Home | History | Annotate | Line # | Download | only in kern
subr_kcpuset.c revision 1.5
      1 /*	$NetBSD: subr_kcpuset.c,v 1.5 2012/04/20 22:23:25 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel CPU set implementation.
     34  *
     35  * Interface can be used by kernel subsystems as a unified dynamic CPU
     36  * bitset implementation handling many CPUs.  Facility also supports early
     37  * use by MD code on boot, as it fixups bitsets on further boot.
     38  *
     39  * TODO:
     40  * - Handle "reverse" bitset on fixup/grow.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.5 2012/04/20 22:23:25 rmind Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/types.h>
     48 
     49 #include <sys/atomic.h>
     50 #include <sys/sched.h>
     51 #include <sys/kcpuset.h>
     52 #include <sys/pool.h>
     53 
     54 /* Number of CPUs to support. */
     55 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
     56 
     57 /*
     58  * Structure of dynamic CPU set in the kernel.
     59  */
     60 struct kcpuset {
     61 	uint32_t		bits[0];
     62 };
     63 
     64 typedef struct kcpuset_impl {
     65 	/* Reference count. */
     66 	u_int			kc_refcnt;
     67 	/* Next to free, if non-NULL (used when multiple references). */
     68 	struct kcpuset *	kc_next;
     69 	/* Actual variable-sized field of bits. */
     70 	struct kcpuset		kc_field;
     71 } kcpuset_impl_t;
     72 
     73 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
     74 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
     75 
     76 /* Sizes of a single bitset. */
     77 #define	KC_SHIFT		5
     78 #define	KC_MASK			31
     79 
     80 /* An array of noted early kcpuset creations and data. */
     81 #define	KC_SAVE_NITEMS		8
     82 
     83 /* Structures for early boot mechanism (must be statically initialised). */
     84 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
     85 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
     86 static int			kc_last_idx = 0;
     87 static bool			kc_initialised = false;
     88 
     89 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
     90 #define	KC_NFIELDS_EARLY	1
     91 
     92 /*
     93  * The size of whole bitset fields and amount of fields.
     94  * The whole size must statically initialise for early case.
     95  */
     96 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
     97 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
     98 
     99 static pool_cache_t		kc_cache __read_mostly;
    100 
    101 static kcpuset_t *		kcpuset_create_raw(bool);
    102 
    103 /*
    104  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
    105  * to dynamically allocated sets.
    106  */
    107 void
    108 kcpuset_sysinit(void)
    109 {
    110 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
    111 	int i, s;
    112 
    113 	/* Set a kcpuset_t sizes. */
    114 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
    115 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
    116 	KASSERT(kc_nfields != 0 && kc_bitsize != 0);
    117 
    118 	kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
    119 	    coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
    120 
    121 	/* First, pre-allocate kcpuset entries. */
    122 	for (i = 0; i < kc_last_idx; i++) {
    123 		kcp = kcpuset_create_raw(true);
    124 		kc_dynamic[i] = kcp;
    125 	}
    126 
    127 	/*
    128 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
    129 	 * All processors, except the one we are currently running (primary),
    130 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
    131 	 * raise the IPL to high.
    132 	 */
    133 	KASSERT(mp_online == false);
    134 
    135 	s = splhigh();
    136 	for (i = 0; i < kc_last_idx; i++) {
    137 		/*
    138 		 * Transfer the bits from early static storage to the kcpuset.
    139 		 */
    140 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
    141 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
    142 
    143 		/*
    144 		 * Store the new pointer, pointing to the allocated kcpuset.
    145 		 * Note: we are not in an interrupt context and it is the only
    146 		 * CPU running - thus store is safe (e.g. no need for pointer
    147 		 * variable to be volatile).
    148 		 */
    149 		*kc_noted_early[i] = kc_dynamic[i];
    150 	}
    151 	kc_initialised = true;
    152 	kc_last_idx = 0;
    153 	splx(s);
    154 }
    155 
    156 /*
    157  * kcpuset_early_ptr: note an early boot use by saving the pointer and
    158  * returning a pointer to a static, temporary bit field.
    159  */
    160 static kcpuset_t *
    161 kcpuset_early_ptr(kcpuset_t **kcptr)
    162 {
    163 	kcpuset_t *kcp;
    164 	int s;
    165 
    166 	s = splhigh();
    167 	if (kc_last_idx < KC_SAVE_NITEMS) {
    168 		/*
    169 		 * Save the pointer, return pointer to static early field.
    170 		 * Need to zero it out.
    171 		 */
    172 		kc_noted_early[kc_last_idx] = kcptr;
    173 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
    174 		kc_last_idx++;
    175 		memset(kcp, 0, KC_BITSIZE_EARLY);
    176 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
    177 	} else {
    178 		panic("kcpuset(9): all early-use entries exhausted; "
    179 		    "increase KC_SAVE_NITEMS\n");
    180 	}
    181 	splx(s);
    182 
    183 	return kcp;
    184 }
    185 
    186 /*
    187  * Routines to create or destroy the CPU set.
    188  * Early boot case is handled.
    189  */
    190 
    191 static kcpuset_t *
    192 kcpuset_create_raw(bool zero)
    193 {
    194 	kcpuset_impl_t *kc;
    195 
    196 	kc = pool_cache_get(kc_cache, PR_WAITOK);
    197 	kc->kc_refcnt = 1;
    198 	kc->kc_next = NULL;
    199 
    200 	if (zero) {
    201 		memset(&kc->kc_field, 0, kc_bitsize);
    202 	}
    203 
    204 	/* Note: return pointer to the actual field of bits. */
    205 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
    206 	return &kc->kc_field;
    207 }
    208 
    209 void
    210 kcpuset_create(kcpuset_t **retkcp, bool zero)
    211 {
    212 	if (__predict_false(!kc_initialised)) {
    213 		/* Early boot use - special case. */
    214 		*retkcp = kcpuset_early_ptr(retkcp);
    215 		return;
    216 	}
    217 	*retkcp = kcpuset_create_raw(zero);
    218 }
    219 
    220 void
    221 kcpuset_destroy(kcpuset_t *kcp)
    222 {
    223 	kcpuset_impl_t *kc;
    224 
    225 	KASSERT(kc_initialised);
    226 	KASSERT(kcp != NULL);
    227 
    228 	do {
    229 		kc = KC_GETSTRUCT(kcp);
    230 		kcp = kc->kc_next;
    231 		pool_cache_put(kc_cache, kc);
    232 	} while (kcp);
    233 }
    234 
    235 /*
    236  * Routines to reference/unreference the CPU set.
    237  * Note: early boot case is not supported by these routines.
    238  */
    239 
    240 void
    241 kcpuset_use(kcpuset_t *kcp)
    242 {
    243 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    244 
    245 	KASSERT(kc_initialised);
    246 	atomic_inc_uint(&kc->kc_refcnt);
    247 }
    248 
    249 void
    250 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
    251 {
    252 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    253 
    254 	KASSERT(kc_initialised);
    255 	KASSERT(kc->kc_refcnt > 0);
    256 
    257 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
    258 		return;
    259 	}
    260 	KASSERT(kc->kc_next == NULL);
    261 	if (lst == NULL) {
    262 		kcpuset_destroy(kcp);
    263 		return;
    264 	}
    265 	kc->kc_next = *lst;
    266 	*lst = kcp;
    267 }
    268 
    269 /*
    270  * Routines to transfer the CPU set from / to userspace.
    271  * Note: early boot case is not supported by these routines.
    272  */
    273 
    274 int
    275 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
    276 {
    277 	kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
    278 
    279 	KASSERT(kc_initialised);
    280 	KASSERT(kc->kc_refcnt > 0);
    281 	KASSERT(kc->kc_next == NULL);
    282 
    283 	if (len > kc_bitsize) { /* XXX */
    284 		return EINVAL;
    285 	}
    286 	return copyin(ucp, kcp, len);
    287 }
    288 
    289 int
    290 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
    291 {
    292 	kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
    293 
    294 	KASSERT(kc_initialised);
    295 	KASSERT(kc->kc_refcnt > 0);
    296 	KASSERT(kc->kc_next == NULL);
    297 
    298 	if (len > kc_bitsize) { /* XXX */
    299 		return EINVAL;
    300 	}
    301 	return copyout(kcp, ucp, len);
    302 }
    303 
    304 /*
    305  * Routines to change bit field - zero, fill, copy, set, unset, etc.
    306  */
    307 
    308 void
    309 kcpuset_zero(kcpuset_t *kcp)
    310 {
    311 
    312 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    313 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    314 	memset(kcp, 0, kc_bitsize);
    315 }
    316 
    317 void
    318 kcpuset_fill(kcpuset_t *kcp)
    319 {
    320 
    321 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    322 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    323 	memset(kcp, ~0, kc_bitsize);
    324 }
    325 
    326 void
    327 kcpuset_copy(kcpuset_t *dkcp, kcpuset_t *skcp)
    328 {
    329 
    330 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
    331 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
    332 	memcpy(dkcp, skcp, kc_bitsize);
    333 }
    334 
    335 void
    336 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
    337 {
    338 	const size_t j = i >> KC_SHIFT;
    339 
    340 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    341 	KASSERT(j < kc_nfields);
    342 
    343 	kcp->bits[j] |= 1 << (i & KC_MASK);
    344 }
    345 
    346 void
    347 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
    348 {
    349 	const size_t j = i >> KC_SHIFT;
    350 
    351 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    352 	KASSERT(j < kc_nfields);
    353 
    354 	kcp->bits[j] &= ~(1 << (i & KC_MASK));
    355 }
    356 
    357 bool
    358 kcpuset_isset(kcpuset_t *kcp, cpuid_t i)
    359 {
    360 	const size_t j = i >> KC_SHIFT;
    361 
    362 	KASSERT(kcp != NULL);
    363 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    364 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    365 	KASSERT(j < kc_nfields);
    366 
    367 	return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
    368 }
    369 
    370 bool
    371 kcpuset_isotherset(kcpuset_t *kcp, cpuid_t i)
    372 {
    373 	const size_t j2 = i >> KC_SHIFT;
    374 	const uint32_t mask = ~(1 << (i & KC_MASK));
    375 
    376 	for (size_t j = 0; j < kc_nfields; j++) {
    377 		const uint32_t bits = kcp->bits[j];
    378 		if (bits && (j != j2 || (bits & mask) != 0)) {
    379 			return true;
    380 		}
    381 	}
    382 	return false;
    383 }
    384 
    385 bool
    386 kcpuset_iszero(kcpuset_t *kcp)
    387 {
    388 
    389 	for (size_t j = 0; j < kc_nfields; j++) {
    390 		if (kcp->bits[j] != 0) {
    391 			return false;
    392 		}
    393 	}
    394 	return true;
    395 }
    396 
    397 bool
    398 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    399 {
    400 
    401 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
    402 }
    403 
    404 void
    405 kcpuset_merge(kcpuset_t *kcp1, kcpuset_t *kcp2)
    406 {
    407 
    408 	for (size_t j = 0; j < kc_nfields; j++) {
    409 		kcp1->bits[j] |= kcp2->bits[j];
    410 	}
    411 }
    412 
    413 void
    414 kcpuset_intersect(kcpuset_t *kcp1, kcpuset_t *kcp2)
    415 {
    416 
    417 	for (size_t j = 0; j < kc_nfields; j++) {
    418 		kcp1->bits[j] &= kcp2->bits[j];
    419 	}
    420 }
    421 
    422 int
    423 kcpuset_countset(kcpuset_t *kcp)
    424 {
    425 	int count = 0;
    426 
    427 	for (size_t j = 0; j < kc_nfields; j++) {
    428 		count += popcount32(kcp->bits[j]);
    429 	}
    430 	return count;
    431 }
    432 
    433 /*
    434  * Routines to set/clear the flags atomically.
    435  */
    436 
    437 void
    438 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
    439 {
    440 	const size_t j = i >> KC_SHIFT;
    441 
    442 	KASSERT(j < kc_nfields);
    443 	atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
    444 }
    445 
    446 void
    447 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
    448 {
    449 	const size_t j = i >> KC_SHIFT;
    450 
    451 	KASSERT(j < kc_nfields);
    452 	atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
    453 }
    454