Home | History | Annotate | Line # | Download | only in kern
subr_kcpuset.c revision 1.17
      1 /*	$NetBSD: subr_kcpuset.c,v 1.17 2023/09/10 14:45:52 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel CPU set implementation.
     34  *
     35  * Interface can be used by kernel subsystems as a unified dynamic CPU
     36  * bitset implementation handling many CPUs.  Facility also supports early
     37  * use by MD code on boot, as it fixups bitsets on further boot.
     38  *
     39  * TODO:
     40  * - Handle "reverse" bitset on fixup/grow.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.17 2023/09/10 14:45:52 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/types.h>
     48 
     49 #include <sys/atomic.h>
     50 #include <sys/sched.h>
     51 #include <sys/kcpuset.h>
     52 #include <sys/kmem.h>
     53 
     54 /* Number of CPUs to support. */
     55 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
     56 
     57 /*
     58  * Structure of dynamic CPU set in the kernel.
     59  */
     60 struct kcpuset {
     61 	uint32_t		bits[0];
     62 };
     63 
     64 typedef struct kcpuset_impl {
     65 	/* Reference count. */
     66 	u_int			kc_refcnt;
     67 	/* Next to free, if non-NULL (used when multiple references). */
     68 	struct kcpuset *	kc_next;
     69 	/* Actual variable-sized field of bits. */
     70 	struct kcpuset		kc_field;
     71 } kcpuset_impl_t;
     72 
     73 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
     74 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
     75 #define	KC_GETCSTRUCT(b)	((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
     76 
     77 /* Sizes of a single bitset. */
     78 #define	KC_SHIFT		5
     79 #define	KC_MASK			31
     80 
     81 /* An array of noted early kcpuset creations and data. */
     82 #define	KC_SAVE_NITEMS		8
     83 
     84 /* Structures for early boot mechanism (must be statically initialised). */
     85 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
     86 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
     87 static int			kc_last_idx = 0;
     88 static bool			kc_initialised = false;
     89 
     90 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
     91 #define	KC_NFIELDS_EARLY	1
     92 
     93 /*
     94  * The size of whole bitset fields and amount of fields.
     95  * The whole size must statically initialise for early case.
     96  */
     97 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
     98 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
     99 static size_t			kc_memsize __read_mostly;
    100 
    101 static kcpuset_t *		kcpuset_create_raw(bool);
    102 
    103 /*
    104  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
    105  * to dynamically allocated sets.
    106  */
    107 void
    108 kcpuset_sysinit(void)
    109 {
    110 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
    111 	int i, s;
    112 
    113 	/* Set a kcpuset_t sizes. */
    114 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
    115 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
    116 	kc_memsize = sizeof(kcpuset_impl_t) + kc_bitsize;
    117 	KASSERT(kc_nfields != 0);
    118 	KASSERT(kc_bitsize != 0);
    119 
    120 	/* First, pre-allocate kcpuset entries. */
    121 	for (i = 0; i < kc_last_idx; i++) {
    122 		kcp = kcpuset_create_raw(true);
    123 		kc_dynamic[i] = kcp;
    124 	}
    125 
    126 	/*
    127 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
    128 	 * All processors, except the one we are currently running (primary),
    129 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
    130 	 * raise the IPL to high.
    131 	 */
    132 	KASSERT(mp_online == false);
    133 
    134 	s = splhigh();
    135 	for (i = 0; i < kc_last_idx; i++) {
    136 		/*
    137 		 * Transfer the bits from early static storage to the kcpuset.
    138 		 */
    139 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
    140 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
    141 
    142 		/*
    143 		 * Store the new pointer, pointing to the allocated kcpuset.
    144 		 * Note: we are not in an interrupt context and it is the only
    145 		 * CPU running - thus store is safe (e.g. no need for pointer
    146 		 * variable to be volatile).
    147 		 */
    148 		*kc_noted_early[i] = kc_dynamic[i];
    149 	}
    150 	kc_initialised = true;
    151 	kc_last_idx = 0;
    152 	splx(s);
    153 }
    154 
    155 /*
    156  * kcpuset_early_ptr: note an early boot use by saving the pointer and
    157  * returning a pointer to a static, temporary bit field.
    158  */
    159 static kcpuset_t *
    160 kcpuset_early_ptr(kcpuset_t **kcptr)
    161 {
    162 	kcpuset_t *kcp;
    163 	int s;
    164 
    165 	s = splhigh();
    166 	if (kc_last_idx < KC_SAVE_NITEMS) {
    167 		/*
    168 		 * Save the pointer, return pointer to static early field.
    169 		 * Need to zero it out.
    170 		 */
    171 		kc_noted_early[kc_last_idx] = kcptr;
    172 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
    173 		kc_last_idx++;
    174 		memset(kcp, 0, KC_BITSIZE_EARLY);
    175 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
    176 	} else {
    177 		panic("kcpuset(9): all early-use entries exhausted; "
    178 		    "increase KC_SAVE_NITEMS\n");
    179 	}
    180 	splx(s);
    181 
    182 	return kcp;
    183 }
    184 
    185 /*
    186  * Routines to create or destroy the CPU set.
    187  * Early boot case is handled.
    188  */
    189 
    190 static kcpuset_t *
    191 kcpuset_create_raw(bool zero)
    192 {
    193 	kcpuset_impl_t *kc;
    194 
    195 	kc = kmem_alloc(kc_memsize, KM_SLEEP);
    196 	kc->kc_refcnt = 1;
    197 	kc->kc_next = NULL;
    198 
    199 	if (zero) {
    200 		memset(&kc->kc_field, 0, kc_bitsize);
    201 	}
    202 
    203 	/* Note: return pointer to the actual field of bits. */
    204 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
    205 	return &kc->kc_field;
    206 }
    207 
    208 void
    209 kcpuset_create(kcpuset_t **retkcp, bool zero)
    210 {
    211 	if (__predict_false(!kc_initialised)) {
    212 		/* Early boot use - special case. */
    213 		*retkcp = kcpuset_early_ptr(retkcp);
    214 		return;
    215 	}
    216 	*retkcp = kcpuset_create_raw(zero);
    217 }
    218 
    219 void
    220 kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
    221 {
    222 	kcpuset_create(retkcp, false);
    223 	memcpy(*retkcp, kcp, kc_bitsize);
    224 }
    225 
    226 void
    227 kcpuset_destroy(kcpuset_t *kcp)
    228 {
    229 	const size_t size = kc_memsize;
    230 	kcpuset_impl_t *kc;
    231 
    232 	KASSERT(kc_initialised);
    233 	KASSERT(kcp != NULL);
    234 
    235 	do {
    236 		kc = KC_GETSTRUCT(kcp);
    237 		kcp = kc->kc_next;
    238 		kmem_free(kc, size);
    239 	} while (kcp);
    240 }
    241 
    242 /*
    243  * Routines to reference/unreference the CPU set.
    244  * Note: early boot case is not supported by these routines.
    245  */
    246 
    247 void
    248 kcpuset_use(kcpuset_t *kcp)
    249 {
    250 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    251 
    252 	KASSERT(kc_initialised);
    253 	atomic_inc_uint(&kc->kc_refcnt);
    254 }
    255 
    256 void
    257 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
    258 {
    259 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    260 
    261 	KASSERT(kc_initialised);
    262 	KASSERT(kc->kc_refcnt > 0);
    263 
    264 	membar_release();
    265 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
    266 		return;
    267 	}
    268 	membar_acquire();
    269 	KASSERT(kc->kc_next == NULL);
    270 	if (lst == NULL) {
    271 		kcpuset_destroy(kcp);
    272 		return;
    273 	}
    274 	kc->kc_next = *lst;
    275 	*lst = kcp;
    276 }
    277 
    278 /*
    279  * Routines to transfer the CPU set from / to userspace.
    280  * Note: early boot case is not supported by these routines.
    281  */
    282 
    283 int
    284 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
    285 {
    286 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
    287 
    288 	KASSERT(kc_initialised);
    289 	KASSERT(kc->kc_refcnt > 0);
    290 	KASSERT(kc->kc_next == NULL);
    291 
    292 	if (len > kc_bitsize) { /* XXX */
    293 		return EINVAL;
    294 	}
    295 	return copyin(ucp, kcp, len);
    296 }
    297 
    298 int
    299 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
    300 {
    301 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
    302 
    303 	KASSERT(kc_initialised);
    304 	KASSERT(kc->kc_refcnt > 0);
    305 	KASSERT(kc->kc_next == NULL);
    306 
    307 	if (len > kc_bitsize) { /* XXX */
    308 		return EINVAL;
    309 	}
    310 	return copyout(kcp, ucp, len);
    311 }
    312 
    313 void
    314 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
    315 {
    316 	size_t rlen = MIN(kc_bitsize, len);
    317 
    318 	KASSERT(kcp != NULL);
    319 	memcpy(bitfield, kcp->bits, rlen);
    320 }
    321 
    322 /*
    323  * Routines to change bit field - zero, fill, copy, set, unset, etc.
    324  */
    325 
    326 void
    327 kcpuset_zero(kcpuset_t *kcp)
    328 {
    329 
    330 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    331 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    332 	memset(kcp, 0, kc_bitsize);
    333 }
    334 
    335 void
    336 kcpuset_fill(kcpuset_t *kcp)
    337 {
    338 
    339 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    340 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    341 	memset(kcp, ~0, kc_bitsize);
    342 }
    343 
    344 void
    345 kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
    346 {
    347 
    348 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
    349 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
    350 	memcpy(dkcp, skcp, kc_bitsize);
    351 }
    352 
    353 void
    354 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
    355 {
    356 	const size_t j = i >> KC_SHIFT;
    357 
    358 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    359 	KASSERT(j < kc_nfields);
    360 
    361 	kcp->bits[j] |= __BIT(i & KC_MASK);
    362 }
    363 
    364 void
    365 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
    366 {
    367 	const size_t j = i >> KC_SHIFT;
    368 
    369 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    370 	KASSERT(j < kc_nfields);
    371 
    372 	kcp->bits[j] &= ~(__BIT(i & KC_MASK));
    373 }
    374 
    375 bool
    376 kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
    377 {
    378 	const size_t j = i >> KC_SHIFT;
    379 
    380 	KASSERT(kcp != NULL);
    381 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
    382 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    383 	KASSERT(j < kc_nfields);
    384 
    385 	return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0;
    386 }
    387 
    388 bool
    389 kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
    390 {
    391 	const size_t j2 = i >> KC_SHIFT;
    392 	const uint32_t mask = ~(__BIT(i & KC_MASK));
    393 
    394 	for (size_t j = 0; j < kc_nfields; j++) {
    395 		const uint32_t bits = kcp->bits[j];
    396 		if (bits && (j != j2 || (bits & mask) != 0)) {
    397 			return true;
    398 		}
    399 	}
    400 	return false;
    401 }
    402 
    403 bool
    404 kcpuset_iszero(const kcpuset_t *kcp)
    405 {
    406 
    407 	for (size_t j = 0; j < kc_nfields; j++) {
    408 		if (kcp->bits[j] != 0) {
    409 			return false;
    410 		}
    411 	}
    412 	return true;
    413 }
    414 
    415 bool
    416 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    417 {
    418 
    419 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
    420 }
    421 
    422 bool
    423 kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    424 {
    425 
    426 	for (size_t j = 0; j < kc_nfields; j++) {
    427 		if (kcp1->bits[j] & kcp2->bits[j])
    428 			return true;
    429 	}
    430 	return false;
    431 }
    432 
    433 cpuid_t
    434 kcpuset_ffs(const kcpuset_t *kcp)
    435 {
    436 
    437 	for (size_t j = 0; j < kc_nfields; j++) {
    438 		if (kcp->bits[j])
    439 			return 32 * j + ffs(kcp->bits[j]);
    440 	}
    441 	return 0;
    442 }
    443 
    444 cpuid_t
    445 kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    446 {
    447 
    448 	for (size_t j = 0; j < kc_nfields; j++) {
    449 		uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
    450 		if (bits)
    451 			return 32 * j + ffs(bits);
    452 	}
    453 	return 0;
    454 }
    455 
    456 void
    457 kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    458 {
    459 
    460 	for (size_t j = 0; j < kc_nfields; j++) {
    461 		kcp1->bits[j] |= kcp2->bits[j];
    462 	}
    463 }
    464 
    465 void
    466 kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    467 {
    468 
    469 	for (size_t j = 0; j < kc_nfields; j++) {
    470 		kcp1->bits[j] &= kcp2->bits[j];
    471 	}
    472 }
    473 
    474 void
    475 kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    476 {
    477 
    478 	for (size_t j = 0; j < kc_nfields; j++) {
    479 		kcp1->bits[j] &= ~kcp2->bits[j];
    480 	}
    481 }
    482 
    483 int
    484 kcpuset_countset(const kcpuset_t *kcp)
    485 {
    486 	int count = 0;
    487 
    488 	for (size_t j = 0; j < kc_nfields; j++) {
    489 		count += popcount32(kcp->bits[j]);
    490 	}
    491 	return count;
    492 }
    493 
    494 /*
    495  * Routines to set/clear the flags atomically.
    496  */
    497 
    498 void
    499 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
    500 {
    501 	const size_t j = i >> KC_SHIFT;
    502 
    503 	KASSERT(j < kc_nfields);
    504 	atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK));
    505 }
    506 
    507 void
    508 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
    509 {
    510 	const size_t j = i >> KC_SHIFT;
    511 
    512 	KASSERT(j < kc_nfields);
    513 	atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK)));
    514 }
    515 
    516 void
    517 kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    518 {
    519 
    520 	for (size_t j = 0; j < kc_nfields; j++) {
    521 		if (kcp2->bits[j])
    522 			atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
    523 	}
    524 }
    525 
    526 void
    527 kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    528 {
    529 
    530 	for (size_t j = 0; j < kc_nfields; j++) {
    531 		if (kcp2->bits[j])
    532 			atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
    533 	}
    534 }
    535 
    536 void
    537 kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    538 {
    539 
    540 	for (size_t j = 0; j < kc_nfields; j++) {
    541 		if (kcp2->bits[j])
    542 			atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
    543 	}
    544 }
    545