subr_kcpuset.c revision 1.17 1 /* $NetBSD: subr_kcpuset.c,v 1.17 2023/09/10 14:45:52 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2011, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel CPU set implementation.
34 *
35 * Interface can be used by kernel subsystems as a unified dynamic CPU
36 * bitset implementation handling many CPUs. Facility also supports early
37 * use by MD code on boot, as it fixups bitsets on further boot.
38 *
39 * TODO:
40 * - Handle "reverse" bitset on fixup/grow.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.17 2023/09/10 14:45:52 ad Exp $");
45
46 #include <sys/param.h>
47 #include <sys/types.h>
48
49 #include <sys/atomic.h>
50 #include <sys/sched.h>
51 #include <sys/kcpuset.h>
52 #include <sys/kmem.h>
53
54 /* Number of CPUs to support. */
55 #define KC_MAXCPUS roundup2(MAXCPUS, 32)
56
57 /*
58 * Structure of dynamic CPU set in the kernel.
59 */
60 struct kcpuset {
61 uint32_t bits[0];
62 };
63
64 typedef struct kcpuset_impl {
65 /* Reference count. */
66 u_int kc_refcnt;
67 /* Next to free, if non-NULL (used when multiple references). */
68 struct kcpuset * kc_next;
69 /* Actual variable-sized field of bits. */
70 struct kcpuset kc_field;
71 } kcpuset_impl_t;
72
73 #define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field))
74 #define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75 #define KC_GETCSTRUCT(b) ((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
76
77 /* Sizes of a single bitset. */
78 #define KC_SHIFT 5
79 #define KC_MASK 31
80
81 /* An array of noted early kcpuset creations and data. */
82 #define KC_SAVE_NITEMS 8
83
84 /* Structures for early boot mechanism (must be statically initialised). */
85 static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS];
86 static uint32_t kc_bits_early[KC_SAVE_NITEMS];
87 static int kc_last_idx = 0;
88 static bool kc_initialised = false;
89
90 #define KC_BITSIZE_EARLY sizeof(kc_bits_early[0])
91 #define KC_NFIELDS_EARLY 1
92
93 /*
94 * The size of whole bitset fields and amount of fields.
95 * The whole size must statically initialise for early case.
96 */
97 static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
98 static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY;
99 static size_t kc_memsize __read_mostly;
100
101 static kcpuset_t * kcpuset_create_raw(bool);
102
103 /*
104 * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
105 * to dynamically allocated sets.
106 */
107 void
108 kcpuset_sysinit(void)
109 {
110 kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
111 int i, s;
112
113 /* Set a kcpuset_t sizes. */
114 kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
115 kc_bitsize = sizeof(uint32_t) * kc_nfields;
116 kc_memsize = sizeof(kcpuset_impl_t) + kc_bitsize;
117 KASSERT(kc_nfields != 0);
118 KASSERT(kc_bitsize != 0);
119
120 /* First, pre-allocate kcpuset entries. */
121 for (i = 0; i < kc_last_idx; i++) {
122 kcp = kcpuset_create_raw(true);
123 kc_dynamic[i] = kcp;
124 }
125
126 /*
127 * Prepare to convert all early noted kcpuset uses to dynamic sets.
128 * All processors, except the one we are currently running (primary),
129 * must not be spinned yet. Since MD facilities can use kcpuset,
130 * raise the IPL to high.
131 */
132 KASSERT(mp_online == false);
133
134 s = splhigh();
135 for (i = 0; i < kc_last_idx; i++) {
136 /*
137 * Transfer the bits from early static storage to the kcpuset.
138 */
139 KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
140 memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
141
142 /*
143 * Store the new pointer, pointing to the allocated kcpuset.
144 * Note: we are not in an interrupt context and it is the only
145 * CPU running - thus store is safe (e.g. no need for pointer
146 * variable to be volatile).
147 */
148 *kc_noted_early[i] = kc_dynamic[i];
149 }
150 kc_initialised = true;
151 kc_last_idx = 0;
152 splx(s);
153 }
154
155 /*
156 * kcpuset_early_ptr: note an early boot use by saving the pointer and
157 * returning a pointer to a static, temporary bit field.
158 */
159 static kcpuset_t *
160 kcpuset_early_ptr(kcpuset_t **kcptr)
161 {
162 kcpuset_t *kcp;
163 int s;
164
165 s = splhigh();
166 if (kc_last_idx < KC_SAVE_NITEMS) {
167 /*
168 * Save the pointer, return pointer to static early field.
169 * Need to zero it out.
170 */
171 kc_noted_early[kc_last_idx] = kcptr;
172 kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
173 kc_last_idx++;
174 memset(kcp, 0, KC_BITSIZE_EARLY);
175 KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
176 } else {
177 panic("kcpuset(9): all early-use entries exhausted; "
178 "increase KC_SAVE_NITEMS\n");
179 }
180 splx(s);
181
182 return kcp;
183 }
184
185 /*
186 * Routines to create or destroy the CPU set.
187 * Early boot case is handled.
188 */
189
190 static kcpuset_t *
191 kcpuset_create_raw(bool zero)
192 {
193 kcpuset_impl_t *kc;
194
195 kc = kmem_alloc(kc_memsize, KM_SLEEP);
196 kc->kc_refcnt = 1;
197 kc->kc_next = NULL;
198
199 if (zero) {
200 memset(&kc->kc_field, 0, kc_bitsize);
201 }
202
203 /* Note: return pointer to the actual field of bits. */
204 KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
205 return &kc->kc_field;
206 }
207
208 void
209 kcpuset_create(kcpuset_t **retkcp, bool zero)
210 {
211 if (__predict_false(!kc_initialised)) {
212 /* Early boot use - special case. */
213 *retkcp = kcpuset_early_ptr(retkcp);
214 return;
215 }
216 *retkcp = kcpuset_create_raw(zero);
217 }
218
219 void
220 kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
221 {
222 kcpuset_create(retkcp, false);
223 memcpy(*retkcp, kcp, kc_bitsize);
224 }
225
226 void
227 kcpuset_destroy(kcpuset_t *kcp)
228 {
229 const size_t size = kc_memsize;
230 kcpuset_impl_t *kc;
231
232 KASSERT(kc_initialised);
233 KASSERT(kcp != NULL);
234
235 do {
236 kc = KC_GETSTRUCT(kcp);
237 kcp = kc->kc_next;
238 kmem_free(kc, size);
239 } while (kcp);
240 }
241
242 /*
243 * Routines to reference/unreference the CPU set.
244 * Note: early boot case is not supported by these routines.
245 */
246
247 void
248 kcpuset_use(kcpuset_t *kcp)
249 {
250 kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
251
252 KASSERT(kc_initialised);
253 atomic_inc_uint(&kc->kc_refcnt);
254 }
255
256 void
257 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
258 {
259 kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
260
261 KASSERT(kc_initialised);
262 KASSERT(kc->kc_refcnt > 0);
263
264 membar_release();
265 if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
266 return;
267 }
268 membar_acquire();
269 KASSERT(kc->kc_next == NULL);
270 if (lst == NULL) {
271 kcpuset_destroy(kcp);
272 return;
273 }
274 kc->kc_next = *lst;
275 *lst = kcp;
276 }
277
278 /*
279 * Routines to transfer the CPU set from / to userspace.
280 * Note: early boot case is not supported by these routines.
281 */
282
283 int
284 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
285 {
286 kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
287
288 KASSERT(kc_initialised);
289 KASSERT(kc->kc_refcnt > 0);
290 KASSERT(kc->kc_next == NULL);
291
292 if (len > kc_bitsize) { /* XXX */
293 return EINVAL;
294 }
295 return copyin(ucp, kcp, len);
296 }
297
298 int
299 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
300 {
301 kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
302
303 KASSERT(kc_initialised);
304 KASSERT(kc->kc_refcnt > 0);
305 KASSERT(kc->kc_next == NULL);
306
307 if (len > kc_bitsize) { /* XXX */
308 return EINVAL;
309 }
310 return copyout(kcp, ucp, len);
311 }
312
313 void
314 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
315 {
316 size_t rlen = MIN(kc_bitsize, len);
317
318 KASSERT(kcp != NULL);
319 memcpy(bitfield, kcp->bits, rlen);
320 }
321
322 /*
323 * Routines to change bit field - zero, fill, copy, set, unset, etc.
324 */
325
326 void
327 kcpuset_zero(kcpuset_t *kcp)
328 {
329
330 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
331 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
332 memset(kcp, 0, kc_bitsize);
333 }
334
335 void
336 kcpuset_fill(kcpuset_t *kcp)
337 {
338
339 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
340 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
341 memset(kcp, ~0, kc_bitsize);
342 }
343
344 void
345 kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
346 {
347
348 KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
349 KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
350 memcpy(dkcp, skcp, kc_bitsize);
351 }
352
353 void
354 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
355 {
356 const size_t j = i >> KC_SHIFT;
357
358 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
359 KASSERT(j < kc_nfields);
360
361 kcp->bits[j] |= __BIT(i & KC_MASK);
362 }
363
364 void
365 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
366 {
367 const size_t j = i >> KC_SHIFT;
368
369 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
370 KASSERT(j < kc_nfields);
371
372 kcp->bits[j] &= ~(__BIT(i & KC_MASK));
373 }
374
375 bool
376 kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
377 {
378 const size_t j = i >> KC_SHIFT;
379
380 KASSERT(kcp != NULL);
381 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
382 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
383 KASSERT(j < kc_nfields);
384
385 return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0;
386 }
387
388 bool
389 kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
390 {
391 const size_t j2 = i >> KC_SHIFT;
392 const uint32_t mask = ~(__BIT(i & KC_MASK));
393
394 for (size_t j = 0; j < kc_nfields; j++) {
395 const uint32_t bits = kcp->bits[j];
396 if (bits && (j != j2 || (bits & mask) != 0)) {
397 return true;
398 }
399 }
400 return false;
401 }
402
403 bool
404 kcpuset_iszero(const kcpuset_t *kcp)
405 {
406
407 for (size_t j = 0; j < kc_nfields; j++) {
408 if (kcp->bits[j] != 0) {
409 return false;
410 }
411 }
412 return true;
413 }
414
415 bool
416 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
417 {
418
419 return memcmp(kcp1, kcp2, kc_bitsize) == 0;
420 }
421
422 bool
423 kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
424 {
425
426 for (size_t j = 0; j < kc_nfields; j++) {
427 if (kcp1->bits[j] & kcp2->bits[j])
428 return true;
429 }
430 return false;
431 }
432
433 cpuid_t
434 kcpuset_ffs(const kcpuset_t *kcp)
435 {
436
437 for (size_t j = 0; j < kc_nfields; j++) {
438 if (kcp->bits[j])
439 return 32 * j + ffs(kcp->bits[j]);
440 }
441 return 0;
442 }
443
444 cpuid_t
445 kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
446 {
447
448 for (size_t j = 0; j < kc_nfields; j++) {
449 uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
450 if (bits)
451 return 32 * j + ffs(bits);
452 }
453 return 0;
454 }
455
456 void
457 kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
458 {
459
460 for (size_t j = 0; j < kc_nfields; j++) {
461 kcp1->bits[j] |= kcp2->bits[j];
462 }
463 }
464
465 void
466 kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
467 {
468
469 for (size_t j = 0; j < kc_nfields; j++) {
470 kcp1->bits[j] &= kcp2->bits[j];
471 }
472 }
473
474 void
475 kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
476 {
477
478 for (size_t j = 0; j < kc_nfields; j++) {
479 kcp1->bits[j] &= ~kcp2->bits[j];
480 }
481 }
482
483 int
484 kcpuset_countset(const kcpuset_t *kcp)
485 {
486 int count = 0;
487
488 for (size_t j = 0; j < kc_nfields; j++) {
489 count += popcount32(kcp->bits[j]);
490 }
491 return count;
492 }
493
494 /*
495 * Routines to set/clear the flags atomically.
496 */
497
498 void
499 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
500 {
501 const size_t j = i >> KC_SHIFT;
502
503 KASSERT(j < kc_nfields);
504 atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK));
505 }
506
507 void
508 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
509 {
510 const size_t j = i >> KC_SHIFT;
511
512 KASSERT(j < kc_nfields);
513 atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK)));
514 }
515
516 void
517 kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
518 {
519
520 for (size_t j = 0; j < kc_nfields; j++) {
521 if (kcp2->bits[j])
522 atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
523 }
524 }
525
526 void
527 kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
528 {
529
530 for (size_t j = 0; j < kc_nfields; j++) {
531 if (kcp2->bits[j])
532 atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
533 }
534 }
535
536 void
537 kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
538 {
539
540 for (size_t j = 0; j < kc_nfields; j++) {
541 if (kcp2->bits[j])
542 atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
543 }
544 }
545