  1.8.2.1  rmind 		kcp1->bits[j] &= ~kcp2->bits[j];
    479  1.8.2.1  rmind 	}
    480  1.8.2.1  rmind }
    481  1.8.2.1  rmind 
    482      1.4  rmind int
    483      1.4  rmind kcpuset_countset(kcpuset_t *kcp)
    484      1.4  rmind {
    485      1.4  rmind 	int count = 0;
    486      1.4  rmind 
    487      1.4  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    488      1.4  rmind 		count += popcount32(kcp->bits[j]);
    489      1.4  rmind 	}
    490      1.4  rmind 	return count;
    491      1.4  rmind }
    492      1.4  rmind 
    493      1.3  rmind /*
    494      1.3  rmind  * Routines to set/clear the flags atomically.
    495      1.3  rmind  */
    496      1.3  rmind 
    497      1.3  rmind void
    498      1.3  rmind kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
    499      1.3  rmind {
    500      1.3  rmind 	const size_t j = i >> KC_SHIFT;
    501      1.3  rmind 
    502      1.3  rmind 	KASSERT(j < kc_nfields);
    503      1.3  rmind 	atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
    504      1.3  rmind }
    505      1.3  rmind 
    506      1.3  rmind void
    507      1.3  rmind kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
    508      1.3  rmind {
    509      1.3  rmind 	const size_t j = i >> KC_SHIFT;
    510      1.3  rmind 
    511      1.3  rmind 	KASSERT(j < kc_nfields);
    512      1.3  rmind 	atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
    513      1.3  rmind }
    514  1.8.2.1  rmind 
    515  1.8.2.1  rmind void
    516  1.8.2.1  rmind kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    517  1.8.2.1  rmind {
    518  1.8.2.1  rmind 
    519  1.8.2.1  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    520  1.8.2.1  rmind 		if (kcp2->bits[j])
    521  1.8.2.1  rmind 			atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
    522  1.8.2.1  rmind 	}
    523  1.8.2.1  rmind }
    524  1.8.2.1  rmind 
    525  1.8.2.1  rmind void
    526  1.8.2.1  rmind kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    527  1.8.2.1  rmind {
    528  1.8.2.1  rmind 
    529  1.8.2.1  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    530  1.8.2.1  rmind 		if (kcp2->bits[j])
    531  1.8.2.1  rmind 			atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
    532  1.8.2.1  rmind 	}
    533  1.8.2.1  rmind }
    534  1.8.2.1  rmind 
    535  1.8.2.1  rmind void
    536  1.8.2.1  rmind kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    537  1.8.2.1  rmind {
    538  1.8.2.1  rmind 
    539  1.8.2.1  rmind 	for (size_t j = 0; j < kc_nfields; j++) {
    540  1.8.2.1  rmind 		if (kcp2->bits[j])
    541  1.8.2.1  rmind 			atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
    542  1.8.2.1  rmind 	}
    543  1.8.2.1  rmind }
    544