subr_kmem.c revision 1.19.18.3 1 1.19.18.3 skrll /* $NetBSD: subr_kmem.c,v 1.19.18.3 2009/04/28 07:37:00 skrll Exp $ */
2 1.19.18.2 skrll
3 1.19.18.2 skrll /*-
4 1.19.18.2 skrll * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.19.18.2 skrll * All rights reserved.
6 1.19.18.2 skrll *
7 1.19.18.2 skrll * This code is derived from software contributed to The NetBSD Foundation
8 1.19.18.2 skrll * by Andrew Doran.
9 1.19.18.2 skrll *
10 1.19.18.2 skrll * Redistribution and use in source and binary forms, with or without
11 1.19.18.2 skrll * modification, are permitted provided that the following conditions
12 1.19.18.2 skrll * are met:
13 1.19.18.2 skrll * 1. Redistributions of source code must retain the above copyright
14 1.19.18.2 skrll * notice, this list of conditions and the following disclaimer.
15 1.19.18.2 skrll * 2. Redistributions in binary form must reproduce the above copyright
16 1.19.18.2 skrll * notice, this list of conditions and the following disclaimer in the
17 1.19.18.2 skrll * documentation and/or other materials provided with the distribution.
18 1.19.18.2 skrll *
19 1.19.18.2 skrll * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.19.18.2 skrll * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.19.18.2 skrll * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.19.18.2 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.19.18.2 skrll * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.19.18.2 skrll * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.19.18.2 skrll * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.19.18.2 skrll * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.19.18.2 skrll * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.19.18.2 skrll * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.19.18.2 skrll * POSSIBILITY OF SUCH DAMAGE.
30 1.19.18.2 skrll */
31 1.1 yamt
32 1.1 yamt /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.1 yamt * allocator of kernel wired memory.
60 1.1 yamt *
61 1.1 yamt * TODO:
62 1.1 yamt * - worth to have "intrsafe" version? maybe..
63 1.1 yamt */
64 1.1 yamt
65 1.1 yamt #include <sys/cdefs.h>
66 1.19.18.3 skrll __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.19.18.3 2009/04/28 07:37:00 skrll Exp $");
67 1.1 yamt
68 1.1 yamt #include <sys/param.h>
69 1.6 yamt #include <sys/callback.h>
70 1.1 yamt #include <sys/kmem.h>
71 1.1 yamt #include <sys/vmem.h>
72 1.13 ad #include <sys/debug.h>
73 1.17 ad #include <sys/lockdebug.h>
74 1.19.18.2 skrll #include <sys/cpu.h>
75 1.1 yamt
76 1.6 yamt #include <uvm/uvm_extern.h>
77 1.6 yamt #include <uvm/uvm_map.h>
78 1.19.18.3 skrll #include <uvm/uvm_kmguard.h>
79 1.6 yamt
80 1.1 yamt #include <lib/libkern/libkern.h>
81 1.1 yamt
82 1.3 yamt #define KMEM_QUANTUM_SIZE (ALIGNBYTES + 1)
83 1.19.18.2 skrll #define KMEM_QCACHE_MAX (KMEM_QUANTUM_SIZE * 32)
84 1.19.18.2 skrll #define KMEM_CACHE_COUNT 16
85 1.19.18.2 skrll
86 1.19.18.2 skrll typedef struct kmem_cache {
87 1.19.18.2 skrll pool_cache_t kc_cache;
88 1.19.18.2 skrll struct pool_allocator kc_pa;
89 1.19.18.2 skrll char kc_name[12];
90 1.19.18.2 skrll } kmem_cache_t;
91 1.1 yamt
92 1.1 yamt static vmem_t *kmem_arena;
93 1.6 yamt static struct callback_entry kmem_kva_reclaim_entry;
94 1.1 yamt
95 1.19.18.2 skrll static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
96 1.19.18.2 skrll static size_t kmem_cache_max;
97 1.19.18.2 skrll static size_t kmem_cache_min;
98 1.19.18.2 skrll static size_t kmem_cache_mask;
99 1.19.18.2 skrll static int kmem_cache_shift;
100 1.19.18.2 skrll
101 1.4 yamt #if defined(DEBUG)
102 1.19.18.3 skrll int kmem_guard_depth;
103 1.19.18.3 skrll size_t kmem_guard_size;
104 1.19.18.3 skrll static struct uvm_kmguard kmem_guard;
105 1.13 ad static void *kmem_freecheck;
106 1.19 yamt #define KMEM_POISON
107 1.19 yamt #define KMEM_REDZONE
108 1.19.18.2 skrll #define KMEM_SIZE
109 1.19.18.3 skrll #define KMEM_GUARD
110 1.19 yamt #endif /* defined(DEBUG) */
111 1.19 yamt
112 1.19 yamt #if defined(KMEM_POISON)
113 1.4 yamt static void kmem_poison_fill(void *, size_t);
114 1.4 yamt static void kmem_poison_check(void *, size_t);
115 1.19 yamt #else /* defined(KMEM_POISON) */
116 1.4 yamt #define kmem_poison_fill(p, sz) /* nothing */
117 1.4 yamt #define kmem_poison_check(p, sz) /* nothing */
118 1.19 yamt #endif /* defined(KMEM_POISON) */
119 1.19 yamt
120 1.19 yamt #if defined(KMEM_REDZONE)
121 1.19 yamt #define REDZONE_SIZE 1
122 1.19 yamt #else /* defined(KMEM_REDZONE) */
123 1.19 yamt #define REDZONE_SIZE 0
124 1.19 yamt #endif /* defined(KMEM_REDZONE) */
125 1.4 yamt
126 1.19.18.2 skrll #if defined(KMEM_SIZE)
127 1.19.18.2 skrll #define SIZE_SIZE (max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
128 1.19.18.2 skrll static void kmem_size_set(void *, size_t);
129 1.19.18.2 skrll static void kmem_size_check(void *, size_t);
130 1.19.18.2 skrll #else
131 1.19.18.2 skrll #define SIZE_SIZE 0
132 1.19.18.2 skrll #define kmem_size_set(p, sz) /* nothing */
133 1.19.18.2 skrll #define kmem_size_check(p, sz) /* nothing */
134 1.19.18.2 skrll #endif
135 1.19.18.2 skrll
136 1.1 yamt static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
137 1.1 yamt vm_flag_t);
138 1.1 yamt static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
139 1.6 yamt static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
140 1.1 yamt
141 1.1 yamt static inline vm_flag_t
142 1.1 yamt kmf_to_vmf(km_flag_t kmflags)
143 1.1 yamt {
144 1.1 yamt vm_flag_t vmflags;
145 1.1 yamt
146 1.1 yamt KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
147 1.1 yamt KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
148 1.1 yamt
149 1.1 yamt vmflags = 0;
150 1.1 yamt if ((kmflags & KM_SLEEP) != 0) {
151 1.1 yamt vmflags |= VM_SLEEP;
152 1.1 yamt }
153 1.1 yamt if ((kmflags & KM_NOSLEEP) != 0) {
154 1.1 yamt vmflags |= VM_NOSLEEP;
155 1.1 yamt }
156 1.1 yamt
157 1.1 yamt return vmflags;
158 1.1 yamt }
159 1.1 yamt
160 1.19.18.2 skrll static void *
161 1.19.18.2 skrll kmem_poolpage_alloc(struct pool *pool, int prflags)
162 1.19.18.2 skrll {
163 1.19.18.2 skrll
164 1.19.18.2 skrll KASSERT(KM_SLEEP == PR_WAITOK);
165 1.19.18.2 skrll KASSERT(KM_NOSLEEP == PR_NOWAIT);
166 1.19.18.2 skrll
167 1.19.18.2 skrll return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
168 1.19.18.2 skrll kmf_to_vmf(prflags) | VM_INSTANTFIT);
169 1.19.18.2 skrll
170 1.19.18.2 skrll }
171 1.19.18.2 skrll
172 1.19.18.2 skrll static void
173 1.19.18.2 skrll kmem_poolpage_free(struct pool *pool, void *addr)
174 1.19.18.2 skrll {
175 1.19.18.2 skrll
176 1.19.18.2 skrll vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
177 1.19.18.2 skrll }
178 1.19.18.2 skrll
179 1.1 yamt /* ---- kmem API */
180 1.1 yamt
181 1.1 yamt /*
182 1.1 yamt * kmem_alloc: allocate wired memory.
183 1.1 yamt *
184 1.1 yamt * => must not be called from interrupt context.
185 1.1 yamt */
186 1.1 yamt
187 1.1 yamt void *
188 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
189 1.1 yamt {
190 1.19.18.2 skrll kmem_cache_t *kc;
191 1.19.18.2 skrll uint8_t *p;
192 1.1 yamt
193 1.19.18.2 skrll KASSERT(!cpu_intr_p());
194 1.19.18.3 skrll KASSERT(!cpu_softintr_p());
195 1.19.18.3 skrll KASSERT(size > 0);
196 1.19.18.3 skrll
197 1.19.18.3 skrll #ifdef KMEM_GUARD
198 1.19.18.3 skrll if (size <= kmem_guard_size) {
199 1.19.18.3 skrll return uvm_kmguard_alloc(&kmem_guard, size,
200 1.19.18.3 skrll (kmflags & KM_SLEEP) != 0);
201 1.19.18.3 skrll }
202 1.19.18.3 skrll #endif
203 1.19.18.2 skrll
204 1.19.18.2 skrll size += REDZONE_SIZE + SIZE_SIZE;
205 1.19.18.2 skrll if (size >= kmem_cache_min && size <= kmem_cache_max) {
206 1.19.18.2 skrll kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
207 1.19.18.2 skrll KASSERT(size <= kc->kc_pa.pa_pagesz);
208 1.19.18.2 skrll KASSERT(KM_SLEEP == PR_WAITOK);
209 1.19.18.2 skrll KASSERT(KM_NOSLEEP == PR_NOWAIT);
210 1.19.18.2 skrll kmflags &= (KM_SLEEP | KM_NOSLEEP);
211 1.19.18.2 skrll p = pool_cache_get(kc->kc_cache, kmflags);
212 1.19.18.2 skrll } else {
213 1.19.18.2 skrll p = (void *)vmem_alloc(kmem_arena, size,
214 1.19.18.2 skrll kmf_to_vmf(kmflags) | VM_INSTANTFIT);
215 1.19.18.2 skrll }
216 1.19.18.2 skrll if (__predict_true(p != NULL)) {
217 1.18 yamt kmem_poison_check(p, kmem_roundup_size(size));
218 1.13 ad FREECHECK_OUT(&kmem_freecheck, p);
219 1.19.18.2 skrll kmem_size_set(p, size);
220 1.19.18.2 skrll p = (uint8_t *)p + SIZE_SIZE;
221 1.12 yamt }
222 1.4 yamt return p;
223 1.1 yamt }
224 1.1 yamt
225 1.1 yamt /*
226 1.2 yamt * kmem_zalloc: allocate wired memory.
227 1.2 yamt *
228 1.2 yamt * => must not be called from interrupt context.
229 1.2 yamt */
230 1.2 yamt
231 1.2 yamt void *
232 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
233 1.2 yamt {
234 1.2 yamt void *p;
235 1.2 yamt
236 1.2 yamt p = kmem_alloc(size, kmflags);
237 1.2 yamt if (p != NULL) {
238 1.2 yamt memset(p, 0, size);
239 1.2 yamt }
240 1.2 yamt return p;
241 1.2 yamt }
242 1.2 yamt
243 1.2 yamt /*
244 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
245 1.1 yamt *
246 1.1 yamt * => must not be called from interrupt context.
247 1.1 yamt */
248 1.1 yamt
249 1.1 yamt void
250 1.1 yamt kmem_free(void *p, size_t size)
251 1.1 yamt {
252 1.19.18.2 skrll kmem_cache_t *kc;
253 1.19.18.2 skrll
254 1.19.18.2 skrll KASSERT(!cpu_intr_p());
255 1.19.18.3 skrll KASSERT(!cpu_softintr_p());
256 1.19.18.3 skrll KASSERT(size > 0);
257 1.19.18.2 skrll
258 1.19.18.2 skrll size += SIZE_SIZE;
259 1.19.18.2 skrll p = (uint8_t *)p - SIZE_SIZE;
260 1.19.18.2 skrll kmem_size_check(p, size + REDZONE_SIZE);
261 1.1 yamt
262 1.19.18.3 skrll #ifdef KMEM_GUARD
263 1.19.18.3 skrll if (size <= kmem_guard_size) {
264 1.19.18.3 skrll uvm_kmguard_free(&kmem_guard, size, p);
265 1.19.18.3 skrll return;
266 1.19.18.3 skrll }
267 1.19.18.3 skrll #endif
268 1.19.18.3 skrll
269 1.13 ad FREECHECK_IN(&kmem_freecheck, p);
270 1.17 ad LOCKDEBUG_MEM_CHECK(p, size);
271 1.19 yamt kmem_poison_check((char *)p + size,
272 1.19 yamt kmem_roundup_size(size + REDZONE_SIZE) - size);
273 1.4 yamt kmem_poison_fill(p, size);
274 1.19.18.2 skrll size += REDZONE_SIZE;
275 1.19.18.2 skrll if (size >= kmem_cache_min && size <= kmem_cache_max) {
276 1.19.18.2 skrll kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
277 1.19.18.2 skrll KASSERT(size <= kc->kc_pa.pa_pagesz);
278 1.19.18.2 skrll pool_cache_put(kc->kc_cache, p);
279 1.19.18.2 skrll } else {
280 1.19.18.2 skrll vmem_free(kmem_arena, (vmem_addr_t)p, size);
281 1.19.18.2 skrll }
282 1.1 yamt }
283 1.1 yamt
284 1.19.18.2 skrll
285 1.1 yamt void
286 1.1 yamt kmem_init(void)
287 1.1 yamt {
288 1.19.18.2 skrll kmem_cache_t *kc;
289 1.19.18.2 skrll size_t sz;
290 1.19.18.2 skrll int i;
291 1.1 yamt
292 1.19.18.3 skrll #ifdef KMEM_GUARD
293 1.19.18.3 skrll uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
294 1.19.18.3 skrll kernel_map);
295 1.19.18.3 skrll #endif
296 1.19.18.3 skrll
297 1.1 yamt kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
298 1.19.18.2 skrll kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
299 1.19.18.2 skrll VM_SLEEP, IPL_NONE);
300 1.6 yamt callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
301 1.6 yamt &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
302 1.19.18.2 skrll
303 1.19.18.2 skrll /*
304 1.19.18.2 skrll * kmem caches start at twice the size of the largest vmem qcache
305 1.19.18.2 skrll * and end at PAGE_SIZE or earlier. assert that KMEM_QCACHE_MAX
306 1.19.18.2 skrll * is a power of two.
307 1.19.18.2 skrll */
308 1.19.18.2 skrll KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
309 1.19.18.2 skrll KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
310 1.19.18.2 skrll kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
311 1.19.18.2 skrll kmem_cache_min = 1 << kmem_cache_shift;
312 1.19.18.2 skrll kmem_cache_mask = kmem_cache_min - 1;
313 1.19.18.2 skrll for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
314 1.19.18.2 skrll sz = i << kmem_cache_shift;
315 1.19.18.2 skrll if (sz > PAGE_SIZE) {
316 1.19.18.2 skrll break;
317 1.19.18.2 skrll }
318 1.19.18.2 skrll kmem_cache_max = sz;
319 1.19.18.2 skrll kc = &kmem_cache[i];
320 1.19.18.2 skrll kc->kc_pa.pa_pagesz = sz;
321 1.19.18.2 skrll kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
322 1.19.18.2 skrll kc->kc_pa.pa_free = kmem_poolpage_free;
323 1.19.18.2 skrll sprintf(kc->kc_name, "kmem-%zu", sz);
324 1.19.18.2 skrll kc->kc_cache = pool_cache_init(sz,
325 1.19.18.2 skrll KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
326 1.19.18.2 skrll kc->kc_name, &kc->kc_pa, IPL_NONE,
327 1.19.18.2 skrll NULL, NULL, NULL);
328 1.19.18.2 skrll KASSERT(kc->kc_cache != NULL);
329 1.19.18.2 skrll }
330 1.1 yamt }
331 1.1 yamt
332 1.1 yamt size_t
333 1.1 yamt kmem_roundup_size(size_t size)
334 1.1 yamt {
335 1.1 yamt
336 1.1 yamt return vmem_roundup_size(kmem_arena, size);
337 1.1 yamt }
338 1.1 yamt
339 1.1 yamt /* ---- uvm glue */
340 1.1 yamt
341 1.1 yamt static vmem_addr_t
342 1.11 yamt kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
343 1.11 yamt vm_flag_t vmflags)
344 1.1 yamt {
345 1.1 yamt uvm_flag_t uflags;
346 1.4 yamt vaddr_t va;
347 1.1 yamt
348 1.1 yamt KASSERT(dummy == NULL);
349 1.1 yamt KASSERT(size != 0);
350 1.1 yamt KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
351 1.1 yamt KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
352 1.1 yamt
353 1.1 yamt if ((vmflags & VM_NOSLEEP) != 0) {
354 1.1 yamt uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
355 1.1 yamt } else {
356 1.1 yamt uflags = UVM_KMF_WAITVA;
357 1.1 yamt }
358 1.1 yamt *resultsize = size = round_page(size);
359 1.4 yamt va = uvm_km_alloc(kernel_map, size, 0,
360 1.1 yamt uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
361 1.14 yamt if (va != 0) {
362 1.14 yamt kmem_poison_fill((void *)va, size);
363 1.14 yamt }
364 1.4 yamt return (vmem_addr_t)va;
365 1.1 yamt }
366 1.1 yamt
367 1.1 yamt static void
368 1.11 yamt kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
369 1.1 yamt {
370 1.1 yamt
371 1.1 yamt KASSERT(dummy == NULL);
372 1.1 yamt KASSERT(addr != 0);
373 1.1 yamt KASSERT(size != 0);
374 1.1 yamt KASSERT(size == round_page(size));
375 1.1 yamt
376 1.4 yamt kmem_poison_check((void *)addr, size);
377 1.1 yamt uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
378 1.1 yamt }
379 1.4 yamt
380 1.7 yamt static int
381 1.11 yamt kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
382 1.7 yamt {
383 1.7 yamt vmem_t *vm = obj;
384 1.7 yamt
385 1.7 yamt vmem_reap(vm);
386 1.7 yamt return CALLBACK_CHAIN_CONTINUE;
387 1.7 yamt }
388 1.7 yamt
389 1.4 yamt /* ---- debug */
390 1.4 yamt
391 1.19 yamt #if defined(KMEM_POISON)
392 1.4 yamt
393 1.4 yamt #if defined(_LP64)
394 1.4 yamt #define PRIME 0x9e37fffffffc0001UL
395 1.4 yamt #else /* defined(_LP64) */
396 1.4 yamt #define PRIME 0x9e3779b1
397 1.4 yamt #endif /* defined(_LP64) */
398 1.4 yamt
399 1.4 yamt static inline uint8_t
400 1.4 yamt kmem_poison_pattern(const void *p)
401 1.4 yamt {
402 1.4 yamt
403 1.4 yamt return (uint8_t)((((uintptr_t)p) * PRIME)
404 1.4 yamt >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
405 1.4 yamt }
406 1.4 yamt
407 1.4 yamt static void
408 1.4 yamt kmem_poison_fill(void *p, size_t sz)
409 1.4 yamt {
410 1.4 yamt uint8_t *cp;
411 1.4 yamt const uint8_t *ep;
412 1.4 yamt
413 1.4 yamt cp = p;
414 1.4 yamt ep = cp + sz;
415 1.4 yamt while (cp < ep) {
416 1.4 yamt *cp = kmem_poison_pattern(cp);
417 1.4 yamt cp++;
418 1.4 yamt }
419 1.4 yamt }
420 1.4 yamt
421 1.4 yamt static void
422 1.4 yamt kmem_poison_check(void *p, size_t sz)
423 1.4 yamt {
424 1.4 yamt uint8_t *cp;
425 1.4 yamt const uint8_t *ep;
426 1.4 yamt
427 1.4 yamt cp = p;
428 1.4 yamt ep = cp + sz;
429 1.4 yamt while (cp < ep) {
430 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
431 1.4 yamt
432 1.4 yamt if (*cp != expected) {
433 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
434 1.4 yamt __func__, cp, *cp, expected);
435 1.4 yamt }
436 1.4 yamt cp++;
437 1.4 yamt }
438 1.4 yamt }
439 1.4 yamt
440 1.19 yamt #endif /* defined(KMEM_POISON) */
441 1.19.18.2 skrll
442 1.19.18.2 skrll #if defined(KMEM_SIZE)
443 1.19.18.2 skrll static void
444 1.19.18.2 skrll kmem_size_set(void *p, size_t sz)
445 1.19.18.2 skrll {
446 1.19.18.2 skrll
447 1.19.18.2 skrll memcpy(p, &sz, sizeof(sz));
448 1.19.18.2 skrll }
449 1.19.18.2 skrll
450 1.19.18.2 skrll static void
451 1.19.18.2 skrll kmem_size_check(void *p, size_t sz)
452 1.19.18.2 skrll {
453 1.19.18.2 skrll size_t psz;
454 1.19.18.2 skrll
455 1.19.18.2 skrll memcpy(&psz, p, sizeof(psz));
456 1.19.18.2 skrll if (psz != sz) {
457 1.19.18.2 skrll panic("kmem_free(%p, %zu) != allocated size %zu",
458 1.19.18.2 skrll (uint8_t*)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
459 1.19.18.2 skrll }
460 1.19.18.2 skrll }
461 1.19.18.2 skrll #endif /* defined(KMEM_SIZE) */
462