Home | History | Annotate | Line # | Download | only in kern
subr_kcpuset.c revision 1.19
      1 /*	$NetBSD: subr_kcpuset.c,v 1.19 2023/09/12 16:17:21 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel CPU set implementation.
     34  *
     35  * Interface can be used by kernel subsystems as a unified dynamic CPU
     36  * bitset implementation handling many CPUs.  Facility also supports early
     37  * use by MD code on boot, as it fixups bitsets on further boot.
     38  *
     39  * TODO:
     40  * - Handle "reverse" bitset on fixup/grow.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.19 2023/09/12 16:17:21 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/types.h>
     48 
     49 #include <sys/atomic.h>
     50 #include <sys/intr.h>
     51 #include <sys/sched.h>
     52 #include <sys/kcpuset.h>
     53 #include <sys/pool.h>
     54 
     55 /* Number of CPUs to support. */
     56 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
     57 
     58 /*
     59  * Structure of dynamic CPU set in the kernel.
     60  */
     61 struct kcpuset {
     62 	uint32_t		bits[0];
     63 };
     64 
     65 typedef struct kcpuset_impl {
     66 	/* Reference count. */
     67 	u_int			kc_refcnt;
     68 	/* Next to free, if non-NULL (used when multiple references). */
     69 	struct kcpuset *	kc_next;
     70 	/* Actual variable-sized field of bits. */
     71 	struct kcpuset		kc_field;
     72 } kcpuset_impl_t;
     73 
     74 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
     75 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
     76 #define	KC_GETCSTRUCT(b)	((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
     77 
     78 /* Sizes of a single bitset. */
     79 #define	KC_SHIFT		5
     80 #define	KC_MASK			31
     81 
     82 /* An array of noted early kcpuset creations and data. */
     83 #define	KC_SAVE_NITEMS		8
     84 
     85 /* Structures for early boot mechanism (must be statically initialised). */
     86 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
     87 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
     88 static int			kc_last_idx = 0;
     89 static bool			kc_initialised = false;
     90 
     91 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
     92 #define	KC_NFIELDS_EARLY	1
     93 
     94 /*
     95  * The size of whole bitset fields and amount of fields.
     96  * The whole size must statically initialise for early case.
     97  */
     98 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
     99 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
    100 
    101 static pool_cache_t		kc_cache __read_mostly;
    102 
    103 static kcpuset_t *		kcpuset_create_raw(bool);
    104 
    105 /*
    106  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
    107  * to dynamically allocated sets.
    108  */
    109 void
    110 kcpuset_sysinit(void)
    111 {
    112 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
    113 	int i, s;
    114 
    115 	/* Set a kcpuset_t sizes. */
    116 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
    117 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
    118 	KASSERT(kc_nfields != 0);
    119 	KASSERT(kc_bitsize != 0);
    120 
    121 	kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
    122 	    coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
    123 
    124 	/* First, pre-allocate kcpuset entries. */
    125 	for (i = 0; i < kc_last_idx; i++) {
    126 		kcp = kcpuset_create_raw(true);
    127 		kc_dynamic[i] = kcp;
    128 	}
    129 
    130 	/*
    131 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
    132 	 * All processors, except the one we are currently running (primary),
    133 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
    134 	 * raise the IPL to high.
    135 	 */
    136 	KASSERT(mp_online == false);
    137 
    138 	s = splhigh();
    139 	for (i = 0; i < kc_last_idx; i++) {
    140 		/*
    141 		 * Transfer the bits from early static storage to the kcpuset.
    142 		 */
    143 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
    144 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
    145 
    146 		/*
    147 		 * Store the new pointer, pointing to the allocated kcpuset.
    148 		 * Note: we are not in an interrupt context and it is the only
    149 		 * CPU running - thus store is safe (e.g. no need for pointer
    150 		 * variable to be volatile).
    151 		 */
    152 		*kc_noted_early[i] = kc_dynamic[i];
    153 	}
    154 	kc_initialised = true;
    155 	kc_last_idx = 0;
    156 	splx(s);
    157 }
    158 
    159 /*
    160  * kcpuset_early_ptr: note an early boot use by saving the pointer and
    161  * returning a pointer to a static, temporary bit field.
    162  */
    163 static kcpuset_t *
    164 kcpuset_early_ptr(kcpuset_t **kcptr)
    165 {
    166 	kcpuset_t *kcp;
    167 	int s;
    168 
    169 	s = splhigh();
    170 	if (kc_last_idx < KC_SAVE_NITEMS) {
    171 		/*
    172 		 * Save the pointer, return pointer to static early field.
    173 		 * Need to zero it out.
    174 		 */
    175 		kc_noted_early[kc_last_idx] = kcptr;
    176 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
    177 		kc_last_idx++;
    178 		memset(kcp, 0, KC_BITSIZE_EARLY);
    179 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
    180 	} else {
    181 		panic("kcpuset(9): all early-use entries exhausted; "
    182 		    "increase KC_SAVE_NITEMS\n");
    183 	}
    184 	splx(s);
    185 
    186 	return kcp;
    187 }
    188 
    189 /*
    190  * Routines to create or destroy the CPU set.
    191  * Early boot case is handled.
    192  */
    193 
    194 static kcpuset_t *
    195 kcpuset_create_raw(bool zero)
    196 {
    197 	kcpuset_impl_t *kc;
    198 
    199 	kc = pool_cache_get(kc_cache, PR_WAITOK);
    200 	kc->kc_refcnt = 1;
    201 	kc->kc_next = NULL;
    202 
    203 	if (zero) {
    204 		memset(&kc->kc_field, 0, kc_bitsize);
    205 	}
    206 
    207 	/* Note: return pointer to the actual field of bits. */
    208 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
    209 	return &kc->kc_field;
    210 }
    211 
    212 void
    213 kcpuset_create(kcpuset_t **retkcp, bool zero)
    214 {
    215 	if (__predict_false(!kc_initialised)) {
    216 		/* Early boot use - special case. */
    217 		*retkcp = kcpuset_early_ptr(retkcp);
    218 		return;
    219 	}
    220 	*retkcp = kcpuset_create_raw(zero);
    221 }
    222 
    223 void
    224 kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
    225 {
    226 	kcpuset_create(retkcp, false);
    227 	memcpy(*retkcp, kcp, kc_bitsize);
    228 }
    229 
    230 void
    231 kcpuset_destroy(kcpuset_t *kcp)
    232 {
    233 	kcpuset_impl_t *kc;
    234 
    235 	KASSERT(kc_initialised);
    236 	KASSERT(kcp != NULL);
    237 
    238 	do {
    239 		kc = KC_GETSTRUCT(kcp);
    240 		kcp = kc->kc_next;
    241 		pool_cache_put(kc_cache, kc);
    242 	} while (kcp);
    243 }
    244 
    245 /*
    246  * Routines to reference/unreference the CPU set.
    247  * Note: early boot case is not supported by these routines.
    248  */
    249 
    250 void
    251 kcpuset_use(kcpuset_t *kcp)
    252 {
    253 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    254 
    255 	KASSERT(kc_initialised);
    256 	atomic_inc_uint(&kc->kc_refcnt);
    257 }
    258 
    259 void
    260 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
    261 {
    262 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    263 
    264 	KASSERT(kc_initialised);
    265 	KASSERT(kc->kc_refcnt > 0);
    266 
    267 	membar_release();
    268 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
    269 		return;
    270 	}
    271 	membar_acquire();
    272 	KASSERT(kc->kc_next == NULL);
    273 	if (lst == NULL) {
    274 		kcpuset_destroy(kcp);
    275 		return;
    276 	}
    277 	kc->kc_next = *lst;
    278 	*lst = kcp;
    279 }
    280 
    281 /*
    282  * Routines to transfer the CPU set from / to userspace.
    283  * Note: early boot case is not supported by these routines.
    284  */
    285 
    286 int
    287 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
    288 {
    289 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
    290 
    291 	KASSERT(kc_initialised);
    292 	KASSERT(kc->kc_refcnt > 0);
    293 	KASSERT(kc->kc_next == NULL);
    294 
    295 	if (len > kc_bitsize) { /* XXX */
    296 		return EINVAL;
    297 	}
    298 	return copyin(ucp, kcp, len);
    299 }
    300 
    301 int
    302 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
    303 {
    304 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
    305 
    306 	KASSERT(kc_initialised);
    307 	KASSERT(kc->kc_refcnt > 0);
    308 	KASSERT(kc->kc_next == NULL);
    309 
    310 	if (len > kc_bitsize) { /* XXX */
    311 		return EINVAL;
    312 	}
    313 	return copyout(kcp, ucp, len);
    314 }
    315 
    316 void
    317 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
    318 {
    319 	size_t rlen = MIN(kc_bitsize, len);
    320 
    321 	KASSERT(kcp != NULL);
    322 	memcpy(bitfield, kcp->bits, rlen);
    323 }
    324 
    325 /*
    326  * Routines to change bit field - zero, fill, copy, set, unset, etc.
    327  */
    328 
    329 void
    330 kcpuset_zero(kcpuset_t *kcp)
    331 {
    332 
    333 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    334 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    335 	memset(kcp, 0, kc_bitsize);
    336 }
    337 
    338 void
    339 kcpuset_fill(kcpuset_t *kcp)
    340 {
    341 
    342 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    343 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    344 	memset(kcp, ~0, kc_bitsize);
    345 }
    346 
    347 void
    348 kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
    349 {
    350 
    351 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
    352 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
    353 	memcpy(dkcp, skcp, kc_bitsize);
    354 }
    355 
    356 void
    357 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
    358 {
    359 	const size_t j = i >> KC_SHIFT;
    360 
    361 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    362 	KASSERT(j < kc_nfields);
    363 
    364 	kcp->bits[j] |= __BIT(i & KC_MASK);
    365 }
    366 
    367 void
    368 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
    369 {
    370 	const size_t j = i >> KC_SHIFT;
    371 
    372 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    373 	KASSERT(j < kc_nfields);
    374 
    375 	kcp->bits[j] &= ~(__BIT(i & KC_MASK));
    376 }
    377 
    378 bool
    379 kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
    380 {
    381 	const size_t j = i >> KC_SHIFT;
    382 
    383 	KASSERT(kcp != NULL);
    384 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
    385 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    386 	KASSERT(j < kc_nfields);
    387 
    388 	return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0;
    389 }
    390 
    391 bool
    392 kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
    393 {
    394 	const size_t j2 = i >> KC_SHIFT;
    395 	const uint32_t mask = ~(__BIT(i & KC_MASK));
    396 
    397 	for (size_t j = 0; j < kc_nfields; j++) {
    398 		const uint32_t bits = kcp->bits[j];
    399 		if (bits && (j != j2 || (bits & mask) != 0)) {
    400 			return true;
    401 		}
    402 	}
    403 	return false;
    404 }
    405 
    406 bool
    407 kcpuset_iszero(const kcpuset_t *kcp)
    408 {
    409 
    410 	for (size_t j = 0; j < kc_nfields; j++) {
    411 		if (kcp->bits[j] != 0) {
    412 			return false;
    413 		}
    414 	}
    415 	return true;
    416 }
    417 
    418 bool
    419 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    420 {
    421 
    422 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
    423 }
    424 
    425 bool
    426 kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    427 {
    428 
    429 	for (size_t j = 0; j < kc_nfields; j++) {
    430 		if (kcp1->bits[j] & kcp2->bits[j])
    431 			return true;
    432 	}
    433 	return false;
    434 }
    435 
    436 cpuid_t
    437 kcpuset_ffs(const kcpuset_t *kcp)
    438 {
    439 
    440 	for (size_t j = 0; j < kc_nfields; j++) {
    441 		if (kcp->bits[j])
    442 			return 32 * j + ffs(kcp->bits[j]);
    443 	}
    444 	return 0;
    445 }
    446 
    447 cpuid_t
    448 kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    449 {
    450 
    451 	for (size_t j = 0; j < kc_nfields; j++) {
    452 		uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
    453 		if (bits)
    454 			return 32 * j + ffs(bits);
    455 	}
    456 	return 0;
    457 }
    458 
    459 void
    460 kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    461 {
    462 
    463 	for (size_t j = 0; j < kc_nfields; j++) {
    464 		kcp1->bits[j] |= kcp2->bits[j];
    465 	}
    466 }
    467 
    468 void
    469 kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    470 {
    471 
    472 	for (size_t j = 0; j < kc_nfields; j++) {
    473 		kcp1->bits[j] &= kcp2->bits[j];
    474 	}
    475 }
    476 
    477 void
    478 kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    479 {
    480 
    481 	for (size_t j = 0; j < kc_nfields; j++) {
    482 		kcp1->bits[j] &= ~kcp2->bits[j];
    483 	}
    484 }
    485 
    486 int
    487 kcpuset_countset(const kcpuset_t *kcp)
    488 {
    489 	int count = 0;
    490 
    491 	for (size_t j = 0; j < kc_nfields; j++) {
    492 		count += popcount32(kcp->bits[j]);
    493 	}
    494 	return count;
    495 }
    496 
    497 /*
    498  * Routines to set/clear the flags atomically.
    499  */
    500 
    501 void
    502 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
    503 {
    504 	const size_t j = i >> KC_SHIFT;
    505 
    506 	KASSERT(j < kc_nfields);
    507 	atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK));
    508 }
    509 
    510 void
    511 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
    512 {
    513 	const size_t j = i >> KC_SHIFT;
    514 
    515 	KASSERT(j < kc_nfields);
    516 	atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK)));
    517 }
    518 
    519 void
    520 kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    521 {
    522 
    523 	for (size_t j = 0; j < kc_nfields; j++) {
    524 		if (kcp2->bits[j])
    525 			atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
    526 	}
    527 }
    528 
    529 void
    530 kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    531 {
    532 
    533 	for (size_t j = 0; j < kc_nfields; j++) {
    534 		if (kcp2->bits[j])
    535 			atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
    536 	}
    537 }
    538 
    539 void
    540 kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    541 {
    542 
    543 	for (size_t j = 0; j < kc_nfields; j++) {
    544 		if (kcp2->bits[j])
    545 			atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
    546 	}
    547 }
    548