1 1.89 ad /* $NetBSD: subr_kmem.c,v 1.89 2023/09/10 14:29:13 ad Exp $ */ 2 1.1 yamt 3 1.76 maxv /* 4 1.89 ad * Copyright (c) 2009-2023 The NetBSD Foundation, Inc. 5 1.23 ad * All rights reserved. 6 1.23 ad * 7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation 8 1.61 maxv * by Andrew Doran and Maxime Villard. 9 1.23 ad * 10 1.23 ad * Redistribution and use in source and binary forms, with or without 11 1.23 ad * modification, are permitted provided that the following conditions 12 1.23 ad * are met: 13 1.23 ad * 1. Redistributions of source code must retain the above copyright 14 1.23 ad * notice, this list of conditions and the following disclaimer. 15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright 16 1.23 ad * notice, this list of conditions and the following disclaimer in the 17 1.23 ad * documentation and/or other materials provided with the distribution. 18 1.23 ad * 19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.23 ad * POSSIBILITY OF SUCH DAMAGE. 30 1.23 ad */ 31 1.23 ad 32 1.76 maxv /* 33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi, 34 1.1 yamt * All rights reserved. 35 1.1 yamt * 36 1.1 yamt * Redistribution and use in source and binary forms, with or without 37 1.1 yamt * modification, are permitted provided that the following conditions 38 1.1 yamt * are met: 39 1.1 yamt * 1. Redistributions of source code must retain the above copyright 40 1.1 yamt * notice, this list of conditions and the following disclaimer. 41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright 42 1.1 yamt * notice, this list of conditions and the following disclaimer in the 43 1.1 yamt * documentation and/or other materials provided with the distribution. 44 1.1 yamt * 45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 1.1 yamt * SUCH DAMAGE. 56 1.1 yamt */ 57 1.1 yamt 58 1.1 yamt /* 59 1.55 maxv * Allocator of kernel wired memory. This allocator has some debug features 60 1.55 maxv * enabled with "option DIAGNOSTIC" and "option DEBUG". 61 1.50 yamt */ 62 1.50 yamt 63 1.50 yamt /* 64 1.55 maxv * KMEM_SIZE: detect alloc/free size mismatch bugs. 65 1.79 ad * Append to each allocation a fixed-sized footer and record the exact 66 1.79 ad * user-requested allocation size in it. When freeing, compare it with 67 1.79 ad * kmem_free's "size" argument. 68 1.60 maxv * 69 1.76 maxv * This option is enabled on DIAGNOSTIC. 70 1.50 yamt * 71 1.79 ad * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK| | 72 1.79 ad * +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+ 73 1.79 ad * | | | | | | | | |/////|U| 74 1.79 ad * | | | | | | | | |/HSZ/|U| 75 1.79 ad * | | | | | | | | |/////|U| 76 1.79 ad * +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+ 77 1.79 ad * | Buffer usable by the caller (requested size) |Size |Unused 78 1.60 maxv */ 79 1.60 maxv 80 1.1 yamt #include <sys/cdefs.h> 81 1.89 ad __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.89 2023/09/10 14:29:13 ad Exp $"); 82 1.63 christos 83 1.63 christos #ifdef _KERNEL_OPT 84 1.63 christos #include "opt_kmem.h" 85 1.63 christos #endif 86 1.1 yamt 87 1.1 yamt #include <sys/param.h> 88 1.6 yamt #include <sys/callback.h> 89 1.1 yamt #include <sys/kmem.h> 90 1.39 para #include <sys/pool.h> 91 1.13 ad #include <sys/debug.h> 92 1.17 ad #include <sys/lockdebug.h> 93 1.23 ad #include <sys/cpu.h> 94 1.69 maxv #include <sys/asan.h> 95 1.77 maxv #include <sys/msan.h> 96 1.85 riastrad #include <sys/sdt.h> 97 1.69 maxv 98 1.6 yamt #include <uvm/uvm_extern.h> 99 1.6 yamt #include <uvm/uvm_map.h> 100 1.6 yamt 101 1.1 yamt #include <lib/libkern/libkern.h> 102 1.1 yamt 103 1.46 para struct kmem_cache_info { 104 1.40 rmind size_t kc_size; 105 1.40 rmind const char * kc_name; 106 1.85 riastrad #ifdef KDTRACE_HOOKS 107 1.85 riastrad const id_t *kc_alloc_probe_id; 108 1.85 riastrad const id_t *kc_free_probe_id; 109 1.85 riastrad #endif 110 1.46 para }; 111 1.46 para 112 1.85 riastrad #define KMEM_CACHE_SIZES(F) \ 113 1.85 riastrad F(8, kmem-00008, kmem__00008) \ 114 1.85 riastrad F(16, kmem-00016, kmem__00016) \ 115 1.85 riastrad F(24, kmem-00024, kmem__00024) \ 116 1.85 riastrad F(32, kmem-00032, kmem__00032) \ 117 1.85 riastrad F(40, kmem-00040, kmem__00040) \ 118 1.85 riastrad F(48, kmem-00048, kmem__00048) \ 119 1.85 riastrad F(56, kmem-00056, kmem__00056) \ 120 1.85 riastrad F(64, kmem-00064, kmem__00064) \ 121 1.85 riastrad F(80, kmem-00080, kmem__00080) \ 122 1.85 riastrad F(96, kmem-00096, kmem__00096) \ 123 1.85 riastrad F(112, kmem-00112, kmem__00112) \ 124 1.85 riastrad F(128, kmem-00128, kmem__00128) \ 125 1.85 riastrad F(160, kmem-00160, kmem__00160) \ 126 1.85 riastrad F(192, kmem-00192, kmem__00192) \ 127 1.85 riastrad F(224, kmem-00224, kmem__00224) \ 128 1.85 riastrad F(256, kmem-00256, kmem__00256) \ 129 1.85 riastrad F(320, kmem-00320, kmem__00320) \ 130 1.85 riastrad F(384, kmem-00384, kmem__00384) \ 131 1.85 riastrad F(448, kmem-00448, kmem__00448) \ 132 1.85 riastrad F(512, kmem-00512, kmem__00512) \ 133 1.85 riastrad F(768, kmem-00768, kmem__00768) \ 134 1.85 riastrad F(1024, kmem-01024, kmem__01024) \ 135 1.85 riastrad /* end of KMEM_CACHE_SIZES */ 136 1.85 riastrad 137 1.85 riastrad #define KMEM_CACHE_BIG_SIZES(F) \ 138 1.85 riastrad F(2048, kmem-02048, kmem__02048) \ 139 1.85 riastrad F(4096, kmem-04096, kmem__04096) \ 140 1.85 riastrad F(8192, kmem-08192, kmem__08192) \ 141 1.85 riastrad F(16384, kmem-16384, kmem__16384) \ 142 1.85 riastrad /* end of KMEM_CACHE_BIG_SIZES */ 143 1.85 riastrad 144 1.85 riastrad /* sdt:kmem:alloc:kmem-* probes */ 145 1.85 riastrad #define F(SZ, NAME, PROBENAME) \ 146 1.85 riastrad SDT_PROBE_DEFINE4(sdt, kmem, alloc, PROBENAME, \ 147 1.85 riastrad "void *"/*ptr*/, \ 148 1.85 riastrad "size_t"/*requested_size*/, \ 149 1.85 riastrad "size_t"/*allocated_size*/, \ 150 1.85 riastrad "km_flag_t"/*kmflags*/); 151 1.85 riastrad KMEM_CACHE_SIZES(F); 152 1.85 riastrad KMEM_CACHE_BIG_SIZES(F); 153 1.85 riastrad #undef F 154 1.85 riastrad 155 1.85 riastrad /* sdt:kmem:free:kmem-* probes */ 156 1.85 riastrad #define F(SZ, NAME, PROBENAME) \ 157 1.85 riastrad SDT_PROBE_DEFINE3(sdt, kmem, free, PROBENAME, \ 158 1.85 riastrad "void *"/*ptr*/, \ 159 1.85 riastrad "size_t"/*requested_size*/, \ 160 1.85 riastrad "size_t"/*allocated_size*/); 161 1.85 riastrad KMEM_CACHE_SIZES(F); 162 1.85 riastrad KMEM_CACHE_BIG_SIZES(F); 163 1.85 riastrad #undef F 164 1.85 riastrad 165 1.85 riastrad /* sdt:kmem:alloc:large, sdt:kmem:free:large probes */ 166 1.85 riastrad SDT_PROBE_DEFINE4(sdt, kmem, alloc, large, 167 1.85 riastrad "void *"/*ptr*/, 168 1.85 riastrad "size_t"/*requested_size*/, 169 1.85 riastrad "size_t"/*allocated_size*/, 170 1.85 riastrad "km_flag_t"/*kmflags*/); 171 1.85 riastrad SDT_PROBE_DEFINE3(sdt, kmem, free, large, 172 1.85 riastrad "void *"/*ptr*/, 173 1.85 riastrad "size_t"/*requested_size*/, 174 1.85 riastrad "size_t"/*allocated_size*/); 175 1.85 riastrad 176 1.85 riastrad #ifdef KDTRACE_HOOKS 177 1.85 riastrad #define F(SZ, NAME, PROBENAME) \ 178 1.85 riastrad { SZ, #NAME, \ 179 1.85 riastrad &sdt_sdt_kmem_alloc_##PROBENAME->id, \ 180 1.85 riastrad &sdt_sdt_kmem_free_##PROBENAME->id }, 181 1.85 riastrad #else 182 1.85 riastrad #define F(SZ, NAME, PROBENAME) { SZ, #NAME }, 183 1.85 riastrad #endif 184 1.85 riastrad 185 1.46 para static const struct kmem_cache_info kmem_cache_sizes[] = { 186 1.85 riastrad KMEM_CACHE_SIZES(F) 187 1.87 mrg { 0 } 188 1.46 para }; 189 1.46 para 190 1.46 para static const struct kmem_cache_info kmem_cache_big_sizes[] = { 191 1.85 riastrad KMEM_CACHE_BIG_SIZES(F) 192 1.87 mrg { 0 } 193 1.39 para }; 194 1.1 yamt 195 1.85 riastrad #undef F 196 1.85 riastrad 197 1.39 para /* 198 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the 199 1.46 para * smallest allocateable quantum. 200 1.46 para * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment. 201 1.39 para */ 202 1.40 rmind #define KMEM_ALIGN 8 203 1.40 rmind #define KMEM_SHIFT 3 204 1.46 para #define KMEM_MAXSIZE 1024 205 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT) 206 1.1 yamt 207 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned; 208 1.40 rmind static size_t kmem_cache_maxidx __read_mostly; 209 1.23 ad 210 1.46 para #define KMEM_BIG_ALIGN 2048 211 1.46 para #define KMEM_BIG_SHIFT 11 212 1.46 para #define KMEM_BIG_MAXSIZE 16384 213 1.46 para #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT) 214 1.46 para 215 1.46 para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned; 216 1.46 para static size_t kmem_cache_big_maxidx __read_mostly; 217 1.46 para 218 1.53 maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL) 219 1.57 maxv #define KMEM_SIZE 220 1.67 maxv #endif 221 1.53 maxv 222 1.45 martin #if defined(DEBUG) && defined(_HARDKERNEL) 223 1.61 maxv static void *kmem_freecheck; 224 1.67 maxv #endif 225 1.4 yamt 226 1.23 ad #if defined(KMEM_SIZE) 227 1.79 ad #define SIZE_SIZE sizeof(size_t) 228 1.23 ad static void kmem_size_set(void *, size_t); 229 1.39 para static void kmem_size_check(void *, size_t); 230 1.23 ad #else 231 1.23 ad #define SIZE_SIZE 0 232 1.23 ad #define kmem_size_set(p, sz) /* nothing */ 233 1.23 ad #define kmem_size_check(p, sz) /* nothing */ 234 1.23 ad #endif 235 1.23 ad 236 1.85 riastrad #ifndef KDTRACE_HOOKS 237 1.85 riastrad 238 1.85 riastrad static const id_t **const kmem_cache_alloc_probe_id = NULL; 239 1.85 riastrad static const id_t **const kmem_cache_big_alloc_probe_id = NULL; 240 1.85 riastrad static const id_t **const kmem_cache_free_probe_id = NULL; 241 1.85 riastrad static const id_t **const kmem_cache_big_free_probe_id = NULL; 242 1.85 riastrad 243 1.85 riastrad #define KMEM_CACHE_PROBE(ARRAY, INDEX, PTR, REQSIZE, ALLOCSIZE, FLAGS) \ 244 1.85 riastrad __nothing 245 1.85 riastrad 246 1.85 riastrad #else 247 1.85 riastrad 248 1.85 riastrad static const id_t *kmem_cache_alloc_probe_id[KMEM_CACHE_COUNT]; 249 1.85 riastrad static const id_t *kmem_cache_big_alloc_probe_id[KMEM_CACHE_COUNT]; 250 1.85 riastrad static const id_t *kmem_cache_free_probe_id[KMEM_CACHE_COUNT]; 251 1.85 riastrad static const id_t *kmem_cache_big_free_probe_id[KMEM_CACHE_COUNT]; 252 1.85 riastrad 253 1.85 riastrad #define KMEM_CACHE_PROBE(ARRAY, INDEX, PTR, REQSIZE, ALLOCSIZE, FLAGS) do \ 254 1.85 riastrad { \ 255 1.85 riastrad id_t id; \ 256 1.85 riastrad \ 257 1.85 riastrad KDASSERT((INDEX) < __arraycount(ARRAY)); \ 258 1.85 riastrad if (__predict_false((id = *(ARRAY)[INDEX]) != 0)) { \ 259 1.85 riastrad (*sdt_probe_func)(id, \ 260 1.85 riastrad (uintptr_t)(PTR), \ 261 1.85 riastrad (uintptr_t)(REQSIZE), \ 262 1.85 riastrad (uintptr_t)(ALLOCSIZE), \ 263 1.85 riastrad (uintptr_t)(FLAGS), \ 264 1.85 riastrad (uintptr_t)0); \ 265 1.85 riastrad } \ 266 1.85 riastrad } while (0) 267 1.85 riastrad 268 1.85 riastrad #endif /* KDTRACE_HOOKS */ 269 1.85 riastrad 270 1.85 riastrad #define KMEM_CACHE_ALLOC_PROBE(I, P, RS, AS, F) \ 271 1.85 riastrad KMEM_CACHE_PROBE(kmem_cache_alloc_probe_id, I, P, RS, AS, F) 272 1.85 riastrad #define KMEM_CACHE_BIG_ALLOC_PROBE(I, P, RS, AS, F) \ 273 1.85 riastrad KMEM_CACHE_PROBE(kmem_cache_big_alloc_probe_id, I, P, RS, AS, F) 274 1.85 riastrad #define KMEM_CACHE_FREE_PROBE(I, P, RS, AS) \ 275 1.85 riastrad KMEM_CACHE_PROBE(kmem_cache_free_probe_id, I, P, RS, AS, 0) 276 1.85 riastrad #define KMEM_CACHE_BIG_FREE_PROBE(I, P, RS, AS) \ 277 1.85 riastrad KMEM_CACHE_PROBE(kmem_cache_big_free_probe_id, I, P, RS, AS, 0) 278 1.85 riastrad 279 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK); 280 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT); 281 1.32 skrll 282 1.46 para /* 283 1.46 para * kmem_intr_alloc: allocate wired memory. 284 1.46 para */ 285 1.39 para void * 286 1.50 yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags) 287 1.1 yamt { 288 1.71 christos #ifdef KASAN 289 1.70 maxv const size_t origsize = requested_size; 290 1.71 christos #endif 291 1.40 rmind size_t allocsz, index; 292 1.50 yamt size_t size; 293 1.39 para pool_cache_t pc; 294 1.39 para uint8_t *p; 295 1.1 yamt 296 1.50 yamt KASSERT(requested_size > 0); 297 1.1 yamt 298 1.65 riastrad KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP)); 299 1.65 riastrad KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP)); 300 1.65 riastrad 301 1.69 maxv kasan_add_redzone(&requested_size); 302 1.50 yamt size = kmem_roundup_size(requested_size); 303 1.54 maxv allocsz = size + SIZE_SIZE; 304 1.54 maxv 305 1.85 riastrad if ((index = ((allocsz - 1) >> KMEM_SHIFT)) 306 1.46 para < kmem_cache_maxidx) { 307 1.46 para pc = kmem_cache[index]; 308 1.85 riastrad p = pool_cache_get(pc, kmflags); 309 1.85 riastrad KMEM_CACHE_ALLOC_PROBE(index, 310 1.85 riastrad p, requested_size, allocsz, kmflags); 311 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT)) 312 1.55 maxv < kmem_cache_big_maxidx) { 313 1.46 para pc = kmem_cache_big[index]; 314 1.85 riastrad p = pool_cache_get(pc, kmflags); 315 1.85 riastrad KMEM_CACHE_BIG_ALLOC_PROBE(index, 316 1.85 riastrad p, requested_size, allocsz, kmflags); 317 1.48 uebayasi } else { 318 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena, 319 1.43 para (vsize_t)round_page(size), 320 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP) 321 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p); 322 1.85 riastrad SDT_PROBE4(sdt, kmem, alloc, large, 323 1.85 riastrad ret ? NULL : p, requested_size, round_page(size), kmflags); 324 1.46 para if (ret) { 325 1.46 para return NULL; 326 1.46 para } 327 1.46 para FREECHECK_OUT(&kmem_freecheck, p); 328 1.89 ad KASSERT(size < coherency_unit || 329 1.89 ad ALIGNED_POINTER(p, coherency_unit)); 330 1.46 para return p; 331 1.1 yamt } 332 1.1 yamt 333 1.39 para if (__predict_true(p != NULL)) { 334 1.39 para FREECHECK_OUT(&kmem_freecheck, p); 335 1.50 yamt kmem_size_set(p, requested_size); 336 1.75 maxv kasan_mark(p, origsize, size, KASAN_KMEM_REDZONE); 337 1.68 maxv return p; 338 1.39 para } 339 1.89 ad 340 1.89 ad KASSERT(size < coherency_unit || ALIGNED_POINTER(p, coherency_unit)); 341 1.47 para return p; 342 1.1 yamt } 343 1.1 yamt 344 1.46 para /* 345 1.46 para * kmem_intr_zalloc: allocate zeroed wired memory. 346 1.46 para */ 347 1.39 para void * 348 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags) 349 1.23 ad { 350 1.39 para void *p; 351 1.23 ad 352 1.39 para p = kmem_intr_alloc(size, kmflags); 353 1.88 riastrad if (__predict_true(p != NULL)) { 354 1.39 para memset(p, 0, size); 355 1.39 para } 356 1.39 para return p; 357 1.23 ad } 358 1.23 ad 359 1.46 para /* 360 1.46 para * kmem_intr_free: free wired memory allocated by kmem_alloc. 361 1.46 para */ 362 1.39 para void 363 1.50 yamt kmem_intr_free(void *p, size_t requested_size) 364 1.23 ad { 365 1.40 rmind size_t allocsz, index; 366 1.50 yamt size_t size; 367 1.39 para pool_cache_t pc; 368 1.23 ad 369 1.39 para KASSERT(p != NULL); 370 1.84 riastrad KASSERTMSG(requested_size > 0, "kmem_intr_free(%p, 0)", p); 371 1.39 para 372 1.69 maxv kasan_add_redzone(&requested_size); 373 1.50 yamt size = kmem_roundup_size(requested_size); 374 1.54 maxv allocsz = size + SIZE_SIZE; 375 1.54 maxv 376 1.85 riastrad if ((index = ((allocsz - 1) >> KMEM_SHIFT)) 377 1.46 para < kmem_cache_maxidx) { 378 1.85 riastrad KMEM_CACHE_FREE_PROBE(index, p, requested_size, allocsz); 379 1.46 para pc = kmem_cache[index]; 380 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT)) 381 1.55 maxv < kmem_cache_big_maxidx) { 382 1.85 riastrad KMEM_CACHE_BIG_FREE_PROBE(index, p, requested_size, allocsz); 383 1.46 para pc = kmem_cache_big[index]; 384 1.46 para } else { 385 1.46 para FREECHECK_IN(&kmem_freecheck, p); 386 1.85 riastrad SDT_PROBE3(sdt, kmem, free, large, 387 1.85 riastrad p, requested_size, round_page(size)); 388 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p, 389 1.43 para round_page(size)); 390 1.39 para return; 391 1.39 para } 392 1.39 para 393 1.75 maxv kasan_mark(p, size, size, 0); 394 1.70 maxv 395 1.50 yamt kmem_size_check(p, requested_size); 396 1.39 para FREECHECK_IN(&kmem_freecheck, p); 397 1.46 para LOCKDEBUG_MEM_CHECK(p, size); 398 1.39 para 399 1.39 para pool_cache_put(pc, p); 400 1.23 ad } 401 1.23 ad 402 1.76 maxv /* -------------------------------- Kmem API -------------------------------- */ 403 1.1 yamt 404 1.1 yamt /* 405 1.1 yamt * kmem_alloc: allocate wired memory. 406 1.1 yamt * => must not be called from interrupt context. 407 1.1 yamt */ 408 1.1 yamt void * 409 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags) 410 1.1 yamt { 411 1.62 chs void *v; 412 1.62 chs 413 1.88 riastrad KASSERT(!cpu_intr_p()); 414 1.88 riastrad KASSERT(!cpu_softintr_p()); 415 1.88 riastrad 416 1.62 chs v = kmem_intr_alloc(size, kmflags); 417 1.77 maxv if (__predict_true(v != NULL)) { 418 1.77 maxv kmsan_mark(v, size, KMSAN_STATE_UNINIT); 419 1.77 maxv kmsan_orig(v, size, KMSAN_TYPE_KMEM, __RET_ADDR); 420 1.77 maxv } 421 1.62 chs KASSERT(v || (kmflags & KM_NOSLEEP) != 0); 422 1.62 chs return v; 423 1.1 yamt } 424 1.1 yamt 425 1.1 yamt /* 426 1.39 para * kmem_zalloc: allocate zeroed wired memory. 427 1.2 yamt * => must not be called from interrupt context. 428 1.2 yamt */ 429 1.2 yamt void * 430 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags) 431 1.2 yamt { 432 1.62 chs void *v; 433 1.62 chs 434 1.88 riastrad KASSERT(!cpu_intr_p()); 435 1.88 riastrad KASSERT(!cpu_softintr_p()); 436 1.88 riastrad 437 1.62 chs v = kmem_intr_zalloc(size, kmflags); 438 1.62 chs KASSERT(v || (kmflags & KM_NOSLEEP) != 0); 439 1.62 chs return v; 440 1.2 yamt } 441 1.2 yamt 442 1.2 yamt /* 443 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc. 444 1.1 yamt * => must not be called from interrupt context. 445 1.1 yamt */ 446 1.1 yamt void 447 1.1 yamt kmem_free(void *p, size_t size) 448 1.1 yamt { 449 1.88 riastrad 450 1.23 ad KASSERT(!cpu_intr_p()); 451 1.27 ad KASSERT(!cpu_softintr_p()); 452 1.88 riastrad 453 1.39 para kmem_intr_free(p, size); 454 1.77 maxv kmsan_mark(p, size, KMSAN_STATE_INITED); 455 1.1 yamt } 456 1.1 yamt 457 1.46 para static size_t 458 1.39 para kmem_create_caches(const struct kmem_cache_info *array, 459 1.85 riastrad const id_t *alloc_probe_table[], const id_t *free_probe_table[], 460 1.46 para pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl) 461 1.1 yamt { 462 1.46 para size_t maxidx = 0; 463 1.46 para size_t table_unit = (1 << shift); 464 1.39 para size_t size = table_unit; 465 1.23 ad int i; 466 1.1 yamt 467 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) { 468 1.40 rmind const char *name = array[i].kc_name; 469 1.39 para size_t cache_size = array[i].kc_size; 470 1.46 para struct pool_allocator *pa; 471 1.74 maxv int flags = 0; 472 1.40 rmind pool_cache_t pc; 473 1.39 para size_t align; 474 1.39 para 475 1.39 para /* check if we reached the requested size */ 476 1.46 para if (cache_size > maxsize || cache_size > PAGE_SIZE) { 477 1.23 ad break; 478 1.40 rmind } 479 1.78 ad 480 1.78 ad /* 481 1.78 ad * Exclude caches with size not a factor or multiple of the 482 1.78 ad * coherency unit. 483 1.78 ad */ 484 1.78 ad if (cache_size < COHERENCY_UNIT) { 485 1.78 ad if (COHERENCY_UNIT % cache_size > 0) { 486 1.78 ad continue; 487 1.78 ad } 488 1.78 ad flags |= PR_NOTOUCH; 489 1.78 ad align = KMEM_ALIGN; 490 1.78 ad } else if ((cache_size & (PAGE_SIZE - 1)) == 0) { 491 1.78 ad align = PAGE_SIZE; 492 1.78 ad } else { 493 1.78 ad if ((cache_size % COHERENCY_UNIT) > 0) { 494 1.78 ad continue; 495 1.78 ad } 496 1.78 ad align = COHERENCY_UNIT; 497 1.46 para } 498 1.46 para 499 1.46 para if ((cache_size >> shift) > maxidx) { 500 1.46 para maxidx = cache_size >> shift; 501 1.40 rmind } 502 1.1 yamt 503 1.46 para pa = &pool_allocator_kmem; 504 1.39 para pc = pool_cache_init(cache_size, align, 0, flags, 505 1.46 para name, pa, ipl, NULL, NULL, NULL); 506 1.1 yamt 507 1.39 para while (size <= cache_size) { 508 1.46 para alloc_table[(size - 1) >> shift] = pc; 509 1.86 mrg #ifdef KDTRACE_HOOKS 510 1.85 riastrad if (alloc_probe_table) { 511 1.85 riastrad alloc_probe_table[(size - 1) >> shift] = 512 1.85 riastrad array[i].kc_alloc_probe_id; 513 1.85 riastrad } 514 1.85 riastrad if (free_probe_table) { 515 1.85 riastrad free_probe_table[(size - 1) >> shift] = 516 1.85 riastrad array[i].kc_free_probe_id; 517 1.85 riastrad } 518 1.86 mrg #endif 519 1.39 para size += table_unit; 520 1.39 para } 521 1.1 yamt } 522 1.46 para return maxidx; 523 1.1 yamt } 524 1.1 yamt 525 1.39 para void 526 1.39 para kmem_init(void) 527 1.1 yamt { 528 1.46 para kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes, 529 1.85 riastrad kmem_cache_alloc_probe_id, kmem_cache_free_probe_id, 530 1.46 para kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM); 531 1.55 maxv kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes, 532 1.85 riastrad kmem_cache_big_alloc_probe_id, kmem_cache_big_free_probe_id, 533 1.46 para kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM); 534 1.1 yamt } 535 1.4 yamt 536 1.39 para size_t 537 1.39 para kmem_roundup_size(size_t size) 538 1.7 yamt { 539 1.61 maxv return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1); 540 1.61 maxv } 541 1.7 yamt 542 1.61 maxv /* 543 1.61 maxv * Used to dynamically allocate string with kmem accordingly to format. 544 1.61 maxv */ 545 1.61 maxv char * 546 1.61 maxv kmem_asprintf(const char *fmt, ...) 547 1.61 maxv { 548 1.61 maxv int size __diagused, len; 549 1.61 maxv va_list va; 550 1.61 maxv char *str; 551 1.61 maxv 552 1.61 maxv va_start(va, fmt); 553 1.61 maxv len = vsnprintf(NULL, 0, fmt, va); 554 1.61 maxv va_end(va); 555 1.61 maxv 556 1.61 maxv str = kmem_alloc(len + 1, KM_SLEEP); 557 1.61 maxv 558 1.61 maxv va_start(va, fmt); 559 1.61 maxv size = vsnprintf(str, len + 1, fmt, va); 560 1.61 maxv va_end(va); 561 1.61 maxv 562 1.61 maxv KASSERT(size == len); 563 1.61 maxv 564 1.61 maxv return str; 565 1.7 yamt } 566 1.7 yamt 567 1.64 christos char * 568 1.64 christos kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags) 569 1.64 christos { 570 1.64 christos size_t len = strlen(str) + 1; 571 1.64 christos char *ptr = kmem_alloc(len, flags); 572 1.64 christos if (ptr == NULL) 573 1.64 christos return NULL; 574 1.64 christos 575 1.64 christos if (lenp) 576 1.64 christos *lenp = len; 577 1.64 christos memcpy(ptr, str, len); 578 1.64 christos return ptr; 579 1.64 christos } 580 1.64 christos 581 1.66 christos char * 582 1.66 christos kmem_strndup(const char *str, size_t maxlen, km_flag_t flags) 583 1.66 christos { 584 1.66 christos KASSERT(str != NULL); 585 1.66 christos KASSERT(maxlen != 0); 586 1.66 christos 587 1.66 christos size_t len = strnlen(str, maxlen); 588 1.66 christos char *ptr = kmem_alloc(len + 1, flags); 589 1.66 christos if (ptr == NULL) 590 1.66 christos return NULL; 591 1.66 christos 592 1.66 christos memcpy(ptr, str, len); 593 1.66 christos ptr[len] = '\0'; 594 1.66 christos 595 1.66 christos return ptr; 596 1.66 christos } 597 1.66 christos 598 1.64 christos void 599 1.64 christos kmem_strfree(char *str) 600 1.64 christos { 601 1.64 christos if (str == NULL) 602 1.64 christos return; 603 1.64 christos 604 1.64 christos kmem_free(str, strlen(str) + 1); 605 1.64 christos } 606 1.64 christos 607 1.81 thorpej /* 608 1.81 thorpej * Utility routine to maybe-allocate a temporary buffer if the size 609 1.81 thorpej * is larger than we're willing to put on the stack. 610 1.81 thorpej */ 611 1.81 thorpej void * 612 1.81 thorpej kmem_tmpbuf_alloc(size_t size, void *stackbuf, size_t stackbufsize, 613 1.81 thorpej km_flag_t flags) 614 1.81 thorpej { 615 1.81 thorpej if (size <= stackbufsize) { 616 1.81 thorpej return stackbuf; 617 1.81 thorpej } 618 1.81 thorpej 619 1.81 thorpej return kmem_alloc(size, flags); 620 1.81 thorpej } 621 1.81 thorpej 622 1.81 thorpej void 623 1.81 thorpej kmem_tmpbuf_free(void *buf, size_t size, void *stackbuf) 624 1.81 thorpej { 625 1.81 thorpej if (buf != stackbuf) { 626 1.81 thorpej kmem_free(buf, size); 627 1.81 thorpej } 628 1.81 thorpej } 629 1.81 thorpej 630 1.76 maxv /* --------------------------- DEBUG / DIAGNOSTIC --------------------------- */ 631 1.4 yamt 632 1.23 ad #if defined(KMEM_SIZE) 633 1.23 ad static void 634 1.23 ad kmem_size_set(void *p, size_t sz) 635 1.23 ad { 636 1.82 joerg memcpy((char *)p + sz, &sz, sizeof(size_t)); 637 1.23 ad } 638 1.23 ad 639 1.23 ad static void 640 1.39 para kmem_size_check(void *p, size_t sz) 641 1.23 ad { 642 1.57 maxv size_t hsz; 643 1.23 ad 644 1.82 joerg memcpy(&hsz, (char *)p + sz, sizeof(size_t)); 645 1.57 maxv 646 1.57 maxv if (hsz != sz) { 647 1.79 ad panic("kmem_free(%p, %zu) != allocated size %zu; overwrote?", 648 1.79 ad p, sz, hsz); 649 1.23 ad } 650 1.73 maxv 651 1.82 joerg memset((char *)p + sz, 0xff, sizeof(size_t)); 652 1.23 ad } 653 1.54 maxv #endif /* defined(KMEM_SIZE) */ 654