Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.33.6.1
      1  1.33.6.1   bouyer /*	$NetBSD: subr_kmem.c,v 1.33.6.1 2011/03/05 15:10:39 bouyer Exp $	*/
      2       1.1     yamt 
      3       1.1     yamt /*-
      4      1.23       ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5      1.23       ad  * All rights reserved.
      6      1.23       ad  *
      7      1.23       ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.23       ad  * by Andrew Doran.
      9      1.23       ad  *
     10      1.23       ad  * Redistribution and use in source and binary forms, with or without
     11      1.23       ad  * modification, are permitted provided that the following conditions
     12      1.23       ad  * are met:
     13      1.23       ad  * 1. Redistributions of source code must retain the above copyright
     14      1.23       ad  *    notice, this list of conditions and the following disclaimer.
     15      1.23       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.23       ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.23       ad  *    documentation and/or other materials provided with the distribution.
     18      1.23       ad  *
     19      1.23       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.23       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.23       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.23       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.23       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.23       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.23       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.23       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.23       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.23       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.23       ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.23       ad  */
     31      1.23       ad 
     32      1.23       ad /*-
     33       1.1     yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34       1.1     yamt  * All rights reserved.
     35       1.1     yamt  *
     36       1.1     yamt  * Redistribution and use in source and binary forms, with or without
     37       1.1     yamt  * modification, are permitted provided that the following conditions
     38       1.1     yamt  * are met:
     39       1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     40       1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     41       1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1     yamt  *    documentation and/or other materials provided with the distribution.
     44       1.1     yamt  *
     45       1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46       1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47       1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48       1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49       1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50       1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51       1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52       1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53       1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54       1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55       1.1     yamt  * SUCH DAMAGE.
     56       1.1     yamt  */
     57       1.1     yamt 
     58       1.1     yamt /*
     59       1.1     yamt  * allocator of kernel wired memory.
     60       1.1     yamt  *
     61       1.1     yamt  * TODO:
     62       1.1     yamt  * -	worth to have "intrsafe" version?  maybe..
     63       1.1     yamt  */
     64       1.1     yamt 
     65       1.1     yamt #include <sys/cdefs.h>
     66  1.33.6.1   bouyer __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.33.6.1 2011/03/05 15:10:39 bouyer Exp $");
     67       1.1     yamt 
     68       1.1     yamt #include <sys/param.h>
     69       1.6     yamt #include <sys/callback.h>
     70       1.1     yamt #include <sys/kmem.h>
     71       1.1     yamt #include <sys/vmem.h>
     72      1.13       ad #include <sys/debug.h>
     73      1.17       ad #include <sys/lockdebug.h>
     74      1.23       ad #include <sys/cpu.h>
     75       1.1     yamt 
     76       1.6     yamt #include <uvm/uvm_extern.h>
     77       1.6     yamt #include <uvm/uvm_map.h>
     78      1.27       ad #include <uvm/uvm_kmguard.h>
     79       1.6     yamt 
     80       1.1     yamt #include <lib/libkern/libkern.h>
     81       1.1     yamt 
     82      1.33     haad #include <machine/stdarg.h>
     83      1.33     haad 
     84       1.3     yamt #define	KMEM_QUANTUM_SIZE	(ALIGNBYTES + 1)
     85      1.23       ad #define	KMEM_QCACHE_MAX		(KMEM_QUANTUM_SIZE * 32)
     86      1.23       ad #define	KMEM_CACHE_COUNT	16
     87      1.23       ad 
     88      1.23       ad typedef struct kmem_cache {
     89      1.23       ad 	pool_cache_t		kc_cache;
     90      1.23       ad 	struct pool_allocator	kc_pa;
     91      1.23       ad 	char			kc_name[12];
     92      1.23       ad } kmem_cache_t;
     93       1.1     yamt 
     94       1.1     yamt static vmem_t *kmem_arena;
     95       1.6     yamt static struct callback_entry kmem_kva_reclaim_entry;
     96       1.1     yamt 
     97      1.23       ad static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
     98      1.23       ad static size_t kmem_cache_max;
     99      1.23       ad static size_t kmem_cache_min;
    100      1.23       ad static size_t kmem_cache_mask;
    101      1.23       ad static int kmem_cache_shift;
    102      1.23       ad 
    103       1.4     yamt #if defined(DEBUG)
    104  1.33.6.1   bouyer int kmem_guard_depth = 0;
    105      1.27       ad size_t kmem_guard_size;
    106      1.27       ad static struct uvm_kmguard kmem_guard;
    107      1.13       ad static void *kmem_freecheck;
    108      1.19     yamt #define	KMEM_POISON
    109      1.19     yamt #define	KMEM_REDZONE
    110      1.23       ad #define	KMEM_SIZE
    111      1.27       ad #define	KMEM_GUARD
    112      1.19     yamt #endif /* defined(DEBUG) */
    113      1.19     yamt 
    114      1.19     yamt #if defined(KMEM_POISON)
    115       1.4     yamt static void kmem_poison_fill(void *, size_t);
    116       1.4     yamt static void kmem_poison_check(void *, size_t);
    117      1.19     yamt #else /* defined(KMEM_POISON) */
    118       1.4     yamt #define	kmem_poison_fill(p, sz)		/* nothing */
    119       1.4     yamt #define	kmem_poison_check(p, sz)	/* nothing */
    120      1.19     yamt #endif /* defined(KMEM_POISON) */
    121      1.19     yamt 
    122      1.19     yamt #if defined(KMEM_REDZONE)
    123      1.19     yamt #define	REDZONE_SIZE	1
    124      1.19     yamt #else /* defined(KMEM_REDZONE) */
    125      1.19     yamt #define	REDZONE_SIZE	0
    126      1.19     yamt #endif /* defined(KMEM_REDZONE) */
    127       1.4     yamt 
    128      1.23       ad #if defined(KMEM_SIZE)
    129      1.25       ad #define	SIZE_SIZE	(max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
    130      1.23       ad static void kmem_size_set(void *, size_t);
    131      1.30     yamt static void kmem_size_check(const void *, size_t);
    132      1.23       ad #else
    133      1.23       ad #define	SIZE_SIZE	0
    134      1.23       ad #define	kmem_size_set(p, sz)	/* nothing */
    135      1.23       ad #define	kmem_size_check(p, sz)	/* nothing */
    136      1.23       ad #endif
    137      1.23       ad 
    138       1.1     yamt static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
    139       1.1     yamt     vm_flag_t);
    140       1.1     yamt static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
    141       1.6     yamt static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
    142       1.1     yamt 
    143      1.32    skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    144      1.32    skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    145      1.32    skrll 
    146       1.1     yamt static inline vm_flag_t
    147       1.1     yamt kmf_to_vmf(km_flag_t kmflags)
    148       1.1     yamt {
    149       1.1     yamt 	vm_flag_t vmflags;
    150       1.1     yamt 
    151       1.1     yamt 	KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
    152       1.1     yamt 	KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
    153       1.1     yamt 
    154       1.1     yamt 	vmflags = 0;
    155       1.1     yamt 	if ((kmflags & KM_SLEEP) != 0) {
    156       1.1     yamt 		vmflags |= VM_SLEEP;
    157       1.1     yamt 	}
    158       1.1     yamt 	if ((kmflags & KM_NOSLEEP) != 0) {
    159       1.1     yamt 		vmflags |= VM_NOSLEEP;
    160       1.1     yamt 	}
    161       1.1     yamt 
    162       1.1     yamt 	return vmflags;
    163       1.1     yamt }
    164       1.1     yamt 
    165      1.23       ad static void *
    166      1.23       ad kmem_poolpage_alloc(struct pool *pool, int prflags)
    167      1.23       ad {
    168      1.23       ad 
    169      1.23       ad 	return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
    170      1.23       ad 	    kmf_to_vmf(prflags) | VM_INSTANTFIT);
    171      1.23       ad 
    172      1.23       ad }
    173      1.23       ad 
    174      1.23       ad static void
    175      1.23       ad kmem_poolpage_free(struct pool *pool, void *addr)
    176      1.23       ad {
    177      1.23       ad 
    178      1.23       ad 	vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    179      1.23       ad }
    180      1.23       ad 
    181       1.1     yamt /* ---- kmem API */
    182       1.1     yamt 
    183       1.1     yamt /*
    184       1.1     yamt  * kmem_alloc: allocate wired memory.
    185       1.1     yamt  *
    186       1.1     yamt  * => must not be called from interrupt context.
    187       1.1     yamt  */
    188       1.1     yamt 
    189       1.1     yamt void *
    190       1.1     yamt kmem_alloc(size_t size, km_flag_t kmflags)
    191       1.1     yamt {
    192      1.23       ad 	kmem_cache_t *kc;
    193      1.23       ad 	uint8_t *p;
    194      1.23       ad 
    195      1.23       ad 	KASSERT(!cpu_intr_p());
    196      1.27       ad 	KASSERT(!cpu_softintr_p());
    197      1.27       ad 	KASSERT(size > 0);
    198      1.27       ad 
    199      1.27       ad #ifdef KMEM_GUARD
    200      1.27       ad 	if (size <= kmem_guard_size) {
    201      1.27       ad 		return uvm_kmguard_alloc(&kmem_guard, size,
    202      1.27       ad 		    (kmflags & KM_SLEEP) != 0);
    203      1.27       ad 	}
    204      1.27       ad #endif
    205       1.1     yamt 
    206      1.23       ad 	size += REDZONE_SIZE + SIZE_SIZE;
    207      1.23       ad 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
    208      1.23       ad 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
    209      1.23       ad 		KASSERT(size <= kc->kc_pa.pa_pagesz);
    210      1.23       ad 		kmflags &= (KM_SLEEP | KM_NOSLEEP);
    211      1.23       ad 		p = pool_cache_get(kc->kc_cache, kmflags);
    212      1.23       ad 	} else {
    213      1.23       ad 		p = (void *)vmem_alloc(kmem_arena, size,
    214      1.23       ad 		    kmf_to_vmf(kmflags) | VM_INSTANTFIT);
    215      1.23       ad 	}
    216      1.23       ad 	if (__predict_true(p != NULL)) {
    217      1.22       ad 		kmem_poison_check(p, kmem_roundup_size(size));
    218      1.22       ad 		FREECHECK_OUT(&kmem_freecheck, p);
    219      1.23       ad 		kmem_size_set(p, size);
    220      1.23       ad 		p = (uint8_t *)p + SIZE_SIZE;
    221      1.12     yamt 	}
    222      1.22       ad 	return p;
    223       1.1     yamt }
    224       1.1     yamt 
    225       1.1     yamt /*
    226       1.2     yamt  * kmem_zalloc: allocate wired memory.
    227       1.2     yamt  *
    228       1.2     yamt  * => must not be called from interrupt context.
    229       1.2     yamt  */
    230       1.2     yamt 
    231       1.2     yamt void *
    232       1.2     yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    233       1.2     yamt {
    234       1.2     yamt 	void *p;
    235       1.2     yamt 
    236       1.2     yamt 	p = kmem_alloc(size, kmflags);
    237       1.2     yamt 	if (p != NULL) {
    238       1.2     yamt 		memset(p, 0, size);
    239       1.2     yamt 	}
    240       1.2     yamt 	return p;
    241       1.2     yamt }
    242       1.2     yamt 
    243       1.2     yamt /*
    244       1.1     yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    245       1.1     yamt  *
    246       1.1     yamt  * => must not be called from interrupt context.
    247       1.1     yamt  */
    248       1.1     yamt 
    249       1.1     yamt void
    250       1.1     yamt kmem_free(void *p, size_t size)
    251       1.1     yamt {
    252      1.23       ad 	kmem_cache_t *kc;
    253      1.23       ad 
    254      1.23       ad 	KASSERT(!cpu_intr_p());
    255      1.27       ad 	KASSERT(!cpu_softintr_p());
    256      1.28  jnemeth 	KASSERT(p != NULL);
    257      1.27       ad 	KASSERT(size > 0);
    258      1.23       ad 
    259      1.27       ad #ifdef KMEM_GUARD
    260      1.27       ad 	if (size <= kmem_guard_size) {
    261      1.27       ad 		uvm_kmguard_free(&kmem_guard, size, p);
    262      1.27       ad 		return;
    263      1.27       ad 	}
    264      1.27       ad #endif
    265      1.29     yamt 	size += SIZE_SIZE;
    266      1.29     yamt 	p = (uint8_t *)p - SIZE_SIZE;
    267      1.29     yamt 	kmem_size_check(p, size + REDZONE_SIZE);
    268      1.13       ad 	FREECHECK_IN(&kmem_freecheck, p);
    269      1.17       ad 	LOCKDEBUG_MEM_CHECK(p, size);
    270      1.19     yamt 	kmem_poison_check((char *)p + size,
    271      1.19     yamt 	    kmem_roundup_size(size + REDZONE_SIZE) - size);
    272       1.4     yamt 	kmem_poison_fill(p, size);
    273      1.24    enami 	size += REDZONE_SIZE;
    274      1.23       ad 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
    275      1.23       ad 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
    276      1.23       ad 		KASSERT(size <= kc->kc_pa.pa_pagesz);
    277      1.23       ad 		pool_cache_put(kc->kc_cache, p);
    278      1.23       ad 	} else {
    279      1.24    enami 		vmem_free(kmem_arena, (vmem_addr_t)p, size);
    280      1.23       ad 	}
    281       1.1     yamt }
    282       1.1     yamt 
    283      1.23       ad 
    284       1.1     yamt void
    285       1.1     yamt kmem_init(void)
    286       1.1     yamt {
    287      1.23       ad 	kmem_cache_t *kc;
    288      1.23       ad 	size_t sz;
    289      1.23       ad 	int i;
    290       1.1     yamt 
    291      1.27       ad #ifdef KMEM_GUARD
    292      1.27       ad 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    293      1.27       ad 	    kernel_map);
    294      1.27       ad #endif
    295      1.27       ad 
    296       1.1     yamt 	kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
    297      1.23       ad 	    kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
    298      1.23       ad 	    VM_SLEEP, IPL_NONE);
    299       1.6     yamt 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    300       1.6     yamt 	    &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
    301      1.23       ad 
    302      1.23       ad 	/*
    303      1.23       ad 	 * kmem caches start at twice the size of the largest vmem qcache
    304      1.23       ad 	 * and end at PAGE_SIZE or earlier.  assert that KMEM_QCACHE_MAX
    305      1.23       ad 	 * is a power of two.
    306      1.23       ad 	 */
    307      1.23       ad 	KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
    308      1.23       ad 	KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
    309      1.23       ad 	kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
    310      1.23       ad 	kmem_cache_min = 1 << kmem_cache_shift;
    311      1.23       ad 	kmem_cache_mask = kmem_cache_min - 1;
    312      1.23       ad 	for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
    313      1.23       ad 		sz = i << kmem_cache_shift;
    314      1.23       ad 		if (sz > PAGE_SIZE) {
    315      1.23       ad 			break;
    316      1.23       ad 		}
    317      1.23       ad 		kmem_cache_max = sz;
    318      1.23       ad 		kc = &kmem_cache[i];
    319      1.23       ad 		kc->kc_pa.pa_pagesz = sz;
    320      1.23       ad 		kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
    321      1.23       ad 		kc->kc_pa.pa_free = kmem_poolpage_free;
    322      1.26     yamt 		sprintf(kc->kc_name, "kmem-%zu", sz);
    323      1.23       ad 		kc->kc_cache = pool_cache_init(sz,
    324      1.23       ad 		    KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
    325      1.23       ad 		    kc->kc_name, &kc->kc_pa, IPL_NONE,
    326      1.23       ad 		    NULL, NULL, NULL);
    327      1.23       ad 		KASSERT(kc->kc_cache != NULL);
    328      1.23       ad 	}
    329       1.1     yamt }
    330       1.1     yamt 
    331       1.1     yamt size_t
    332       1.1     yamt kmem_roundup_size(size_t size)
    333       1.1     yamt {
    334       1.1     yamt 
    335       1.1     yamt 	return vmem_roundup_size(kmem_arena, size);
    336       1.1     yamt }
    337       1.1     yamt 
    338       1.1     yamt /* ---- uvm glue */
    339       1.1     yamt 
    340       1.1     yamt static vmem_addr_t
    341      1.11     yamt kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
    342      1.11     yamt     vm_flag_t vmflags)
    343       1.1     yamt {
    344       1.1     yamt 	uvm_flag_t uflags;
    345       1.4     yamt 	vaddr_t va;
    346       1.1     yamt 
    347       1.1     yamt 	KASSERT(dummy == NULL);
    348       1.1     yamt 	KASSERT(size != 0);
    349       1.1     yamt 	KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    350       1.1     yamt 	KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    351       1.1     yamt 
    352       1.1     yamt 	if ((vmflags & VM_NOSLEEP) != 0) {
    353       1.1     yamt 		uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
    354       1.1     yamt 	} else {
    355       1.1     yamt 		uflags = UVM_KMF_WAITVA;
    356       1.1     yamt 	}
    357       1.1     yamt 	*resultsize = size = round_page(size);
    358       1.4     yamt 	va = uvm_km_alloc(kernel_map, size, 0,
    359       1.1     yamt 	    uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
    360      1.14     yamt 	if (va != 0) {
    361      1.14     yamt 		kmem_poison_fill((void *)va, size);
    362      1.14     yamt 	}
    363      1.22       ad 	return (vmem_addr_t)va;
    364       1.1     yamt }
    365       1.1     yamt 
    366       1.1     yamt static void
    367      1.11     yamt kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
    368       1.1     yamt {
    369       1.1     yamt 
    370       1.1     yamt 	KASSERT(dummy == NULL);
    371       1.1     yamt 	KASSERT(addr != 0);
    372       1.1     yamt 	KASSERT(size != 0);
    373       1.1     yamt 	KASSERT(size == round_page(size));
    374       1.1     yamt 
    375       1.4     yamt 	kmem_poison_check((void *)addr, size);
    376       1.1     yamt 	uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
    377       1.1     yamt }
    378       1.4     yamt 
    379       1.7     yamt static int
    380      1.11     yamt kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    381       1.7     yamt {
    382       1.7     yamt 	vmem_t *vm = obj;
    383       1.7     yamt 
    384       1.7     yamt 	vmem_reap(vm);
    385       1.7     yamt 	return CALLBACK_CHAIN_CONTINUE;
    386       1.7     yamt }
    387       1.7     yamt 
    388       1.4     yamt /* ---- debug */
    389       1.4     yamt 
    390      1.19     yamt #if defined(KMEM_POISON)
    391       1.4     yamt 
    392       1.4     yamt #if defined(_LP64)
    393       1.4     yamt #define	PRIME	0x9e37fffffffc0001UL
    394       1.4     yamt #else /* defined(_LP64) */
    395       1.4     yamt #define	PRIME	0x9e3779b1
    396       1.4     yamt #endif /* defined(_LP64) */
    397       1.4     yamt 
    398       1.4     yamt static inline uint8_t
    399       1.4     yamt kmem_poison_pattern(const void *p)
    400       1.4     yamt {
    401       1.4     yamt 
    402       1.4     yamt 	return (uint8_t)((((uintptr_t)p) * PRIME)
    403       1.4     yamt 	    >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    404       1.4     yamt }
    405       1.4     yamt 
    406       1.4     yamt static void
    407       1.4     yamt kmem_poison_fill(void *p, size_t sz)
    408       1.4     yamt {
    409       1.4     yamt 	uint8_t *cp;
    410       1.4     yamt 	const uint8_t *ep;
    411       1.4     yamt 
    412       1.4     yamt 	cp = p;
    413       1.4     yamt 	ep = cp + sz;
    414       1.4     yamt 	while (cp < ep) {
    415       1.4     yamt 		*cp = kmem_poison_pattern(cp);
    416       1.4     yamt 		cp++;
    417       1.4     yamt 	}
    418       1.4     yamt }
    419       1.4     yamt 
    420       1.4     yamt static void
    421       1.4     yamt kmem_poison_check(void *p, size_t sz)
    422       1.4     yamt {
    423       1.4     yamt 	uint8_t *cp;
    424       1.4     yamt 	const uint8_t *ep;
    425       1.4     yamt 
    426       1.4     yamt 	cp = p;
    427       1.4     yamt 	ep = cp + sz;
    428       1.4     yamt 	while (cp < ep) {
    429       1.4     yamt 		const uint8_t expected = kmem_poison_pattern(cp);
    430       1.4     yamt 
    431       1.4     yamt 		if (*cp != expected) {
    432       1.4     yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    433       1.4     yamt 			    __func__, cp, *cp, expected);
    434       1.4     yamt 		}
    435       1.4     yamt 		cp++;
    436       1.4     yamt 	}
    437       1.4     yamt }
    438       1.4     yamt 
    439      1.19     yamt #endif /* defined(KMEM_POISON) */
    440      1.23       ad 
    441      1.23       ad #if defined(KMEM_SIZE)
    442      1.23       ad static void
    443      1.23       ad kmem_size_set(void *p, size_t sz)
    444      1.23       ad {
    445      1.23       ad 
    446      1.23       ad 	memcpy(p, &sz, sizeof(sz));
    447      1.23       ad }
    448      1.23       ad 
    449      1.23       ad static void
    450      1.30     yamt kmem_size_check(const void *p, size_t sz)
    451      1.23       ad {
    452      1.23       ad 	size_t psz;
    453      1.23       ad 
    454      1.23       ad 	memcpy(&psz, p, sizeof(psz));
    455      1.23       ad 	if (psz != sz) {
    456      1.23       ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    457      1.30     yamt 		    (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
    458      1.23       ad 	}
    459      1.23       ad }
    460      1.23       ad #endif	/* defined(KMEM_SIZE) */
    461      1.33     haad 
    462      1.33     haad /*
    463      1.33     haad  * Used to dynamically allocate string with kmem accordingly to format.
    464      1.33     haad  */
    465      1.33     haad char *
    466      1.33     haad kmem_asprintf(const char *fmt, ...)
    467      1.33     haad {
    468      1.33     haad 	int size, str_len;
    469      1.33     haad 	va_list va;
    470      1.33     haad 	char *str;
    471      1.33     haad 	char buf[1];
    472      1.33     haad 
    473      1.33     haad 	va_start(va, fmt);
    474      1.33     haad 	str_len = vsnprintf(buf, sizeof(buf), fmt, va) + 1;
    475      1.33     haad 	va_end(va);
    476      1.33     haad 
    477      1.33     haad 	str = kmem_alloc(str_len, KM_SLEEP);
    478      1.33     haad 
    479      1.33     haad 	if ((size = vsnprintf(str, str_len, fmt, va)) == -1) {
    480      1.33     haad 		kmem_free(str, str_len);
    481      1.33     haad 		return NULL;
    482      1.33     haad 	}
    483      1.33     haad 
    484      1.33     haad 	return str;
    485      1.33     haad }
    486