subr_kmem.c revision 1.36.2.2 1 1.36.2.2 yamt /* $NetBSD: subr_kmem.c,v 1.36.2.2 2012/10/30 17:22:33 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.23 ad * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 ad * by Andrew Doran.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.1 yamt * allocator of kernel wired memory.
60 1.1 yamt *
61 1.1 yamt */
62 1.1 yamt
63 1.1 yamt #include <sys/cdefs.h>
64 1.36.2.2 yamt __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.36.2.2 2012/10/30 17:22:33 yamt Exp $");
65 1.1 yamt
66 1.1 yamt #include <sys/param.h>
67 1.6 yamt #include <sys/callback.h>
68 1.1 yamt #include <sys/kmem.h>
69 1.36.2.1 yamt #include <sys/pool.h>
70 1.13 ad #include <sys/debug.h>
71 1.17 ad #include <sys/lockdebug.h>
72 1.23 ad #include <sys/cpu.h>
73 1.1 yamt
74 1.6 yamt #include <uvm/uvm_extern.h>
75 1.6 yamt #include <uvm/uvm_map.h>
76 1.27 ad #include <uvm/uvm_kmguard.h>
77 1.6 yamt
78 1.1 yamt #include <lib/libkern/libkern.h>
79 1.1 yamt
80 1.36.2.2 yamt struct kmem_cache_info {
81 1.36.2.1 yamt size_t kc_size;
82 1.36.2.1 yamt const char * kc_name;
83 1.36.2.2 yamt };
84 1.36.2.2 yamt
85 1.36.2.2 yamt static const struct kmem_cache_info kmem_cache_sizes[] = {
86 1.36.2.1 yamt { 8, "kmem-8" },
87 1.36.2.1 yamt { 16, "kmem-16" },
88 1.36.2.1 yamt { 24, "kmem-24" },
89 1.36.2.1 yamt { 32, "kmem-32" },
90 1.36.2.1 yamt { 40, "kmem-40" },
91 1.36.2.1 yamt { 48, "kmem-48" },
92 1.36.2.1 yamt { 56, "kmem-56" },
93 1.36.2.1 yamt { 64, "kmem-64" },
94 1.36.2.1 yamt { 80, "kmem-80" },
95 1.36.2.1 yamt { 96, "kmem-96" },
96 1.36.2.1 yamt { 112, "kmem-112" },
97 1.36.2.1 yamt { 128, "kmem-128" },
98 1.36.2.1 yamt { 160, "kmem-160" },
99 1.36.2.1 yamt { 192, "kmem-192" },
100 1.36.2.1 yamt { 224, "kmem-224" },
101 1.36.2.1 yamt { 256, "kmem-256" },
102 1.36.2.1 yamt { 320, "kmem-320" },
103 1.36.2.1 yamt { 384, "kmem-384" },
104 1.36.2.1 yamt { 448, "kmem-448" },
105 1.36.2.1 yamt { 512, "kmem-512" },
106 1.36.2.1 yamt { 768, "kmem-768" },
107 1.36.2.1 yamt { 1024, "kmem-1024" },
108 1.36.2.2 yamt { 0, NULL }
109 1.36.2.2 yamt };
110 1.36.2.2 yamt
111 1.36.2.2 yamt static const struct kmem_cache_info kmem_cache_big_sizes[] = {
112 1.36.2.1 yamt { 2048, "kmem-2048" },
113 1.36.2.1 yamt { 4096, "kmem-4096" },
114 1.36.2.2 yamt { 8192, "kmem-8192" },
115 1.36.2.2 yamt { 16384, "kmem-16384" },
116 1.36.2.1 yamt { 0, NULL }
117 1.36.2.1 yamt };
118 1.23 ad
119 1.36.2.1 yamt /*
120 1.36.2.1 yamt * KMEM_ALIGN is the smallest guaranteed alignment and also the
121 1.36.2.2 yamt * smallest allocateable quantum.
122 1.36.2.2 yamt * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
123 1.36.2.1 yamt */
124 1.36.2.1 yamt #define KMEM_ALIGN 8
125 1.36.2.1 yamt #define KMEM_SHIFT 3
126 1.36.2.2 yamt #define KMEM_MAXSIZE 1024
127 1.36.2.1 yamt #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
128 1.36.2.1 yamt
129 1.36.2.1 yamt static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
130 1.36.2.1 yamt static size_t kmem_cache_maxidx __read_mostly;
131 1.36.2.1 yamt
132 1.36.2.2 yamt #define KMEM_BIG_ALIGN 2048
133 1.36.2.2 yamt #define KMEM_BIG_SHIFT 11
134 1.36.2.2 yamt #define KMEM_BIG_MAXSIZE 16384
135 1.36.2.2 yamt #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
136 1.36.2.2 yamt
137 1.36.2.2 yamt static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
138 1.36.2.2 yamt static size_t kmem_cache_big_maxidx __read_mostly;
139 1.36.2.2 yamt
140 1.36.2.2 yamt
141 1.36.2.1 yamt #if defined(DEBUG) && defined(_HARDKERNEL)
142 1.36.2.1 yamt #ifndef KMEM_GUARD_DEPTH
143 1.36.2.1 yamt #define KMEM_GUARD_DEPTH 0
144 1.36.2.1 yamt #endif
145 1.36.2.1 yamt int kmem_guard_depth = KMEM_GUARD_DEPTH;
146 1.27 ad size_t kmem_guard_size;
147 1.27 ad static struct uvm_kmguard kmem_guard;
148 1.13 ad static void *kmem_freecheck;
149 1.19 yamt #define KMEM_POISON
150 1.19 yamt #define KMEM_REDZONE
151 1.23 ad #define KMEM_SIZE
152 1.27 ad #define KMEM_GUARD
153 1.19 yamt #endif /* defined(DEBUG) */
154 1.19 yamt
155 1.19 yamt #if defined(KMEM_POISON)
156 1.36.2.1 yamt static int kmem_poison_ctor(void *, void *, int);
157 1.4 yamt static void kmem_poison_fill(void *, size_t);
158 1.4 yamt static void kmem_poison_check(void *, size_t);
159 1.19 yamt #else /* defined(KMEM_POISON) */
160 1.4 yamt #define kmem_poison_fill(p, sz) /* nothing */
161 1.4 yamt #define kmem_poison_check(p, sz) /* nothing */
162 1.19 yamt #endif /* defined(KMEM_POISON) */
163 1.19 yamt
164 1.19 yamt #if defined(KMEM_REDZONE)
165 1.19 yamt #define REDZONE_SIZE 1
166 1.19 yamt #else /* defined(KMEM_REDZONE) */
167 1.19 yamt #define REDZONE_SIZE 0
168 1.19 yamt #endif /* defined(KMEM_REDZONE) */
169 1.4 yamt
170 1.23 ad #if defined(KMEM_SIZE)
171 1.36.2.1 yamt #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
172 1.23 ad static void kmem_size_set(void *, size_t);
173 1.36.2.1 yamt static void kmem_size_check(void *, size_t);
174 1.23 ad #else
175 1.23 ad #define SIZE_SIZE 0
176 1.23 ad #define kmem_size_set(p, sz) /* nothing */
177 1.23 ad #define kmem_size_check(p, sz) /* nothing */
178 1.23 ad #endif
179 1.23 ad
180 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
181 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
182 1.32 skrll
183 1.36.2.2 yamt /*
184 1.36.2.2 yamt * kmem_intr_alloc: allocate wired memory.
185 1.36.2.2 yamt */
186 1.36.2.2 yamt
187 1.36.2.1 yamt void *
188 1.36.2.1 yamt kmem_intr_alloc(size_t size, km_flag_t kmflags)
189 1.1 yamt {
190 1.36.2.1 yamt size_t allocsz, index;
191 1.36.2.1 yamt pool_cache_t pc;
192 1.36.2.1 yamt uint8_t *p;
193 1.1 yamt
194 1.36.2.1 yamt KASSERT(size > 0);
195 1.1 yamt
196 1.36.2.1 yamt #ifdef KMEM_GUARD
197 1.36.2.1 yamt if (size <= kmem_guard_size) {
198 1.36.2.1 yamt return uvm_kmguard_alloc(&kmem_guard, size,
199 1.36.2.1 yamt (kmflags & KM_SLEEP) != 0);
200 1.1 yamt }
201 1.36.2.1 yamt #endif
202 1.36.2.2 yamt size = kmem_roundup_size(size);
203 1.36.2.2 yamt allocsz = size + REDZONE_SIZE + SIZE_SIZE;
204 1.36.2.1 yamt
205 1.36.2.2 yamt if ((index = ((allocsz -1) >> KMEM_SHIFT))
206 1.36.2.2 yamt < kmem_cache_maxidx) {
207 1.36.2.2 yamt pc = kmem_cache[index];
208 1.36.2.2 yamt } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
209 1.36.2.2 yamt < kmem_cache_big_maxidx) {
210 1.36.2.2 yamt pc = kmem_cache_big[index];
211 1.36.2.2 yamt } else {
212 1.36.2.1 yamt int ret = uvm_km_kmem_alloc(kmem_va_arena,
213 1.36.2.1 yamt (vsize_t)round_page(size),
214 1.36.2.1 yamt ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
215 1.36.2.1 yamt | VM_INSTANTFIT, (vmem_addr_t *)&p);
216 1.36.2.2 yamt if (ret) {
217 1.36.2.2 yamt return NULL;
218 1.36.2.2 yamt }
219 1.36.2.2 yamt FREECHECK_OUT(&kmem_freecheck, p);
220 1.36.2.2 yamt return p;
221 1.1 yamt }
222 1.1 yamt
223 1.36.2.1 yamt p = pool_cache_get(pc, kmflags);
224 1.36.2.1 yamt
225 1.36.2.1 yamt if (__predict_true(p != NULL)) {
226 1.36.2.2 yamt kmem_poison_check(p, size);
227 1.36.2.1 yamt FREECHECK_OUT(&kmem_freecheck, p);
228 1.36.2.2 yamt kmem_size_set(p, size);
229 1.36.2.1 yamt }
230 1.36.2.2 yamt return p + SIZE_SIZE;
231 1.1 yamt }
232 1.1 yamt
233 1.36.2.2 yamt /*
234 1.36.2.2 yamt * kmem_intr_zalloc: allocate zeroed wired memory.
235 1.36.2.2 yamt */
236 1.36.2.2 yamt
237 1.36.2.1 yamt void *
238 1.36.2.1 yamt kmem_intr_zalloc(size_t size, km_flag_t kmflags)
239 1.23 ad {
240 1.36.2.1 yamt void *p;
241 1.23 ad
242 1.36.2.1 yamt p = kmem_intr_alloc(size, kmflags);
243 1.36.2.1 yamt if (p != NULL) {
244 1.36.2.1 yamt memset(p, 0, size);
245 1.36.2.1 yamt }
246 1.36.2.1 yamt return p;
247 1.23 ad }
248 1.23 ad
249 1.36.2.2 yamt /*
250 1.36.2.2 yamt * kmem_intr_free: free wired memory allocated by kmem_alloc.
251 1.36.2.2 yamt */
252 1.36.2.2 yamt
253 1.36.2.1 yamt void
254 1.36.2.1 yamt kmem_intr_free(void *p, size_t size)
255 1.23 ad {
256 1.36.2.1 yamt size_t allocsz, index;
257 1.36.2.1 yamt pool_cache_t pc;
258 1.36.2.1 yamt
259 1.36.2.1 yamt KASSERT(p != NULL);
260 1.36.2.1 yamt KASSERT(size > 0);
261 1.36.2.1 yamt
262 1.36.2.1 yamt #ifdef KMEM_GUARD
263 1.36.2.1 yamt if (size <= kmem_guard_size) {
264 1.36.2.1 yamt uvm_kmguard_free(&kmem_guard, size, p);
265 1.36.2.1 yamt return;
266 1.36.2.1 yamt }
267 1.36.2.1 yamt #endif
268 1.36.2.2 yamt size = kmem_roundup_size(size);
269 1.36.2.2 yamt allocsz = size + REDZONE_SIZE + SIZE_SIZE;
270 1.36.2.1 yamt
271 1.36.2.2 yamt if ((index = ((allocsz -1) >> KMEM_SHIFT))
272 1.36.2.2 yamt < kmem_cache_maxidx) {
273 1.36.2.2 yamt pc = kmem_cache[index];
274 1.36.2.2 yamt } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
275 1.36.2.2 yamt < kmem_cache_big_maxidx) {
276 1.36.2.2 yamt pc = kmem_cache_big[index];
277 1.36.2.2 yamt } else {
278 1.36.2.2 yamt FREECHECK_IN(&kmem_freecheck, p);
279 1.36.2.1 yamt uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
280 1.36.2.1 yamt round_page(size));
281 1.36.2.1 yamt return;
282 1.36.2.1 yamt }
283 1.36.2.1 yamt
284 1.36.2.2 yamt p = (uint8_t *)p - SIZE_SIZE;
285 1.36.2.2 yamt kmem_size_check(p, size);
286 1.36.2.1 yamt FREECHECK_IN(&kmem_freecheck, p);
287 1.36.2.2 yamt LOCKDEBUG_MEM_CHECK(p, size);
288 1.36.2.2 yamt kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
289 1.36.2.2 yamt allocsz - (SIZE_SIZE + size));
290 1.36.2.1 yamt kmem_poison_fill(p, allocsz);
291 1.23 ad
292 1.36.2.1 yamt pool_cache_put(pc, p);
293 1.23 ad }
294 1.23 ad
295 1.1 yamt /* ---- kmem API */
296 1.1 yamt
297 1.1 yamt /*
298 1.1 yamt * kmem_alloc: allocate wired memory.
299 1.1 yamt * => must not be called from interrupt context.
300 1.1 yamt */
301 1.1 yamt
302 1.1 yamt void *
303 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
304 1.1 yamt {
305 1.1 yamt
306 1.36.2.1 yamt KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
307 1.36.2.1 yamt "kmem(9) should not be used from the interrupt context");
308 1.36.2.1 yamt return kmem_intr_alloc(size, kmflags);
309 1.1 yamt }
310 1.1 yamt
311 1.1 yamt /*
312 1.36.2.1 yamt * kmem_zalloc: allocate zeroed wired memory.
313 1.2 yamt * => must not be called from interrupt context.
314 1.2 yamt */
315 1.2 yamt
316 1.2 yamt void *
317 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
318 1.2 yamt {
319 1.2 yamt
320 1.36.2.1 yamt KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
321 1.36.2.1 yamt "kmem(9) should not be used from the interrupt context");
322 1.36.2.1 yamt return kmem_intr_zalloc(size, kmflags);
323 1.2 yamt }
324 1.2 yamt
325 1.2 yamt /*
326 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
327 1.1 yamt * => must not be called from interrupt context.
328 1.1 yamt */
329 1.1 yamt
330 1.1 yamt void
331 1.1 yamt kmem_free(void *p, size_t size)
332 1.1 yamt {
333 1.23 ad
334 1.23 ad KASSERT(!cpu_intr_p());
335 1.27 ad KASSERT(!cpu_softintr_p());
336 1.36.2.1 yamt kmem_intr_free(p, size);
337 1.1 yamt }
338 1.1 yamt
339 1.36.2.2 yamt static size_t
340 1.36.2.1 yamt kmem_create_caches(const struct kmem_cache_info *array,
341 1.36.2.2 yamt pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
342 1.1 yamt {
343 1.36.2.2 yamt size_t maxidx = 0;
344 1.36.2.2 yamt size_t table_unit = (1 << shift);
345 1.36.2.1 yamt size_t size = table_unit;
346 1.23 ad int i;
347 1.1 yamt
348 1.36.2.1 yamt for (i = 0; array[i].kc_size != 0 ; i++) {
349 1.36.2.1 yamt const char *name = array[i].kc_name;
350 1.36.2.1 yamt size_t cache_size = array[i].kc_size;
351 1.36.2.2 yamt struct pool_allocator *pa;
352 1.36.2.1 yamt int flags = PR_NOALIGN;
353 1.36.2.1 yamt pool_cache_t pc;
354 1.36.2.1 yamt size_t align;
355 1.36.2.1 yamt
356 1.36.2.1 yamt if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
357 1.36.2.1 yamt align = CACHE_LINE_SIZE;
358 1.36.2.1 yamt else if ((cache_size & (PAGE_SIZE - 1)) == 0)
359 1.36.2.1 yamt align = PAGE_SIZE;
360 1.36.2.1 yamt else
361 1.36.2.1 yamt align = KMEM_ALIGN;
362 1.36.2.1 yamt
363 1.36.2.1 yamt if (cache_size < CACHE_LINE_SIZE)
364 1.36.2.1 yamt flags |= PR_NOTOUCH;
365 1.27 ad
366 1.36.2.1 yamt /* check if we reached the requested size */
367 1.36.2.2 yamt if (cache_size > maxsize || cache_size > PAGE_SIZE) {
368 1.23 ad break;
369 1.23 ad }
370 1.36.2.2 yamt if ((cache_size >> shift) > maxidx) {
371 1.36.2.2 yamt maxidx = cache_size >> shift;
372 1.36.2.2 yamt }
373 1.36.2.2 yamt
374 1.36.2.2 yamt if ((cache_size >> shift) > maxidx) {
375 1.36.2.2 yamt maxidx = cache_size >> shift;
376 1.36.2.1 yamt }
377 1.1 yamt
378 1.36.2.2 yamt pa = &pool_allocator_kmem;
379 1.36.2.1 yamt #if defined(KMEM_POISON)
380 1.36.2.1 yamt pc = pool_cache_init(cache_size, align, 0, flags,
381 1.36.2.2 yamt name, pa, ipl,kmem_poison_ctor,
382 1.36.2.1 yamt NULL, (void *)cache_size);
383 1.36.2.1 yamt #else /* defined(KMEM_POISON) */
384 1.36.2.1 yamt pc = pool_cache_init(cache_size, align, 0, flags,
385 1.36.2.2 yamt name, pa, ipl, NULL, NULL, NULL);
386 1.36.2.1 yamt #endif /* defined(KMEM_POISON) */
387 1.1 yamt
388 1.36.2.1 yamt while (size <= cache_size) {
389 1.36.2.2 yamt alloc_table[(size - 1) >> shift] = pc;
390 1.36.2.1 yamt size += table_unit;
391 1.36.2.1 yamt }
392 1.1 yamt }
393 1.36.2.2 yamt return maxidx;
394 1.1 yamt }
395 1.1 yamt
396 1.36.2.1 yamt void
397 1.36.2.1 yamt kmem_init(void)
398 1.1 yamt {
399 1.1 yamt
400 1.36.2.1 yamt #ifdef KMEM_GUARD
401 1.36.2.1 yamt uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
402 1.36.2.1 yamt kmem_va_arena);
403 1.36.2.1 yamt #endif
404 1.36.2.2 yamt kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
405 1.36.2.2 yamt kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
406 1.36.2.2 yamt kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
407 1.36.2.2 yamt kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
408 1.1 yamt }
409 1.4 yamt
410 1.36.2.1 yamt size_t
411 1.36.2.1 yamt kmem_roundup_size(size_t size)
412 1.7 yamt {
413 1.7 yamt
414 1.36.2.1 yamt return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
415 1.7 yamt }
416 1.7 yamt
417 1.4 yamt /* ---- debug */
418 1.4 yamt
419 1.19 yamt #if defined(KMEM_POISON)
420 1.4 yamt
421 1.4 yamt #if defined(_LP64)
422 1.36.2.1 yamt #define PRIME 0x9e37fffffffc0000UL
423 1.4 yamt #else /* defined(_LP64) */
424 1.36.2.1 yamt #define PRIME 0x9e3779b1
425 1.4 yamt #endif /* defined(_LP64) */
426 1.4 yamt
427 1.4 yamt static inline uint8_t
428 1.4 yamt kmem_poison_pattern(const void *p)
429 1.4 yamt {
430 1.4 yamt
431 1.36.2.1 yamt return (uint8_t)(((uintptr_t)p) * PRIME
432 1.36.2.1 yamt >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
433 1.36.2.1 yamt }
434 1.36.2.1 yamt
435 1.36.2.1 yamt static int
436 1.36.2.1 yamt kmem_poison_ctor(void *arg, void *obj, int flag)
437 1.36.2.1 yamt {
438 1.36.2.1 yamt size_t sz = (size_t)arg;
439 1.36.2.1 yamt
440 1.36.2.1 yamt kmem_poison_fill(obj, sz);
441 1.36.2.1 yamt
442 1.36.2.1 yamt return 0;
443 1.4 yamt }
444 1.4 yamt
445 1.4 yamt static void
446 1.4 yamt kmem_poison_fill(void *p, size_t sz)
447 1.4 yamt {
448 1.4 yamt uint8_t *cp;
449 1.4 yamt const uint8_t *ep;
450 1.4 yamt
451 1.4 yamt cp = p;
452 1.4 yamt ep = cp + sz;
453 1.4 yamt while (cp < ep) {
454 1.4 yamt *cp = kmem_poison_pattern(cp);
455 1.4 yamt cp++;
456 1.4 yamt }
457 1.4 yamt }
458 1.4 yamt
459 1.4 yamt static void
460 1.4 yamt kmem_poison_check(void *p, size_t sz)
461 1.4 yamt {
462 1.4 yamt uint8_t *cp;
463 1.4 yamt const uint8_t *ep;
464 1.4 yamt
465 1.4 yamt cp = p;
466 1.4 yamt ep = cp + sz;
467 1.4 yamt while (cp < ep) {
468 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
469 1.4 yamt
470 1.4 yamt if (*cp != expected) {
471 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
472 1.36.2.1 yamt __func__, cp, *cp, expected);
473 1.4 yamt }
474 1.4 yamt cp++;
475 1.4 yamt }
476 1.4 yamt }
477 1.4 yamt
478 1.19 yamt #endif /* defined(KMEM_POISON) */
479 1.23 ad
480 1.23 ad #if defined(KMEM_SIZE)
481 1.23 ad static void
482 1.23 ad kmem_size_set(void *p, size_t sz)
483 1.23 ad {
484 1.36.2.2 yamt
485 1.36.2.2 yamt memcpy(p, &sz, sizeof(sz));
486 1.23 ad }
487 1.23 ad
488 1.23 ad static void
489 1.36.2.1 yamt kmem_size_check(void *p, size_t sz)
490 1.23 ad {
491 1.23 ad size_t psz;
492 1.23 ad
493 1.36.2.2 yamt memcpy(&psz, p, sizeof(psz));
494 1.23 ad if (psz != sz) {
495 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
496 1.36.2.2 yamt (const uint8_t *)p + SIZE_SIZE, sz, psz);
497 1.23 ad }
498 1.23 ad }
499 1.23 ad #endif /* defined(KMEM_SIZE) */
500 1.33 haad
501 1.33 haad /*
502 1.33 haad * Used to dynamically allocate string with kmem accordingly to format.
503 1.33 haad */
504 1.33 haad char *
505 1.33 haad kmem_asprintf(const char *fmt, ...)
506 1.33 haad {
507 1.36.2.1 yamt int size, len;
508 1.33 haad va_list va;
509 1.33 haad char *str;
510 1.33 haad
511 1.33 haad va_start(va, fmt);
512 1.36.2.1 yamt len = vsnprintf(NULL, 0, fmt, va);
513 1.33 haad va_end(va);
514 1.33 haad
515 1.36.2.1 yamt str = kmem_alloc(len + 1, KM_SLEEP);
516 1.33 haad
517 1.36.2.1 yamt va_start(va, fmt);
518 1.36.2.1 yamt size = vsnprintf(str, len + 1, fmt, va);
519 1.36.2.1 yamt va_end(va);
520 1.36.2.1 yamt
521 1.36.2.1 yamt KASSERT(size == len);
522 1.33 haad
523 1.33 haad return str;
524 1.33 haad }
525