subr_kcpuset.c revision 1.5 1 /* $NetBSD: subr_kcpuset.c,v 1.5 2012/04/20 22:23:25 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel CPU set implementation.
34 *
35 * Interface can be used by kernel subsystems as a unified dynamic CPU
36 * bitset implementation handling many CPUs. Facility also supports early
37 * use by MD code on boot, as it fixups bitsets on further boot.
38 *
39 * TODO:
40 * - Handle "reverse" bitset on fixup/grow.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.5 2012/04/20 22:23:25 rmind Exp $");
45
46 #include <sys/param.h>
47 #include <sys/types.h>
48
49 #include <sys/atomic.h>
50 #include <sys/sched.h>
51 #include <sys/kcpuset.h>
52 #include <sys/pool.h>
53
54 /* Number of CPUs to support. */
55 #define KC_MAXCPUS roundup2(MAXCPUS, 32)
56
57 /*
58 * Structure of dynamic CPU set in the kernel.
59 */
60 struct kcpuset {
61 uint32_t bits[0];
62 };
63
64 typedef struct kcpuset_impl {
65 /* Reference count. */
66 u_int kc_refcnt;
67 /* Next to free, if non-NULL (used when multiple references). */
68 struct kcpuset * kc_next;
69 /* Actual variable-sized field of bits. */
70 struct kcpuset kc_field;
71 } kcpuset_impl_t;
72
73 #define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field))
74 #define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75
76 /* Sizes of a single bitset. */
77 #define KC_SHIFT 5
78 #define KC_MASK 31
79
80 /* An array of noted early kcpuset creations and data. */
81 #define KC_SAVE_NITEMS 8
82
83 /* Structures for early boot mechanism (must be statically initialised). */
84 static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS];
85 static uint32_t kc_bits_early[KC_SAVE_NITEMS];
86 static int kc_last_idx = 0;
87 static bool kc_initialised = false;
88
89 #define KC_BITSIZE_EARLY sizeof(kc_bits_early[0])
90 #define KC_NFIELDS_EARLY 1
91
92 /*
93 * The size of whole bitset fields and amount of fields.
94 * The whole size must statically initialise for early case.
95 */
96 static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
97 static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY;
98
99 static pool_cache_t kc_cache __read_mostly;
100
101 static kcpuset_t * kcpuset_create_raw(bool);
102
103 /*
104 * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
105 * to dynamically allocated sets.
106 */
107 void
108 kcpuset_sysinit(void)
109 {
110 kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
111 int i, s;
112
113 /* Set a kcpuset_t sizes. */
114 kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
115 kc_bitsize = sizeof(uint32_t) * kc_nfields;
116 KASSERT(kc_nfields != 0 && kc_bitsize != 0);
117
118 kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
119 coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
120
121 /* First, pre-allocate kcpuset entries. */
122 for (i = 0; i < kc_last_idx; i++) {
123 kcp = kcpuset_create_raw(true);
124 kc_dynamic[i] = kcp;
125 }
126
127 /*
128 * Prepare to convert all early noted kcpuset uses to dynamic sets.
129 * All processors, except the one we are currently running (primary),
130 * must not be spinned yet. Since MD facilities can use kcpuset,
131 * raise the IPL to high.
132 */
133 KASSERT(mp_online == false);
134
135 s = splhigh();
136 for (i = 0; i < kc_last_idx; i++) {
137 /*
138 * Transfer the bits from early static storage to the kcpuset.
139 */
140 KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
141 memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
142
143 /*
144 * Store the new pointer, pointing to the allocated kcpuset.
145 * Note: we are not in an interrupt context and it is the only
146 * CPU running - thus store is safe (e.g. no need for pointer
147 * variable to be volatile).
148 */
149 *kc_noted_early[i] = kc_dynamic[i];
150 }
151 kc_initialised = true;
152 kc_last_idx = 0;
153 splx(s);
154 }
155
156 /*
157 * kcpuset_early_ptr: note an early boot use by saving the pointer and
158 * returning a pointer to a static, temporary bit field.
159 */
160 static kcpuset_t *
161 kcpuset_early_ptr(kcpuset_t **kcptr)
162 {
163 kcpuset_t *kcp;
164 int s;
165
166 s = splhigh();
167 if (kc_last_idx < KC_SAVE_NITEMS) {
168 /*
169 * Save the pointer, return pointer to static early field.
170 * Need to zero it out.
171 */
172 kc_noted_early[kc_last_idx] = kcptr;
173 kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
174 kc_last_idx++;
175 memset(kcp, 0, KC_BITSIZE_EARLY);
176 KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
177 } else {
178 panic("kcpuset(9): all early-use entries exhausted; "
179 "increase KC_SAVE_NITEMS\n");
180 }
181 splx(s);
182
183 return kcp;
184 }
185
186 /*
187 * Routines to create or destroy the CPU set.
188 * Early boot case is handled.
189 */
190
191 static kcpuset_t *
192 kcpuset_create_raw(bool zero)
193 {
194 kcpuset_impl_t *kc;
195
196 kc = pool_cache_get(kc_cache, PR_WAITOK);
197 kc->kc_refcnt = 1;
198 kc->kc_next = NULL;
199
200 if (zero) {
201 memset(&kc->kc_field, 0, kc_bitsize);
202 }
203
204 /* Note: return pointer to the actual field of bits. */
205 KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
206 return &kc->kc_field;
207 }
208
209 void
210 kcpuset_create(kcpuset_t **retkcp, bool zero)
211 {
212 if (__predict_false(!kc_initialised)) {
213 /* Early boot use - special case. */
214 *retkcp = kcpuset_early_ptr(retkcp);
215 return;
216 }
217 *retkcp = kcpuset_create_raw(zero);
218 }
219
220 void
221 kcpuset_destroy(kcpuset_t *kcp)
222 {
223 kcpuset_impl_t *kc;
224
225 KASSERT(kc_initialised);
226 KASSERT(kcp != NULL);
227
228 do {
229 kc = KC_GETSTRUCT(kcp);
230 kcp = kc->kc_next;
231 pool_cache_put(kc_cache, kc);
232 } while (kcp);
233 }
234
235 /*
236 * Routines to reference/unreference the CPU set.
237 * Note: early boot case is not supported by these routines.
238 */
239
240 void
241 kcpuset_use(kcpuset_t *kcp)
242 {
243 kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
244
245 KASSERT(kc_initialised);
246 atomic_inc_uint(&kc->kc_refcnt);
247 }
248
249 void
250 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
251 {
252 kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
253
254 KASSERT(kc_initialised);
255 KASSERT(kc->kc_refcnt > 0);
256
257 if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
258 return;
259 }
260 KASSERT(kc->kc_next == NULL);
261 if (lst == NULL) {
262 kcpuset_destroy(kcp);
263 return;
264 }
265 kc->kc_next = *lst;
266 *lst = kcp;
267 }
268
269 /*
270 * Routines to transfer the CPU set from / to userspace.
271 * Note: early boot case is not supported by these routines.
272 */
273
274 int
275 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
276 {
277 kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
278
279 KASSERT(kc_initialised);
280 KASSERT(kc->kc_refcnt > 0);
281 KASSERT(kc->kc_next == NULL);
282
283 if (len > kc_bitsize) { /* XXX */
284 return EINVAL;
285 }
286 return copyin(ucp, kcp, len);
287 }
288
289 int
290 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
291 {
292 kcpuset_impl_t *kc __unused = KC_GETSTRUCT(kcp);
293
294 KASSERT(kc_initialised);
295 KASSERT(kc->kc_refcnt > 0);
296 KASSERT(kc->kc_next == NULL);
297
298 if (len > kc_bitsize) { /* XXX */
299 return EINVAL;
300 }
301 return copyout(kcp, ucp, len);
302 }
303
304 /*
305 * Routines to change bit field - zero, fill, copy, set, unset, etc.
306 */
307
308 void
309 kcpuset_zero(kcpuset_t *kcp)
310 {
311
312 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
313 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
314 memset(kcp, 0, kc_bitsize);
315 }
316
317 void
318 kcpuset_fill(kcpuset_t *kcp)
319 {
320
321 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
322 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
323 memset(kcp, ~0, kc_bitsize);
324 }
325
326 void
327 kcpuset_copy(kcpuset_t *dkcp, kcpuset_t *skcp)
328 {
329
330 KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
331 KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
332 memcpy(dkcp, skcp, kc_bitsize);
333 }
334
335 void
336 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
337 {
338 const size_t j = i >> KC_SHIFT;
339
340 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
341 KASSERT(j < kc_nfields);
342
343 kcp->bits[j] |= 1 << (i & KC_MASK);
344 }
345
346 void
347 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
348 {
349 const size_t j = i >> KC_SHIFT;
350
351 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
352 KASSERT(j < kc_nfields);
353
354 kcp->bits[j] &= ~(1 << (i & KC_MASK));
355 }
356
357 bool
358 kcpuset_isset(kcpuset_t *kcp, cpuid_t i)
359 {
360 const size_t j = i >> KC_SHIFT;
361
362 KASSERT(kcp != NULL);
363 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
364 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
365 KASSERT(j < kc_nfields);
366
367 return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
368 }
369
370 bool
371 kcpuset_isotherset(kcpuset_t *kcp, cpuid_t i)
372 {
373 const size_t j2 = i >> KC_SHIFT;
374 const uint32_t mask = ~(1 << (i & KC_MASK));
375
376 for (size_t j = 0; j < kc_nfields; j++) {
377 const uint32_t bits = kcp->bits[j];
378 if (bits && (j != j2 || (bits & mask) != 0)) {
379 return true;
380 }
381 }
382 return false;
383 }
384
385 bool
386 kcpuset_iszero(kcpuset_t *kcp)
387 {
388
389 for (size_t j = 0; j < kc_nfields; j++) {
390 if (kcp->bits[j] != 0) {
391 return false;
392 }
393 }
394 return true;
395 }
396
397 bool
398 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
399 {
400
401 return memcmp(kcp1, kcp2, kc_bitsize) == 0;
402 }
403
404 void
405 kcpuset_merge(kcpuset_t *kcp1, kcpuset_t *kcp2)
406 {
407
408 for (size_t j = 0; j < kc_nfields; j++) {
409 kcp1->bits[j] |= kcp2->bits[j];
410 }
411 }
412
413 void
414 kcpuset_intersect(kcpuset_t *kcp1, kcpuset_t *kcp2)
415 {
416
417 for (size_t j = 0; j < kc_nfields; j++) {
418 kcp1->bits[j] &= kcp2->bits[j];
419 }
420 }
421
422 int
423 kcpuset_countset(kcpuset_t *kcp)
424 {
425 int count = 0;
426
427 for (size_t j = 0; j < kc_nfields; j++) {
428 count += popcount32(kcp->bits[j]);
429 }
430 return count;
431 }
432
433 /*
434 * Routines to set/clear the flags atomically.
435 */
436
437 void
438 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
439 {
440 const size_t j = i >> KC_SHIFT;
441
442 KASSERT(j < kc_nfields);
443 atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
444 }
445
446 void
447 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
448 {
449 const size_t j = i >> KC_SHIFT;
450
451 KASSERT(j < kc_nfields);
452 atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
453 }
454