subr_kmem.c revision 1.19.18.2 1 1.19.18.2 skrll /* $NetBSD: subr_kmem.c,v 1.19.18.2 2009/03/03 18:32:56 skrll Exp $ */
2 1.19.18.2 skrll
3 1.19.18.2 skrll /*-
4 1.19.18.2 skrll * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.19.18.2 skrll * All rights reserved.
6 1.19.18.2 skrll *
7 1.19.18.2 skrll * This code is derived from software contributed to The NetBSD Foundation
8 1.19.18.2 skrll * by Andrew Doran.
9 1.19.18.2 skrll *
10 1.19.18.2 skrll * Redistribution and use in source and binary forms, with or without
11 1.19.18.2 skrll * modification, are permitted provided that the following conditions
12 1.19.18.2 skrll * are met:
13 1.19.18.2 skrll * 1. Redistributions of source code must retain the above copyright
14 1.19.18.2 skrll * notice, this list of conditions and the following disclaimer.
15 1.19.18.2 skrll * 2. Redistributions in binary form must reproduce the above copyright
16 1.19.18.2 skrll * notice, this list of conditions and the following disclaimer in the
17 1.19.18.2 skrll * documentation and/or other materials provided with the distribution.
18 1.19.18.2 skrll *
19 1.19.18.2 skrll * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.19.18.2 skrll * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.19.18.2 skrll * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.19.18.2 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.19.18.2 skrll * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.19.18.2 skrll * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.19.18.2 skrll * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.19.18.2 skrll * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.19.18.2 skrll * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.19.18.2 skrll * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.19.18.2 skrll * POSSIBILITY OF SUCH DAMAGE.
30 1.19.18.2 skrll */
31 1.1 yamt
32 1.1 yamt /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.1 yamt * allocator of kernel wired memory.
60 1.1 yamt *
61 1.1 yamt * TODO:
62 1.1 yamt * - worth to have "intrsafe" version? maybe..
63 1.1 yamt */
64 1.1 yamt
65 1.1 yamt #include <sys/cdefs.h>
66 1.19.18.2 skrll __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.19.18.2 2009/03/03 18:32:56 skrll Exp $");
67 1.1 yamt
68 1.1 yamt #include <sys/param.h>
69 1.6 yamt #include <sys/callback.h>
70 1.1 yamt #include <sys/kmem.h>
71 1.1 yamt #include <sys/vmem.h>
72 1.13 ad #include <sys/debug.h>
73 1.17 ad #include <sys/lockdebug.h>
74 1.19.18.2 skrll #include <sys/cpu.h>
75 1.1 yamt
76 1.6 yamt #include <uvm/uvm_extern.h>
77 1.6 yamt #include <uvm/uvm_map.h>
78 1.6 yamt
79 1.1 yamt #include <lib/libkern/libkern.h>
80 1.1 yamt
81 1.3 yamt #define KMEM_QUANTUM_SIZE (ALIGNBYTES + 1)
82 1.19.18.2 skrll #define KMEM_QCACHE_MAX (KMEM_QUANTUM_SIZE * 32)
83 1.19.18.2 skrll #define KMEM_CACHE_COUNT 16
84 1.19.18.2 skrll
85 1.19.18.2 skrll typedef struct kmem_cache {
86 1.19.18.2 skrll pool_cache_t kc_cache;
87 1.19.18.2 skrll struct pool_allocator kc_pa;
88 1.19.18.2 skrll char kc_name[12];
89 1.19.18.2 skrll } kmem_cache_t;
90 1.1 yamt
91 1.1 yamt static vmem_t *kmem_arena;
92 1.6 yamt static struct callback_entry kmem_kva_reclaim_entry;
93 1.1 yamt
94 1.19.18.2 skrll static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
95 1.19.18.2 skrll static size_t kmem_cache_max;
96 1.19.18.2 skrll static size_t kmem_cache_min;
97 1.19.18.2 skrll static size_t kmem_cache_mask;
98 1.19.18.2 skrll static int kmem_cache_shift;
99 1.19.18.2 skrll
100 1.4 yamt #if defined(DEBUG)
101 1.13 ad static void *kmem_freecheck;
102 1.19 yamt #define KMEM_POISON
103 1.19 yamt #define KMEM_REDZONE
104 1.19.18.2 skrll #define KMEM_SIZE
105 1.19 yamt #endif /* defined(DEBUG) */
106 1.19 yamt
107 1.19 yamt #if defined(KMEM_POISON)
108 1.4 yamt static void kmem_poison_fill(void *, size_t);
109 1.4 yamt static void kmem_poison_check(void *, size_t);
110 1.19 yamt #else /* defined(KMEM_POISON) */
111 1.4 yamt #define kmem_poison_fill(p, sz) /* nothing */
112 1.4 yamt #define kmem_poison_check(p, sz) /* nothing */
113 1.19 yamt #endif /* defined(KMEM_POISON) */
114 1.19 yamt
115 1.19 yamt #if defined(KMEM_REDZONE)
116 1.19 yamt #define REDZONE_SIZE 1
117 1.19 yamt #else /* defined(KMEM_REDZONE) */
118 1.19 yamt #define REDZONE_SIZE 0
119 1.19 yamt #endif /* defined(KMEM_REDZONE) */
120 1.4 yamt
121 1.19.18.2 skrll #if defined(KMEM_SIZE)
122 1.19.18.2 skrll #define SIZE_SIZE (max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
123 1.19.18.2 skrll static void kmem_size_set(void *, size_t);
124 1.19.18.2 skrll static void kmem_size_check(void *, size_t);
125 1.19.18.2 skrll #else
126 1.19.18.2 skrll #define SIZE_SIZE 0
127 1.19.18.2 skrll #define kmem_size_set(p, sz) /* nothing */
128 1.19.18.2 skrll #define kmem_size_check(p, sz) /* nothing */
129 1.19.18.2 skrll #endif
130 1.19.18.2 skrll
131 1.1 yamt static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
132 1.1 yamt vm_flag_t);
133 1.1 yamt static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
134 1.6 yamt static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
135 1.1 yamt
136 1.1 yamt static inline vm_flag_t
137 1.1 yamt kmf_to_vmf(km_flag_t kmflags)
138 1.1 yamt {
139 1.1 yamt vm_flag_t vmflags;
140 1.1 yamt
141 1.1 yamt KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
142 1.1 yamt KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
143 1.1 yamt
144 1.1 yamt vmflags = 0;
145 1.1 yamt if ((kmflags & KM_SLEEP) != 0) {
146 1.1 yamt vmflags |= VM_SLEEP;
147 1.1 yamt }
148 1.1 yamt if ((kmflags & KM_NOSLEEP) != 0) {
149 1.1 yamt vmflags |= VM_NOSLEEP;
150 1.1 yamt }
151 1.1 yamt
152 1.1 yamt return vmflags;
153 1.1 yamt }
154 1.1 yamt
155 1.19.18.2 skrll static void *
156 1.19.18.2 skrll kmem_poolpage_alloc(struct pool *pool, int prflags)
157 1.19.18.2 skrll {
158 1.19.18.2 skrll
159 1.19.18.2 skrll KASSERT(KM_SLEEP == PR_WAITOK);
160 1.19.18.2 skrll KASSERT(KM_NOSLEEP == PR_NOWAIT);
161 1.19.18.2 skrll
162 1.19.18.2 skrll return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
163 1.19.18.2 skrll kmf_to_vmf(prflags) | VM_INSTANTFIT);
164 1.19.18.2 skrll
165 1.19.18.2 skrll }
166 1.19.18.2 skrll
167 1.19.18.2 skrll static void
168 1.19.18.2 skrll kmem_poolpage_free(struct pool *pool, void *addr)
169 1.19.18.2 skrll {
170 1.19.18.2 skrll
171 1.19.18.2 skrll vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
172 1.19.18.2 skrll }
173 1.19.18.2 skrll
174 1.1 yamt /* ---- kmem API */
175 1.1 yamt
176 1.1 yamt /*
177 1.1 yamt * kmem_alloc: allocate wired memory.
178 1.1 yamt *
179 1.1 yamt * => must not be called from interrupt context.
180 1.1 yamt */
181 1.1 yamt
182 1.1 yamt void *
183 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
184 1.1 yamt {
185 1.19.18.2 skrll kmem_cache_t *kc;
186 1.19.18.2 skrll uint8_t *p;
187 1.1 yamt
188 1.19.18.2 skrll KASSERT(!cpu_intr_p());
189 1.19.18.2 skrll KASSERT((curlwp->l_pflag & LP_INTR) == 0);
190 1.19.18.2 skrll
191 1.19.18.2 skrll size += REDZONE_SIZE + SIZE_SIZE;
192 1.19.18.2 skrll if (size >= kmem_cache_min && size <= kmem_cache_max) {
193 1.19.18.2 skrll kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
194 1.19.18.2 skrll KASSERT(size <= kc->kc_pa.pa_pagesz);
195 1.19.18.2 skrll KASSERT(KM_SLEEP == PR_WAITOK);
196 1.19.18.2 skrll KASSERT(KM_NOSLEEP == PR_NOWAIT);
197 1.19.18.2 skrll kmflags &= (KM_SLEEP | KM_NOSLEEP);
198 1.19.18.2 skrll p = pool_cache_get(kc->kc_cache, kmflags);
199 1.19.18.2 skrll } else {
200 1.19.18.2 skrll p = (void *)vmem_alloc(kmem_arena, size,
201 1.19.18.2 skrll kmf_to_vmf(kmflags) | VM_INSTANTFIT);
202 1.19.18.2 skrll }
203 1.19.18.2 skrll if (__predict_true(p != NULL)) {
204 1.18 yamt kmem_poison_check(p, kmem_roundup_size(size));
205 1.13 ad FREECHECK_OUT(&kmem_freecheck, p);
206 1.19.18.2 skrll kmem_size_set(p, size);
207 1.19.18.2 skrll p = (uint8_t *)p + SIZE_SIZE;
208 1.12 yamt }
209 1.4 yamt return p;
210 1.1 yamt }
211 1.1 yamt
212 1.1 yamt /*
213 1.2 yamt * kmem_zalloc: allocate wired memory.
214 1.2 yamt *
215 1.2 yamt * => must not be called from interrupt context.
216 1.2 yamt */
217 1.2 yamt
218 1.2 yamt void *
219 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
220 1.2 yamt {
221 1.2 yamt void *p;
222 1.2 yamt
223 1.2 yamt p = kmem_alloc(size, kmflags);
224 1.2 yamt if (p != NULL) {
225 1.2 yamt memset(p, 0, size);
226 1.2 yamt }
227 1.2 yamt return p;
228 1.2 yamt }
229 1.2 yamt
230 1.2 yamt /*
231 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
232 1.1 yamt *
233 1.1 yamt * => must not be called from interrupt context.
234 1.1 yamt */
235 1.1 yamt
236 1.1 yamt void
237 1.1 yamt kmem_free(void *p, size_t size)
238 1.1 yamt {
239 1.19.18.2 skrll kmem_cache_t *kc;
240 1.19.18.2 skrll
241 1.19.18.2 skrll KASSERT(!cpu_intr_p());
242 1.19.18.2 skrll KASSERT((curlwp->l_pflag & LP_INTR) == 0);
243 1.19.18.2 skrll
244 1.19.18.2 skrll size += SIZE_SIZE;
245 1.19.18.2 skrll p = (uint8_t *)p - SIZE_SIZE;
246 1.19.18.2 skrll kmem_size_check(p, size + REDZONE_SIZE);
247 1.1 yamt
248 1.13 ad FREECHECK_IN(&kmem_freecheck, p);
249 1.17 ad LOCKDEBUG_MEM_CHECK(p, size);
250 1.19 yamt kmem_poison_check((char *)p + size,
251 1.19 yamt kmem_roundup_size(size + REDZONE_SIZE) - size);
252 1.4 yamt kmem_poison_fill(p, size);
253 1.19.18.2 skrll size += REDZONE_SIZE;
254 1.19.18.2 skrll if (size >= kmem_cache_min && size <= kmem_cache_max) {
255 1.19.18.2 skrll kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
256 1.19.18.2 skrll KASSERT(size <= kc->kc_pa.pa_pagesz);
257 1.19.18.2 skrll pool_cache_put(kc->kc_cache, p);
258 1.19.18.2 skrll } else {
259 1.19.18.2 skrll vmem_free(kmem_arena, (vmem_addr_t)p, size);
260 1.19.18.2 skrll }
261 1.1 yamt }
262 1.1 yamt
263 1.19.18.2 skrll
264 1.1 yamt void
265 1.1 yamt kmem_init(void)
266 1.1 yamt {
267 1.19.18.2 skrll kmem_cache_t *kc;
268 1.19.18.2 skrll size_t sz;
269 1.19.18.2 skrll int i;
270 1.1 yamt
271 1.1 yamt kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
272 1.19.18.2 skrll kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
273 1.19.18.2 skrll VM_SLEEP, IPL_NONE);
274 1.6 yamt callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
275 1.6 yamt &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
276 1.19.18.2 skrll
277 1.19.18.2 skrll /*
278 1.19.18.2 skrll * kmem caches start at twice the size of the largest vmem qcache
279 1.19.18.2 skrll * and end at PAGE_SIZE or earlier. assert that KMEM_QCACHE_MAX
280 1.19.18.2 skrll * is a power of two.
281 1.19.18.2 skrll */
282 1.19.18.2 skrll KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
283 1.19.18.2 skrll KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
284 1.19.18.2 skrll kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
285 1.19.18.2 skrll kmem_cache_min = 1 << kmem_cache_shift;
286 1.19.18.2 skrll kmem_cache_mask = kmem_cache_min - 1;
287 1.19.18.2 skrll for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
288 1.19.18.2 skrll sz = i << kmem_cache_shift;
289 1.19.18.2 skrll if (sz > PAGE_SIZE) {
290 1.19.18.2 skrll break;
291 1.19.18.2 skrll }
292 1.19.18.2 skrll kmem_cache_max = sz;
293 1.19.18.2 skrll kc = &kmem_cache[i];
294 1.19.18.2 skrll kc->kc_pa.pa_pagesz = sz;
295 1.19.18.2 skrll kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
296 1.19.18.2 skrll kc->kc_pa.pa_free = kmem_poolpage_free;
297 1.19.18.2 skrll sprintf(kc->kc_name, "kmem-%zu", sz);
298 1.19.18.2 skrll kc->kc_cache = pool_cache_init(sz,
299 1.19.18.2 skrll KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
300 1.19.18.2 skrll kc->kc_name, &kc->kc_pa, IPL_NONE,
301 1.19.18.2 skrll NULL, NULL, NULL);
302 1.19.18.2 skrll KASSERT(kc->kc_cache != NULL);
303 1.19.18.2 skrll }
304 1.1 yamt }
305 1.1 yamt
306 1.1 yamt size_t
307 1.1 yamt kmem_roundup_size(size_t size)
308 1.1 yamt {
309 1.1 yamt
310 1.1 yamt return vmem_roundup_size(kmem_arena, size);
311 1.1 yamt }
312 1.1 yamt
313 1.1 yamt /* ---- uvm glue */
314 1.1 yamt
315 1.1 yamt static vmem_addr_t
316 1.11 yamt kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
317 1.11 yamt vm_flag_t vmflags)
318 1.1 yamt {
319 1.1 yamt uvm_flag_t uflags;
320 1.4 yamt vaddr_t va;
321 1.1 yamt
322 1.1 yamt KASSERT(dummy == NULL);
323 1.1 yamt KASSERT(size != 0);
324 1.1 yamt KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
325 1.1 yamt KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
326 1.1 yamt
327 1.1 yamt if ((vmflags & VM_NOSLEEP) != 0) {
328 1.1 yamt uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
329 1.1 yamt } else {
330 1.1 yamt uflags = UVM_KMF_WAITVA;
331 1.1 yamt }
332 1.1 yamt *resultsize = size = round_page(size);
333 1.4 yamt va = uvm_km_alloc(kernel_map, size, 0,
334 1.1 yamt uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
335 1.14 yamt if (va != 0) {
336 1.14 yamt kmem_poison_fill((void *)va, size);
337 1.14 yamt }
338 1.4 yamt return (vmem_addr_t)va;
339 1.1 yamt }
340 1.1 yamt
341 1.1 yamt static void
342 1.11 yamt kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
343 1.1 yamt {
344 1.1 yamt
345 1.1 yamt KASSERT(dummy == NULL);
346 1.1 yamt KASSERT(addr != 0);
347 1.1 yamt KASSERT(size != 0);
348 1.1 yamt KASSERT(size == round_page(size));
349 1.1 yamt
350 1.4 yamt kmem_poison_check((void *)addr, size);
351 1.1 yamt uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
352 1.1 yamt }
353 1.4 yamt
354 1.7 yamt static int
355 1.11 yamt kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
356 1.7 yamt {
357 1.7 yamt vmem_t *vm = obj;
358 1.7 yamt
359 1.7 yamt vmem_reap(vm);
360 1.7 yamt return CALLBACK_CHAIN_CONTINUE;
361 1.7 yamt }
362 1.7 yamt
363 1.4 yamt /* ---- debug */
364 1.4 yamt
365 1.19 yamt #if defined(KMEM_POISON)
366 1.4 yamt
367 1.4 yamt #if defined(_LP64)
368 1.4 yamt #define PRIME 0x9e37fffffffc0001UL
369 1.4 yamt #else /* defined(_LP64) */
370 1.4 yamt #define PRIME 0x9e3779b1
371 1.4 yamt #endif /* defined(_LP64) */
372 1.4 yamt
373 1.4 yamt static inline uint8_t
374 1.4 yamt kmem_poison_pattern(const void *p)
375 1.4 yamt {
376 1.4 yamt
377 1.4 yamt return (uint8_t)((((uintptr_t)p) * PRIME)
378 1.4 yamt >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
379 1.4 yamt }
380 1.4 yamt
381 1.4 yamt static void
382 1.4 yamt kmem_poison_fill(void *p, size_t sz)
383 1.4 yamt {
384 1.4 yamt uint8_t *cp;
385 1.4 yamt const uint8_t *ep;
386 1.4 yamt
387 1.4 yamt cp = p;
388 1.4 yamt ep = cp + sz;
389 1.4 yamt while (cp < ep) {
390 1.4 yamt *cp = kmem_poison_pattern(cp);
391 1.4 yamt cp++;
392 1.4 yamt }
393 1.4 yamt }
394 1.4 yamt
395 1.4 yamt static void
396 1.4 yamt kmem_poison_check(void *p, size_t sz)
397 1.4 yamt {
398 1.4 yamt uint8_t *cp;
399 1.4 yamt const uint8_t *ep;
400 1.4 yamt
401 1.4 yamt cp = p;
402 1.4 yamt ep = cp + sz;
403 1.4 yamt while (cp < ep) {
404 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
405 1.4 yamt
406 1.4 yamt if (*cp != expected) {
407 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
408 1.4 yamt __func__, cp, *cp, expected);
409 1.4 yamt }
410 1.4 yamt cp++;
411 1.4 yamt }
412 1.4 yamt }
413 1.4 yamt
414 1.19 yamt #endif /* defined(KMEM_POISON) */
415 1.19.18.2 skrll
416 1.19.18.2 skrll #if defined(KMEM_SIZE)
417 1.19.18.2 skrll static void
418 1.19.18.2 skrll kmem_size_set(void *p, size_t sz)
419 1.19.18.2 skrll {
420 1.19.18.2 skrll
421 1.19.18.2 skrll memcpy(p, &sz, sizeof(sz));
422 1.19.18.2 skrll }
423 1.19.18.2 skrll
424 1.19.18.2 skrll static void
425 1.19.18.2 skrll kmem_size_check(void *p, size_t sz)
426 1.19.18.2 skrll {
427 1.19.18.2 skrll size_t psz;
428 1.19.18.2 skrll
429 1.19.18.2 skrll memcpy(&psz, p, sizeof(psz));
430 1.19.18.2 skrll if (psz != sz) {
431 1.19.18.2 skrll panic("kmem_free(%p, %zu) != allocated size %zu",
432 1.19.18.2 skrll (uint8_t*)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
433 1.19.18.2 skrll }
434 1.19.18.2 skrll }
435 1.19.18.2 skrll #endif /* defined(KMEM_SIZE) */
436