Home | History | Annotate | Line # | Download | only in kern
subr_kcpuset.c revision 1.16
      1 /*	$NetBSD: subr_kcpuset.c,v 1.16 2023/09/01 16:57:33 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel CPU set implementation.
     34  *
     35  * Interface can be used by kernel subsystems as a unified dynamic CPU
     36  * bitset implementation handling many CPUs.  Facility also supports early
     37  * use by MD code on boot, as it fixups bitsets on further boot.
     38  *
     39  * TODO:
     40  * - Handle "reverse" bitset on fixup/grow.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.16 2023/09/01 16:57:33 skrll Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/types.h>
     48 
     49 #include <sys/atomic.h>
     50 #include <sys/sched.h>
     51 #include <sys/kcpuset.h>
     52 #include <sys/pool.h>
     53 
     54 /* Number of CPUs to support. */
     55 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
     56 
     57 /*
     58  * Structure of dynamic CPU set in the kernel.
     59  */
     60 struct kcpuset {
     61 	uint32_t		bits[0];
     62 };
     63 
     64 typedef struct kcpuset_impl {
     65 	/* Reference count. */
     66 	u_int			kc_refcnt;
     67 	/* Next to free, if non-NULL (used when multiple references). */
     68 	struct kcpuset *	kc_next;
     69 	/* Actual variable-sized field of bits. */
     70 	struct kcpuset		kc_field;
     71 } kcpuset_impl_t;
     72 
     73 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
     74 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
     75 #define	KC_GETCSTRUCT(b)	((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
     76 
     77 /* Sizes of a single bitset. */
     78 #define	KC_SHIFT		5
     79 #define	KC_MASK			31
     80 
     81 /* An array of noted early kcpuset creations and data. */
     82 #define	KC_SAVE_NITEMS		8
     83 
     84 /* Structures for early boot mechanism (must be statically initialised). */
     85 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
     86 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
     87 static int			kc_last_idx = 0;
     88 static bool			kc_initialised = false;
     89 
     90 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
     91 #define	KC_NFIELDS_EARLY	1
     92 
     93 /*
     94  * The size of whole bitset fields and amount of fields.
     95  * The whole size must statically initialise for early case.
     96  */
     97 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
     98 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
     99 
    100 static pool_cache_t		kc_cache __read_mostly;
    101 
    102 static kcpuset_t *		kcpuset_create_raw(bool);
    103 
    104 /*
    105  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
    106  * to dynamically allocated sets.
    107  */
    108 void
    109 kcpuset_sysinit(void)
    110 {
    111 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
    112 	int i, s;
    113 
    114 	/* Set a kcpuset_t sizes. */
    115 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
    116 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
    117 	KASSERT(kc_nfields != 0);
    118 	KASSERT(kc_bitsize != 0);
    119 
    120 	kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
    121 	    coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
    122 
    123 	/* First, pre-allocate kcpuset entries. */
    124 	for (i = 0; i < kc_last_idx; i++) {
    125 		kcp = kcpuset_create_raw(true);
    126 		kc_dynamic[i] = kcp;
    127 	}
    128 
    129 	/*
    130 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
    131 	 * All processors, except the one we are currently running (primary),
    132 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
    133 	 * raise the IPL to high.
    134 	 */
    135 	KASSERT(mp_online == false);
    136 
    137 	s = splhigh();
    138 	for (i = 0; i < kc_last_idx; i++) {
    139 		/*
    140 		 * Transfer the bits from early static storage to the kcpuset.
    141 		 */
    142 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
    143 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
    144 
    145 		/*
    146 		 * Store the new pointer, pointing to the allocated kcpuset.
    147 		 * Note: we are not in an interrupt context and it is the only
    148 		 * CPU running - thus store is safe (e.g. no need for pointer
    149 		 * variable to be volatile).
    150 		 */
    151 		*kc_noted_early[i] = kc_dynamic[i];
    152 	}
    153 	kc_initialised = true;
    154 	kc_last_idx = 0;
    155 	splx(s);
    156 }
    157 
    158 /*
    159  * kcpuset_early_ptr: note an early boot use by saving the pointer and
    160  * returning a pointer to a static, temporary bit field.
    161  */
    162 static kcpuset_t *
    163 kcpuset_early_ptr(kcpuset_t **kcptr)
    164 {
    165 	kcpuset_t *kcp;
    166 	int s;
    167 
    168 	s = splhigh();
    169 	if (kc_last_idx < KC_SAVE_NITEMS) {
    170 		/*
    171 		 * Save the pointer, return pointer to static early field.
    172 		 * Need to zero it out.
    173 		 */
    174 		kc_noted_early[kc_last_idx] = kcptr;
    175 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
    176 		kc_last_idx++;
    177 		memset(kcp, 0, KC_BITSIZE_EARLY);
    178 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
    179 	} else {
    180 		panic("kcpuset(9): all early-use entries exhausted; "
    181 		    "increase KC_SAVE_NITEMS\n");
    182 	}
    183 	splx(s);
    184 
    185 	return kcp;
    186 }
    187 
    188 /*
    189  * Routines to create or destroy the CPU set.
    190  * Early boot case is handled.
    191  */
    192 
    193 static kcpuset_t *
    194 kcpuset_create_raw(bool zero)
    195 {
    196 	kcpuset_impl_t *kc;
    197 
    198 	kc = pool_cache_get(kc_cache, PR_WAITOK);
    199 	kc->kc_refcnt = 1;
    200 	kc->kc_next = NULL;
    201 
    202 	if (zero) {
    203 		memset(&kc->kc_field, 0, kc_bitsize);
    204 	}
    205 
    206 	/* Note: return pointer to the actual field of bits. */
    207 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
    208 	return &kc->kc_field;
    209 }
    210 
    211 void
    212 kcpuset_create(kcpuset_t **retkcp, bool zero)
    213 {
    214 	if (__predict_false(!kc_initialised)) {
    215 		/* Early boot use - special case. */
    216 		*retkcp = kcpuset_early_ptr(retkcp);
    217 		return;
    218 	}
    219 	*retkcp = kcpuset_create_raw(zero);
    220 }
    221 
    222 void
    223 kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
    224 {
    225 	kcpuset_create(retkcp, false);
    226 	memcpy(*retkcp, kcp, kc_bitsize);
    227 }
    228 
    229 void
    230 kcpuset_destroy(kcpuset_t *kcp)
    231 {
    232 	kcpuset_impl_t *kc;
    233 
    234 	KASSERT(kc_initialised);
    235 	KASSERT(kcp != NULL);
    236 
    237 	do {
    238 		kc = KC_GETSTRUCT(kcp);
    239 		kcp = kc->kc_next;
    240 		pool_cache_put(kc_cache, kc);
    241 	} while (kcp);
    242 }
    243 
    244 /*
    245  * Routines to reference/unreference the CPU set.
    246  * Note: early boot case is not supported by these routines.
    247  */
    248 
    249 void
    250 kcpuset_use(kcpuset_t *kcp)
    251 {
    252 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    253 
    254 	KASSERT(kc_initialised);
    255 	atomic_inc_uint(&kc->kc_refcnt);
    256 }
    257 
    258 void
    259 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
    260 {
    261 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    262 
    263 	KASSERT(kc_initialised);
    264 	KASSERT(kc->kc_refcnt > 0);
    265 
    266 	membar_release();
    267 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
    268 		return;
    269 	}
    270 	membar_acquire();
    271 	KASSERT(kc->kc_next == NULL);
    272 	if (lst == NULL) {
    273 		kcpuset_destroy(kcp);
    274 		return;
    275 	}
    276 	kc->kc_next = *lst;
    277 	*lst = kcp;
    278 }
    279 
    280 /*
    281  * Routines to transfer the CPU set from / to userspace.
    282  * Note: early boot case is not supported by these routines.
    283  */
    284 
    285 int
    286 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
    287 {
    288 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
    289 
    290 	KASSERT(kc_initialised);
    291 	KASSERT(kc->kc_refcnt > 0);
    292 	KASSERT(kc->kc_next == NULL);
    293 
    294 	if (len > kc_bitsize) { /* XXX */
    295 		return EINVAL;
    296 	}
    297 	return copyin(ucp, kcp, len);
    298 }
    299 
    300 int
    301 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
    302 {
    303 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
    304 
    305 	KASSERT(kc_initialised);
    306 	KASSERT(kc->kc_refcnt > 0);
    307 	KASSERT(kc->kc_next == NULL);
    308 
    309 	if (len > kc_bitsize) { /* XXX */
    310 		return EINVAL;
    311 	}
    312 	return copyout(kcp, ucp, len);
    313 }
    314 
    315 void
    316 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
    317 {
    318 	size_t rlen = MIN(kc_bitsize, len);
    319 
    320 	KASSERT(kcp != NULL);
    321 	memcpy(bitfield, kcp->bits, rlen);
    322 }
    323 
    324 /*
    325  * Routines to change bit field - zero, fill, copy, set, unset, etc.
    326  */
    327 
    328 void
    329 kcpuset_zero(kcpuset_t *kcp)
    330 {
    331 
    332 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    333 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    334 	memset(kcp, 0, kc_bitsize);
    335 }
    336 
    337 void
    338 kcpuset_fill(kcpuset_t *kcp)
    339 {
    340 
    341 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    342 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    343 	memset(kcp, ~0, kc_bitsize);
    344 }
    345 
    346 void
    347 kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
    348 {
    349 
    350 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
    351 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
    352 	memcpy(dkcp, skcp, kc_bitsize);
    353 }
    354 
    355 void
    356 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
    357 {
    358 	const size_t j = i >> KC_SHIFT;
    359 
    360 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    361 	KASSERT(j < kc_nfields);
    362 
    363 	kcp->bits[j] |= __BIT(i & KC_MASK);
    364 }
    365 
    366 void
    367 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
    368 {
    369 	const size_t j = i >> KC_SHIFT;
    370 
    371 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    372 	KASSERT(j < kc_nfields);
    373 
    374 	kcp->bits[j] &= ~(__BIT(i & KC_MASK));
    375 }
    376 
    377 bool
    378 kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
    379 {
    380 	const size_t j = i >> KC_SHIFT;
    381 
    382 	KASSERT(kcp != NULL);
    383 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
    384 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    385 	KASSERT(j < kc_nfields);
    386 
    387 	return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0;
    388 }
    389 
    390 bool
    391 kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
    392 {
    393 	const size_t j2 = i >> KC_SHIFT;
    394 	const uint32_t mask = ~(__BIT(i & KC_MASK));
    395 
    396 	for (size_t j = 0; j < kc_nfields; j++) {
    397 		const uint32_t bits = kcp->bits[j];
    398 		if (bits && (j != j2 || (bits & mask) != 0)) {
    399 			return true;
    400 		}
    401 	}
    402 	return false;
    403 }
    404 
    405 bool
    406 kcpuset_iszero(const kcpuset_t *kcp)
    407 {
    408 
    409 	for (size_t j = 0; j < kc_nfields; j++) {
    410 		if (kcp->bits[j] != 0) {
    411 			return false;
    412 		}
    413 	}
    414 	return true;
    415 }
    416 
    417 bool
    418 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    419 {
    420 
    421 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
    422 }
    423 
    424 bool
    425 kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    426 {
    427 
    428 	for (size_t j = 0; j < kc_nfields; j++) {
    429 		if (kcp1->bits[j] & kcp2->bits[j])
    430 			return true;
    431 	}
    432 	return false;
    433 }
    434 
    435 cpuid_t
    436 kcpuset_ffs(const kcpuset_t *kcp)
    437 {
    438 
    439 	for (size_t j = 0; j < kc_nfields; j++) {
    440 		if (kcp->bits[j])
    441 			return 32 * j + ffs(kcp->bits[j]);
    442 	}
    443 	return 0;
    444 }
    445 
    446 cpuid_t
    447 kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    448 {
    449 
    450 	for (size_t j = 0; j < kc_nfields; j++) {
    451 		uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
    452 		if (bits)
    453 			return 32 * j + ffs(bits);
    454 	}
    455 	return 0;
    456 }
    457 
    458 void
    459 kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    460 {
    461 
    462 	for (size_t j = 0; j < kc_nfields; j++) {
    463 		kcp1->bits[j] |= kcp2->bits[j];
    464 	}
    465 }
    466 
    467 void
    468 kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    469 {
    470 
    471 	for (size_t j = 0; j < kc_nfields; j++) {
    472 		kcp1->bits[j] &= kcp2->bits[j];
    473 	}
    474 }
    475 
    476 void
    477 kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    478 {
    479 
    480 	for (size_t j = 0; j < kc_nfields; j++) {
    481 		kcp1->bits[j] &= ~kcp2->bits[j];
    482 	}
    483 }
    484 
    485 int
    486 kcpuset_countset(const kcpuset_t *kcp)
    487 {
    488 	int count = 0;
    489 
    490 	for (size_t j = 0; j < kc_nfields; j++) {
    491 		count += popcount32(kcp->bits[j]);
    492 	}
    493 	return count;
    494 }
    495 
    496 /*
    497  * Routines to set/clear the flags atomically.
    498  */
    499 
    500 void
    501 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
    502 {
    503 	const size_t j = i >> KC_SHIFT;
    504 
    505 	KASSERT(j < kc_nfields);
    506 	atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK));
    507 }
    508 
    509 void
    510 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
    511 {
    512 	const size_t j = i >> KC_SHIFT;
    513 
    514 	KASSERT(j < kc_nfields);
    515 	atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK)));
    516 }
    517 
    518 void
    519 kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    520 {
    521 
    522 	for (size_t j = 0; j < kc_nfields; j++) {
    523 		if (kcp2->bits[j])
    524 			atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
    525 	}
    526 }
    527 
    528 void
    529 kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    530 {
    531 
    532 	for (size_t j = 0; j < kc_nfields; j++) {
    533 		if (kcp2->bits[j])
    534 			atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
    535 	}
    536 }
    537 
    538 void
    539 kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    540 {
    541 
    542 	for (size_t j = 0; j < kc_nfields; j++) {
    543 		if (kcp2->bits[j])
    544 			atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
    545 	}
    546 }
    547