Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.36
      1  1.36   dyoung /*	$NetBSD: subr_kmem.c,v 1.36 2011/09/02 22:25:08 dyoung Exp $	*/
      2   1.1     yamt 
      3   1.1     yamt /*-
      4  1.23       ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  1.23       ad  * All rights reserved.
      6  1.23       ad  *
      7  1.23       ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.23       ad  * by Andrew Doran.
      9  1.23       ad  *
     10  1.23       ad  * Redistribution and use in source and binary forms, with or without
     11  1.23       ad  * modification, are permitted provided that the following conditions
     12  1.23       ad  * are met:
     13  1.23       ad  * 1. Redistributions of source code must retain the above copyright
     14  1.23       ad  *    notice, this list of conditions and the following disclaimer.
     15  1.23       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.23       ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.23       ad  *    documentation and/or other materials provided with the distribution.
     18  1.23       ad  *
     19  1.23       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.23       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.23       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.23       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.23       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.23       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.23       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.23       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.23       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.23       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.23       ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.23       ad  */
     31  1.23       ad 
     32  1.23       ad /*-
     33   1.1     yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34   1.1     yamt  * All rights reserved.
     35   1.1     yamt  *
     36   1.1     yamt  * Redistribution and use in source and binary forms, with or without
     37   1.1     yamt  * modification, are permitted provided that the following conditions
     38   1.1     yamt  * are met:
     39   1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     40   1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     41   1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1     yamt  *    documentation and/or other materials provided with the distribution.
     44   1.1     yamt  *
     45   1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46   1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47   1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48   1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49   1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50   1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51   1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52   1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53   1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54   1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55   1.1     yamt  * SUCH DAMAGE.
     56   1.1     yamt  */
     57   1.1     yamt 
     58   1.1     yamt /*
     59   1.1     yamt  * allocator of kernel wired memory.
     60   1.1     yamt  *
     61   1.1     yamt  * TODO:
     62   1.1     yamt  * -	worth to have "intrsafe" version?  maybe..
     63   1.1     yamt  */
     64   1.1     yamt 
     65   1.1     yamt #include <sys/cdefs.h>
     66  1.36   dyoung __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.36 2011/09/02 22:25:08 dyoung Exp $");
     67   1.1     yamt 
     68   1.1     yamt #include <sys/param.h>
     69   1.6     yamt #include <sys/callback.h>
     70   1.1     yamt #include <sys/kmem.h>
     71   1.1     yamt #include <sys/vmem.h>
     72  1.13       ad #include <sys/debug.h>
     73  1.17       ad #include <sys/lockdebug.h>
     74  1.23       ad #include <sys/cpu.h>
     75   1.1     yamt 
     76   1.6     yamt #include <uvm/uvm_extern.h>
     77   1.6     yamt #include <uvm/uvm_map.h>
     78  1.27       ad #include <uvm/uvm_kmguard.h>
     79   1.6     yamt 
     80   1.1     yamt #include <lib/libkern/libkern.h>
     81   1.1     yamt 
     82   1.3     yamt #define	KMEM_QUANTUM_SIZE	(ALIGNBYTES + 1)
     83  1.23       ad #define	KMEM_QCACHE_MAX		(KMEM_QUANTUM_SIZE * 32)
     84  1.23       ad #define	KMEM_CACHE_COUNT	16
     85  1.23       ad 
     86  1.23       ad typedef struct kmem_cache {
     87  1.23       ad 	pool_cache_t		kc_cache;
     88  1.23       ad 	struct pool_allocator	kc_pa;
     89  1.23       ad 	char			kc_name[12];
     90  1.23       ad } kmem_cache_t;
     91   1.1     yamt 
     92   1.1     yamt static vmem_t *kmem_arena;
     93   1.6     yamt static struct callback_entry kmem_kva_reclaim_entry;
     94   1.1     yamt 
     95  1.23       ad static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
     96  1.23       ad static size_t kmem_cache_max;
     97  1.23       ad static size_t kmem_cache_min;
     98  1.23       ad static size_t kmem_cache_mask;
     99  1.23       ad static int kmem_cache_shift;
    100  1.23       ad 
    101   1.4     yamt #if defined(DEBUG)
    102  1.34     matt int kmem_guard_depth = 0;
    103  1.27       ad size_t kmem_guard_size;
    104  1.27       ad static struct uvm_kmguard kmem_guard;
    105  1.13       ad static void *kmem_freecheck;
    106  1.19     yamt #define	KMEM_POISON
    107  1.19     yamt #define	KMEM_REDZONE
    108  1.23       ad #define	KMEM_SIZE
    109  1.27       ad #define	KMEM_GUARD
    110  1.19     yamt #endif /* defined(DEBUG) */
    111  1.19     yamt 
    112  1.19     yamt #if defined(KMEM_POISON)
    113   1.4     yamt static void kmem_poison_fill(void *, size_t);
    114   1.4     yamt static void kmem_poison_check(void *, size_t);
    115  1.19     yamt #else /* defined(KMEM_POISON) */
    116   1.4     yamt #define	kmem_poison_fill(p, sz)		/* nothing */
    117   1.4     yamt #define	kmem_poison_check(p, sz)	/* nothing */
    118  1.19     yamt #endif /* defined(KMEM_POISON) */
    119  1.19     yamt 
    120  1.19     yamt #if defined(KMEM_REDZONE)
    121  1.19     yamt #define	REDZONE_SIZE	1
    122  1.19     yamt #else /* defined(KMEM_REDZONE) */
    123  1.19     yamt #define	REDZONE_SIZE	0
    124  1.19     yamt #endif /* defined(KMEM_REDZONE) */
    125   1.4     yamt 
    126  1.23       ad #if defined(KMEM_SIZE)
    127  1.25       ad #define	SIZE_SIZE	(max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
    128  1.23       ad static void kmem_size_set(void *, size_t);
    129  1.30     yamt static void kmem_size_check(const void *, size_t);
    130  1.23       ad #else
    131  1.23       ad #define	SIZE_SIZE	0
    132  1.23       ad #define	kmem_size_set(p, sz)	/* nothing */
    133  1.23       ad #define	kmem_size_check(p, sz)	/* nothing */
    134  1.23       ad #endif
    135  1.23       ad 
    136  1.36   dyoung static int kmem_backend_alloc(void *, vmem_size_t, vmem_size_t *,
    137  1.36   dyoung     vm_flag_t, vmem_addr_t *);
    138  1.36   dyoung static void kmem_backend_free(void *, vmem_addr_t, vmem_size_t);
    139   1.6     yamt static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
    140   1.1     yamt 
    141  1.32    skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    142  1.32    skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    143  1.32    skrll 
    144   1.1     yamt static inline vm_flag_t
    145   1.1     yamt kmf_to_vmf(km_flag_t kmflags)
    146   1.1     yamt {
    147   1.1     yamt 	vm_flag_t vmflags;
    148   1.1     yamt 
    149   1.1     yamt 	KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
    150   1.1     yamt 	KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
    151   1.1     yamt 
    152   1.1     yamt 	vmflags = 0;
    153   1.1     yamt 	if ((kmflags & KM_SLEEP) != 0) {
    154   1.1     yamt 		vmflags |= VM_SLEEP;
    155   1.1     yamt 	}
    156   1.1     yamt 	if ((kmflags & KM_NOSLEEP) != 0) {
    157   1.1     yamt 		vmflags |= VM_NOSLEEP;
    158   1.1     yamt 	}
    159   1.1     yamt 
    160   1.1     yamt 	return vmflags;
    161   1.1     yamt }
    162   1.1     yamt 
    163  1.23       ad static void *
    164  1.23       ad kmem_poolpage_alloc(struct pool *pool, int prflags)
    165  1.23       ad {
    166  1.36   dyoung 	vmem_addr_t addr;
    167  1.36   dyoung 	int rc;
    168  1.23       ad 
    169  1.36   dyoung 	rc = vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
    170  1.36   dyoung 	    kmf_to_vmf(prflags) | VM_INSTANTFIT, &addr);
    171  1.36   dyoung 	return (rc == 0) ? (void *)addr : NULL;
    172  1.23       ad 
    173  1.23       ad }
    174  1.23       ad 
    175  1.23       ad static void
    176  1.23       ad kmem_poolpage_free(struct pool *pool, void *addr)
    177  1.23       ad {
    178  1.23       ad 
    179  1.23       ad 	vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    180  1.23       ad }
    181  1.23       ad 
    182   1.1     yamt /* ---- kmem API */
    183   1.1     yamt 
    184   1.1     yamt /*
    185   1.1     yamt  * kmem_alloc: allocate wired memory.
    186   1.1     yamt  *
    187   1.1     yamt  * => must not be called from interrupt context.
    188   1.1     yamt  */
    189   1.1     yamt 
    190   1.1     yamt void *
    191   1.1     yamt kmem_alloc(size_t size, km_flag_t kmflags)
    192   1.1     yamt {
    193  1.23       ad 	kmem_cache_t *kc;
    194  1.23       ad 	uint8_t *p;
    195  1.23       ad 
    196  1.23       ad 	KASSERT(!cpu_intr_p());
    197  1.27       ad 	KASSERT(!cpu_softintr_p());
    198  1.27       ad 	KASSERT(size > 0);
    199  1.27       ad 
    200  1.27       ad #ifdef KMEM_GUARD
    201  1.27       ad 	if (size <= kmem_guard_size) {
    202  1.27       ad 		return uvm_kmguard_alloc(&kmem_guard, size,
    203  1.27       ad 		    (kmflags & KM_SLEEP) != 0);
    204  1.27       ad 	}
    205  1.27       ad #endif
    206   1.1     yamt 
    207  1.23       ad 	size += REDZONE_SIZE + SIZE_SIZE;
    208  1.23       ad 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
    209  1.23       ad 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
    210  1.23       ad 		KASSERT(size <= kc->kc_pa.pa_pagesz);
    211  1.23       ad 		kmflags &= (KM_SLEEP | KM_NOSLEEP);
    212  1.23       ad 		p = pool_cache_get(kc->kc_cache, kmflags);
    213  1.23       ad 	} else {
    214  1.36   dyoung 		vmem_addr_t addr;
    215  1.36   dyoung 
    216  1.36   dyoung 		if (vmem_alloc(kmem_arena, size,
    217  1.36   dyoung 		    kmf_to_vmf(kmflags) | VM_INSTANTFIT, &addr) == 0)
    218  1.36   dyoung 			p = (void *)addr;
    219  1.36   dyoung 		else
    220  1.36   dyoung 			p = NULL;
    221  1.23       ad 	}
    222  1.23       ad 	if (__predict_true(p != NULL)) {
    223  1.22       ad 		kmem_poison_check(p, kmem_roundup_size(size));
    224  1.22       ad 		FREECHECK_OUT(&kmem_freecheck, p);
    225  1.23       ad 		kmem_size_set(p, size);
    226  1.23       ad 		p = (uint8_t *)p + SIZE_SIZE;
    227  1.12     yamt 	}
    228  1.22       ad 	return p;
    229   1.1     yamt }
    230   1.1     yamt 
    231   1.1     yamt /*
    232   1.2     yamt  * kmem_zalloc: allocate wired memory.
    233   1.2     yamt  *
    234   1.2     yamt  * => must not be called from interrupt context.
    235   1.2     yamt  */
    236   1.2     yamt 
    237   1.2     yamt void *
    238   1.2     yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    239   1.2     yamt {
    240   1.2     yamt 	void *p;
    241   1.2     yamt 
    242   1.2     yamt 	p = kmem_alloc(size, kmflags);
    243   1.2     yamt 	if (p != NULL) {
    244   1.2     yamt 		memset(p, 0, size);
    245   1.2     yamt 	}
    246   1.2     yamt 	return p;
    247   1.2     yamt }
    248   1.2     yamt 
    249   1.2     yamt /*
    250   1.1     yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    251   1.1     yamt  *
    252   1.1     yamt  * => must not be called from interrupt context.
    253   1.1     yamt  */
    254   1.1     yamt 
    255   1.1     yamt void
    256   1.1     yamt kmem_free(void *p, size_t size)
    257   1.1     yamt {
    258  1.23       ad 	kmem_cache_t *kc;
    259  1.23       ad 
    260  1.23       ad 	KASSERT(!cpu_intr_p());
    261  1.27       ad 	KASSERT(!cpu_softintr_p());
    262  1.28  jnemeth 	KASSERT(p != NULL);
    263  1.27       ad 	KASSERT(size > 0);
    264  1.23       ad 
    265  1.27       ad #ifdef KMEM_GUARD
    266  1.27       ad 	if (size <= kmem_guard_size) {
    267  1.27       ad 		uvm_kmguard_free(&kmem_guard, size, p);
    268  1.27       ad 		return;
    269  1.27       ad 	}
    270  1.27       ad #endif
    271  1.29     yamt 	size += SIZE_SIZE;
    272  1.29     yamt 	p = (uint8_t *)p - SIZE_SIZE;
    273  1.29     yamt 	kmem_size_check(p, size + REDZONE_SIZE);
    274  1.13       ad 	FREECHECK_IN(&kmem_freecheck, p);
    275  1.17       ad 	LOCKDEBUG_MEM_CHECK(p, size);
    276  1.19     yamt 	kmem_poison_check((char *)p + size,
    277  1.19     yamt 	    kmem_roundup_size(size + REDZONE_SIZE) - size);
    278   1.4     yamt 	kmem_poison_fill(p, size);
    279  1.24    enami 	size += REDZONE_SIZE;
    280  1.23       ad 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
    281  1.23       ad 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
    282  1.23       ad 		KASSERT(size <= kc->kc_pa.pa_pagesz);
    283  1.23       ad 		pool_cache_put(kc->kc_cache, p);
    284  1.23       ad 	} else {
    285  1.24    enami 		vmem_free(kmem_arena, (vmem_addr_t)p, size);
    286  1.23       ad 	}
    287   1.1     yamt }
    288   1.1     yamt 
    289  1.23       ad 
    290   1.1     yamt void
    291   1.1     yamt kmem_init(void)
    292   1.1     yamt {
    293  1.23       ad 	kmem_cache_t *kc;
    294  1.23       ad 	size_t sz;
    295  1.23       ad 	int i;
    296   1.1     yamt 
    297  1.27       ad #ifdef KMEM_GUARD
    298  1.27       ad 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    299  1.27       ad 	    kernel_map);
    300  1.27       ad #endif
    301  1.27       ad 
    302   1.1     yamt 	kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
    303  1.23       ad 	    kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
    304  1.23       ad 	    VM_SLEEP, IPL_NONE);
    305   1.6     yamt 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    306   1.6     yamt 	    &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
    307  1.23       ad 
    308  1.23       ad 	/*
    309  1.23       ad 	 * kmem caches start at twice the size of the largest vmem qcache
    310  1.23       ad 	 * and end at PAGE_SIZE or earlier.  assert that KMEM_QCACHE_MAX
    311  1.23       ad 	 * is a power of two.
    312  1.23       ad 	 */
    313  1.23       ad 	KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
    314  1.23       ad 	KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
    315  1.23       ad 	kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
    316  1.23       ad 	kmem_cache_min = 1 << kmem_cache_shift;
    317  1.23       ad 	kmem_cache_mask = kmem_cache_min - 1;
    318  1.23       ad 	for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
    319  1.23       ad 		sz = i << kmem_cache_shift;
    320  1.23       ad 		if (sz > PAGE_SIZE) {
    321  1.23       ad 			break;
    322  1.23       ad 		}
    323  1.23       ad 		kmem_cache_max = sz;
    324  1.23       ad 		kc = &kmem_cache[i];
    325  1.23       ad 		kc->kc_pa.pa_pagesz = sz;
    326  1.23       ad 		kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
    327  1.23       ad 		kc->kc_pa.pa_free = kmem_poolpage_free;
    328  1.26     yamt 		sprintf(kc->kc_name, "kmem-%zu", sz);
    329  1.23       ad 		kc->kc_cache = pool_cache_init(sz,
    330  1.23       ad 		    KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
    331  1.23       ad 		    kc->kc_name, &kc->kc_pa, IPL_NONE,
    332  1.23       ad 		    NULL, NULL, NULL);
    333  1.23       ad 		KASSERT(kc->kc_cache != NULL);
    334  1.23       ad 	}
    335   1.1     yamt }
    336   1.1     yamt 
    337   1.1     yamt size_t
    338   1.1     yamt kmem_roundup_size(size_t size)
    339   1.1     yamt {
    340   1.1     yamt 
    341   1.1     yamt 	return vmem_roundup_size(kmem_arena, size);
    342   1.1     yamt }
    343   1.1     yamt 
    344   1.1     yamt /* ---- uvm glue */
    345   1.1     yamt 
    346  1.36   dyoung static int
    347  1.36   dyoung kmem_backend_alloc(void *dummy, vmem_size_t size, vmem_size_t *resultsize,
    348  1.36   dyoung     vm_flag_t vmflags, vmem_addr_t *addrp)
    349   1.1     yamt {
    350   1.1     yamt 	uvm_flag_t uflags;
    351   1.4     yamt 	vaddr_t va;
    352   1.1     yamt 
    353   1.1     yamt 	KASSERT(dummy == NULL);
    354   1.1     yamt 	KASSERT(size != 0);
    355   1.1     yamt 	KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    356   1.1     yamt 	KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    357   1.1     yamt 
    358   1.1     yamt 	if ((vmflags & VM_NOSLEEP) != 0) {
    359   1.1     yamt 		uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
    360   1.1     yamt 	} else {
    361   1.1     yamt 		uflags = UVM_KMF_WAITVA;
    362   1.1     yamt 	}
    363   1.1     yamt 	*resultsize = size = round_page(size);
    364   1.4     yamt 	va = uvm_km_alloc(kernel_map, size, 0,
    365   1.1     yamt 	    uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
    366  1.36   dyoung 	if (va == 0)
    367  1.36   dyoung 		return ENOMEM;
    368  1.36   dyoung 	kmem_poison_fill((void *)va, size);
    369  1.36   dyoung 	*addrp = (vmem_addr_t)va;
    370  1.36   dyoung 	return 0;
    371   1.1     yamt }
    372   1.1     yamt 
    373   1.1     yamt static void
    374  1.36   dyoung kmem_backend_free(void *dummy, vmem_addr_t addr, vmem_size_t size)
    375   1.1     yamt {
    376   1.1     yamt 
    377   1.1     yamt 	KASSERT(dummy == NULL);
    378   1.1     yamt 	KASSERT(addr != 0);
    379   1.1     yamt 	KASSERT(size != 0);
    380   1.1     yamt 	KASSERT(size == round_page(size));
    381   1.1     yamt 
    382   1.4     yamt 	kmem_poison_check((void *)addr, size);
    383   1.1     yamt 	uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
    384   1.1     yamt }
    385   1.4     yamt 
    386   1.7     yamt static int
    387  1.11     yamt kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    388   1.7     yamt {
    389   1.7     yamt 	vmem_t *vm = obj;
    390   1.7     yamt 
    391   1.7     yamt 	vmem_reap(vm);
    392   1.7     yamt 	return CALLBACK_CHAIN_CONTINUE;
    393   1.7     yamt }
    394   1.7     yamt 
    395   1.4     yamt /* ---- debug */
    396   1.4     yamt 
    397  1.19     yamt #if defined(KMEM_POISON)
    398   1.4     yamt 
    399   1.4     yamt #if defined(_LP64)
    400   1.4     yamt #define	PRIME	0x9e37fffffffc0001UL
    401   1.4     yamt #else /* defined(_LP64) */
    402   1.4     yamt #define	PRIME	0x9e3779b1
    403   1.4     yamt #endif /* defined(_LP64) */
    404   1.4     yamt 
    405   1.4     yamt static inline uint8_t
    406   1.4     yamt kmem_poison_pattern(const void *p)
    407   1.4     yamt {
    408   1.4     yamt 
    409   1.4     yamt 	return (uint8_t)((((uintptr_t)p) * PRIME)
    410   1.4     yamt 	    >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    411   1.4     yamt }
    412   1.4     yamt 
    413   1.4     yamt static void
    414   1.4     yamt kmem_poison_fill(void *p, size_t sz)
    415   1.4     yamt {
    416   1.4     yamt 	uint8_t *cp;
    417   1.4     yamt 	const uint8_t *ep;
    418   1.4     yamt 
    419   1.4     yamt 	cp = p;
    420   1.4     yamt 	ep = cp + sz;
    421   1.4     yamt 	while (cp < ep) {
    422   1.4     yamt 		*cp = kmem_poison_pattern(cp);
    423   1.4     yamt 		cp++;
    424   1.4     yamt 	}
    425   1.4     yamt }
    426   1.4     yamt 
    427   1.4     yamt static void
    428   1.4     yamt kmem_poison_check(void *p, size_t sz)
    429   1.4     yamt {
    430   1.4     yamt 	uint8_t *cp;
    431   1.4     yamt 	const uint8_t *ep;
    432   1.4     yamt 
    433   1.4     yamt 	cp = p;
    434   1.4     yamt 	ep = cp + sz;
    435   1.4     yamt 	while (cp < ep) {
    436   1.4     yamt 		const uint8_t expected = kmem_poison_pattern(cp);
    437   1.4     yamt 
    438   1.4     yamt 		if (*cp != expected) {
    439   1.4     yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    440   1.4     yamt 			    __func__, cp, *cp, expected);
    441   1.4     yamt 		}
    442   1.4     yamt 		cp++;
    443   1.4     yamt 	}
    444   1.4     yamt }
    445   1.4     yamt 
    446  1.19     yamt #endif /* defined(KMEM_POISON) */
    447  1.23       ad 
    448  1.23       ad #if defined(KMEM_SIZE)
    449  1.23       ad static void
    450  1.23       ad kmem_size_set(void *p, size_t sz)
    451  1.23       ad {
    452  1.23       ad 
    453  1.23       ad 	memcpy(p, &sz, sizeof(sz));
    454  1.23       ad }
    455  1.23       ad 
    456  1.23       ad static void
    457  1.30     yamt kmem_size_check(const void *p, size_t sz)
    458  1.23       ad {
    459  1.23       ad 	size_t psz;
    460  1.23       ad 
    461  1.23       ad 	memcpy(&psz, p, sizeof(psz));
    462  1.23       ad 	if (psz != sz) {
    463  1.23       ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    464  1.30     yamt 		    (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
    465  1.23       ad 	}
    466  1.23       ad }
    467  1.23       ad #endif	/* defined(KMEM_SIZE) */
    468  1.33     haad 
    469  1.33     haad /*
    470  1.33     haad  * Used to dynamically allocate string with kmem accordingly to format.
    471  1.33     haad  */
    472  1.33     haad char *
    473  1.33     haad kmem_asprintf(const char *fmt, ...)
    474  1.33     haad {
    475  1.33     haad 	int size, str_len;
    476  1.33     haad 	va_list va;
    477  1.33     haad 	char *str;
    478  1.33     haad 	char buf[1];
    479  1.33     haad 
    480  1.33     haad 	va_start(va, fmt);
    481  1.33     haad 	str_len = vsnprintf(buf, sizeof(buf), fmt, va) + 1;
    482  1.33     haad 	va_end(va);
    483  1.33     haad 
    484  1.33     haad 	str = kmem_alloc(str_len, KM_SLEEP);
    485  1.33     haad 
    486  1.33     haad 	if ((size = vsnprintf(str, str_len, fmt, va)) == -1) {
    487  1.33     haad 		kmem_free(str, str_len);
    488  1.33     haad 		return NULL;
    489  1.33     haad 	}
    490  1.33     haad 
    491  1.33     haad 	return str;
    492  1.33     haad }
    493