Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.36.2.2
      1  1.36.2.2   yamt /*	$NetBSD: subr_kmem.c,v 1.36.2.2 2012/10/30 17:22:33 yamt Exp $	*/
      2       1.1   yamt 
      3       1.1   yamt /*-
      4      1.23     ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5      1.23     ad  * All rights reserved.
      6      1.23     ad  *
      7      1.23     ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.23     ad  * by Andrew Doran.
      9      1.23     ad  *
     10      1.23     ad  * Redistribution and use in source and binary forms, with or without
     11      1.23     ad  * modification, are permitted provided that the following conditions
     12      1.23     ad  * are met:
     13      1.23     ad  * 1. Redistributions of source code must retain the above copyright
     14      1.23     ad  *    notice, this list of conditions and the following disclaimer.
     15      1.23     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.23     ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.23     ad  *    documentation and/or other materials provided with the distribution.
     18      1.23     ad  *
     19      1.23     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.23     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.23     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.23     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.23     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.23     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.23     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.23     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.23     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.23     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.23     ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.23     ad  */
     31      1.23     ad 
     32      1.23     ad /*-
     33       1.1   yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34       1.1   yamt  * All rights reserved.
     35       1.1   yamt  *
     36       1.1   yamt  * Redistribution and use in source and binary forms, with or without
     37       1.1   yamt  * modification, are permitted provided that the following conditions
     38       1.1   yamt  * are met:
     39       1.1   yamt  * 1. Redistributions of source code must retain the above copyright
     40       1.1   yamt  *    notice, this list of conditions and the following disclaimer.
     41       1.1   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1   yamt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1   yamt  *    documentation and/or other materials provided with the distribution.
     44       1.1   yamt  *
     45       1.1   yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46       1.1   yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47       1.1   yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48       1.1   yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49       1.1   yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50       1.1   yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51       1.1   yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52       1.1   yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53       1.1   yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54       1.1   yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55       1.1   yamt  * SUCH DAMAGE.
     56       1.1   yamt  */
     57       1.1   yamt 
     58       1.1   yamt /*
     59       1.1   yamt  * allocator of kernel wired memory.
     60       1.1   yamt  *
     61       1.1   yamt  */
     62       1.1   yamt 
     63       1.1   yamt #include <sys/cdefs.h>
     64  1.36.2.2   yamt __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.36.2.2 2012/10/30 17:22:33 yamt Exp $");
     65       1.1   yamt 
     66       1.1   yamt #include <sys/param.h>
     67       1.6   yamt #include <sys/callback.h>
     68       1.1   yamt #include <sys/kmem.h>
     69  1.36.2.1   yamt #include <sys/pool.h>
     70      1.13     ad #include <sys/debug.h>
     71      1.17     ad #include <sys/lockdebug.h>
     72      1.23     ad #include <sys/cpu.h>
     73       1.1   yamt 
     74       1.6   yamt #include <uvm/uvm_extern.h>
     75       1.6   yamt #include <uvm/uvm_map.h>
     76      1.27     ad #include <uvm/uvm_kmguard.h>
     77       1.6   yamt 
     78       1.1   yamt #include <lib/libkern/libkern.h>
     79       1.1   yamt 
     80  1.36.2.2   yamt struct kmem_cache_info {
     81  1.36.2.1   yamt 	size_t		kc_size;
     82  1.36.2.1   yamt 	const char *	kc_name;
     83  1.36.2.2   yamt };
     84  1.36.2.2   yamt 
     85  1.36.2.2   yamt static const struct kmem_cache_info kmem_cache_sizes[] = {
     86  1.36.2.1   yamt 	{  8, "kmem-8" },
     87  1.36.2.1   yamt 	{ 16, "kmem-16" },
     88  1.36.2.1   yamt 	{ 24, "kmem-24" },
     89  1.36.2.1   yamt 	{ 32, "kmem-32" },
     90  1.36.2.1   yamt 	{ 40, "kmem-40" },
     91  1.36.2.1   yamt 	{ 48, "kmem-48" },
     92  1.36.2.1   yamt 	{ 56, "kmem-56" },
     93  1.36.2.1   yamt 	{ 64, "kmem-64" },
     94  1.36.2.1   yamt 	{ 80, "kmem-80" },
     95  1.36.2.1   yamt 	{ 96, "kmem-96" },
     96  1.36.2.1   yamt 	{ 112, "kmem-112" },
     97  1.36.2.1   yamt 	{ 128, "kmem-128" },
     98  1.36.2.1   yamt 	{ 160, "kmem-160" },
     99  1.36.2.1   yamt 	{ 192, "kmem-192" },
    100  1.36.2.1   yamt 	{ 224, "kmem-224" },
    101  1.36.2.1   yamt 	{ 256, "kmem-256" },
    102  1.36.2.1   yamt 	{ 320, "kmem-320" },
    103  1.36.2.1   yamt 	{ 384, "kmem-384" },
    104  1.36.2.1   yamt 	{ 448, "kmem-448" },
    105  1.36.2.1   yamt 	{ 512, "kmem-512" },
    106  1.36.2.1   yamt 	{ 768, "kmem-768" },
    107  1.36.2.1   yamt 	{ 1024, "kmem-1024" },
    108  1.36.2.2   yamt 	{ 0, NULL }
    109  1.36.2.2   yamt };
    110  1.36.2.2   yamt 
    111  1.36.2.2   yamt static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    112  1.36.2.1   yamt 	{ 2048, "kmem-2048" },
    113  1.36.2.1   yamt 	{ 4096, "kmem-4096" },
    114  1.36.2.2   yamt 	{ 8192, "kmem-8192" },
    115  1.36.2.2   yamt 	{ 16384, "kmem-16384" },
    116  1.36.2.1   yamt 	{ 0, NULL }
    117  1.36.2.1   yamt };
    118      1.23     ad 
    119  1.36.2.1   yamt /*
    120  1.36.2.1   yamt  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    121  1.36.2.2   yamt  * smallest allocateable quantum.
    122  1.36.2.2   yamt  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    123  1.36.2.1   yamt  */
    124  1.36.2.1   yamt #define	KMEM_ALIGN		8
    125  1.36.2.1   yamt #define	KMEM_SHIFT		3
    126  1.36.2.2   yamt #define	KMEM_MAXSIZE		1024
    127  1.36.2.1   yamt #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    128  1.36.2.1   yamt 
    129  1.36.2.1   yamt static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    130  1.36.2.1   yamt static size_t kmem_cache_maxidx __read_mostly;
    131  1.36.2.1   yamt 
    132  1.36.2.2   yamt #define	KMEM_BIG_ALIGN		2048
    133  1.36.2.2   yamt #define	KMEM_BIG_SHIFT		11
    134  1.36.2.2   yamt #define	KMEM_BIG_MAXSIZE	16384
    135  1.36.2.2   yamt #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    136  1.36.2.2   yamt 
    137  1.36.2.2   yamt static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    138  1.36.2.2   yamt static size_t kmem_cache_big_maxidx __read_mostly;
    139  1.36.2.2   yamt 
    140  1.36.2.2   yamt 
    141  1.36.2.1   yamt #if defined(DEBUG) && defined(_HARDKERNEL)
    142  1.36.2.1   yamt #ifndef KMEM_GUARD_DEPTH
    143  1.36.2.1   yamt #define KMEM_GUARD_DEPTH 0
    144  1.36.2.1   yamt #endif
    145  1.36.2.1   yamt int kmem_guard_depth = KMEM_GUARD_DEPTH;
    146      1.27     ad size_t kmem_guard_size;
    147      1.27     ad static struct uvm_kmguard kmem_guard;
    148      1.13     ad static void *kmem_freecheck;
    149      1.19   yamt #define	KMEM_POISON
    150      1.19   yamt #define	KMEM_REDZONE
    151      1.23     ad #define	KMEM_SIZE
    152      1.27     ad #define	KMEM_GUARD
    153      1.19   yamt #endif /* defined(DEBUG) */
    154      1.19   yamt 
    155      1.19   yamt #if defined(KMEM_POISON)
    156  1.36.2.1   yamt static int kmem_poison_ctor(void *, void *, int);
    157       1.4   yamt static void kmem_poison_fill(void *, size_t);
    158       1.4   yamt static void kmem_poison_check(void *, size_t);
    159      1.19   yamt #else /* defined(KMEM_POISON) */
    160       1.4   yamt #define	kmem_poison_fill(p, sz)		/* nothing */
    161       1.4   yamt #define	kmem_poison_check(p, sz)	/* nothing */
    162      1.19   yamt #endif /* defined(KMEM_POISON) */
    163      1.19   yamt 
    164      1.19   yamt #if defined(KMEM_REDZONE)
    165      1.19   yamt #define	REDZONE_SIZE	1
    166      1.19   yamt #else /* defined(KMEM_REDZONE) */
    167      1.19   yamt #define	REDZONE_SIZE	0
    168      1.19   yamt #endif /* defined(KMEM_REDZONE) */
    169       1.4   yamt 
    170      1.23     ad #if defined(KMEM_SIZE)
    171  1.36.2.1   yamt #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    172      1.23     ad static void kmem_size_set(void *, size_t);
    173  1.36.2.1   yamt static void kmem_size_check(void *, size_t);
    174      1.23     ad #else
    175      1.23     ad #define	SIZE_SIZE	0
    176      1.23     ad #define	kmem_size_set(p, sz)	/* nothing */
    177      1.23     ad #define	kmem_size_check(p, sz)	/* nothing */
    178      1.23     ad #endif
    179      1.23     ad 
    180      1.32  skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    181      1.32  skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    182      1.32  skrll 
    183  1.36.2.2   yamt /*
    184  1.36.2.2   yamt  * kmem_intr_alloc: allocate wired memory.
    185  1.36.2.2   yamt  */
    186  1.36.2.2   yamt 
    187  1.36.2.1   yamt void *
    188  1.36.2.1   yamt kmem_intr_alloc(size_t size, km_flag_t kmflags)
    189       1.1   yamt {
    190  1.36.2.1   yamt 	size_t allocsz, index;
    191  1.36.2.1   yamt 	pool_cache_t pc;
    192  1.36.2.1   yamt 	uint8_t *p;
    193       1.1   yamt 
    194  1.36.2.1   yamt 	KASSERT(size > 0);
    195       1.1   yamt 
    196  1.36.2.1   yamt #ifdef KMEM_GUARD
    197  1.36.2.1   yamt 	if (size <= kmem_guard_size) {
    198  1.36.2.1   yamt 		return uvm_kmguard_alloc(&kmem_guard, size,
    199  1.36.2.1   yamt 		    (kmflags & KM_SLEEP) != 0);
    200       1.1   yamt 	}
    201  1.36.2.1   yamt #endif
    202  1.36.2.2   yamt 	size = kmem_roundup_size(size);
    203  1.36.2.2   yamt 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    204  1.36.2.1   yamt 
    205  1.36.2.2   yamt 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    206  1.36.2.2   yamt 	    < kmem_cache_maxidx) {
    207  1.36.2.2   yamt 		pc = kmem_cache[index];
    208  1.36.2.2   yamt 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    209  1.36.2.2   yamt             < kmem_cache_big_maxidx) {
    210  1.36.2.2   yamt 		pc = kmem_cache_big[index];
    211  1.36.2.2   yamt 	} else {
    212  1.36.2.1   yamt 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    213  1.36.2.1   yamt 		    (vsize_t)round_page(size),
    214  1.36.2.1   yamt 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    215  1.36.2.1   yamt 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    216  1.36.2.2   yamt 		if (ret) {
    217  1.36.2.2   yamt 			return NULL;
    218  1.36.2.2   yamt 		}
    219  1.36.2.2   yamt 		FREECHECK_OUT(&kmem_freecheck, p);
    220  1.36.2.2   yamt 		return p;
    221       1.1   yamt 	}
    222       1.1   yamt 
    223  1.36.2.1   yamt 	p = pool_cache_get(pc, kmflags);
    224  1.36.2.1   yamt 
    225  1.36.2.1   yamt 	if (__predict_true(p != NULL)) {
    226  1.36.2.2   yamt 		kmem_poison_check(p, size);
    227  1.36.2.1   yamt 		FREECHECK_OUT(&kmem_freecheck, p);
    228  1.36.2.2   yamt 		kmem_size_set(p, size);
    229  1.36.2.1   yamt 	}
    230  1.36.2.2   yamt 	return p + SIZE_SIZE;
    231       1.1   yamt }
    232       1.1   yamt 
    233  1.36.2.2   yamt /*
    234  1.36.2.2   yamt  * kmem_intr_zalloc: allocate zeroed wired memory.
    235  1.36.2.2   yamt  */
    236  1.36.2.2   yamt 
    237  1.36.2.1   yamt void *
    238  1.36.2.1   yamt kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    239      1.23     ad {
    240  1.36.2.1   yamt 	void *p;
    241      1.23     ad 
    242  1.36.2.1   yamt 	p = kmem_intr_alloc(size, kmflags);
    243  1.36.2.1   yamt 	if (p != NULL) {
    244  1.36.2.1   yamt 		memset(p, 0, size);
    245  1.36.2.1   yamt 	}
    246  1.36.2.1   yamt 	return p;
    247      1.23     ad }
    248      1.23     ad 
    249  1.36.2.2   yamt /*
    250  1.36.2.2   yamt  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    251  1.36.2.2   yamt  */
    252  1.36.2.2   yamt 
    253  1.36.2.1   yamt void
    254  1.36.2.1   yamt kmem_intr_free(void *p, size_t size)
    255      1.23     ad {
    256  1.36.2.1   yamt 	size_t allocsz, index;
    257  1.36.2.1   yamt 	pool_cache_t pc;
    258  1.36.2.1   yamt 
    259  1.36.2.1   yamt 	KASSERT(p != NULL);
    260  1.36.2.1   yamt 	KASSERT(size > 0);
    261  1.36.2.1   yamt 
    262  1.36.2.1   yamt #ifdef KMEM_GUARD
    263  1.36.2.1   yamt 	if (size <= kmem_guard_size) {
    264  1.36.2.1   yamt 		uvm_kmguard_free(&kmem_guard, size, p);
    265  1.36.2.1   yamt 		return;
    266  1.36.2.1   yamt 	}
    267  1.36.2.1   yamt #endif
    268  1.36.2.2   yamt 	size = kmem_roundup_size(size);
    269  1.36.2.2   yamt 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    270  1.36.2.1   yamt 
    271  1.36.2.2   yamt 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    272  1.36.2.2   yamt 	    < kmem_cache_maxidx) {
    273  1.36.2.2   yamt 		pc = kmem_cache[index];
    274  1.36.2.2   yamt 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    275  1.36.2.2   yamt             < kmem_cache_big_maxidx) {
    276  1.36.2.2   yamt 		pc = kmem_cache_big[index];
    277  1.36.2.2   yamt 	} else {
    278  1.36.2.2   yamt 		FREECHECK_IN(&kmem_freecheck, p);
    279  1.36.2.1   yamt 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    280  1.36.2.1   yamt 		    round_page(size));
    281  1.36.2.1   yamt 		return;
    282  1.36.2.1   yamt 	}
    283  1.36.2.1   yamt 
    284  1.36.2.2   yamt 	p = (uint8_t *)p - SIZE_SIZE;
    285  1.36.2.2   yamt 	kmem_size_check(p, size);
    286  1.36.2.1   yamt 	FREECHECK_IN(&kmem_freecheck, p);
    287  1.36.2.2   yamt 	LOCKDEBUG_MEM_CHECK(p, size);
    288  1.36.2.2   yamt 	kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
    289  1.36.2.2   yamt       	    allocsz - (SIZE_SIZE + size));
    290  1.36.2.1   yamt 	kmem_poison_fill(p, allocsz);
    291      1.23     ad 
    292  1.36.2.1   yamt 	pool_cache_put(pc, p);
    293      1.23     ad }
    294      1.23     ad 
    295       1.1   yamt /* ---- kmem API */
    296       1.1   yamt 
    297       1.1   yamt /*
    298       1.1   yamt  * kmem_alloc: allocate wired memory.
    299       1.1   yamt  * => must not be called from interrupt context.
    300       1.1   yamt  */
    301       1.1   yamt 
    302       1.1   yamt void *
    303       1.1   yamt kmem_alloc(size_t size, km_flag_t kmflags)
    304       1.1   yamt {
    305       1.1   yamt 
    306  1.36.2.1   yamt 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    307  1.36.2.1   yamt 	    "kmem(9) should not be used from the interrupt context");
    308  1.36.2.1   yamt 	return kmem_intr_alloc(size, kmflags);
    309       1.1   yamt }
    310       1.1   yamt 
    311       1.1   yamt /*
    312  1.36.2.1   yamt  * kmem_zalloc: allocate zeroed wired memory.
    313       1.2   yamt  * => must not be called from interrupt context.
    314       1.2   yamt  */
    315       1.2   yamt 
    316       1.2   yamt void *
    317       1.2   yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    318       1.2   yamt {
    319       1.2   yamt 
    320  1.36.2.1   yamt 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    321  1.36.2.1   yamt 	    "kmem(9) should not be used from the interrupt context");
    322  1.36.2.1   yamt 	return kmem_intr_zalloc(size, kmflags);
    323       1.2   yamt }
    324       1.2   yamt 
    325       1.2   yamt /*
    326       1.1   yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    327       1.1   yamt  * => must not be called from interrupt context.
    328       1.1   yamt  */
    329       1.1   yamt 
    330       1.1   yamt void
    331       1.1   yamt kmem_free(void *p, size_t size)
    332       1.1   yamt {
    333      1.23     ad 
    334      1.23     ad 	KASSERT(!cpu_intr_p());
    335      1.27     ad 	KASSERT(!cpu_softintr_p());
    336  1.36.2.1   yamt 	kmem_intr_free(p, size);
    337       1.1   yamt }
    338       1.1   yamt 
    339  1.36.2.2   yamt static size_t
    340  1.36.2.1   yamt kmem_create_caches(const struct kmem_cache_info *array,
    341  1.36.2.2   yamt     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    342       1.1   yamt {
    343  1.36.2.2   yamt 	size_t maxidx = 0;
    344  1.36.2.2   yamt 	size_t table_unit = (1 << shift);
    345  1.36.2.1   yamt 	size_t size = table_unit;
    346      1.23     ad 	int i;
    347       1.1   yamt 
    348  1.36.2.1   yamt 	for (i = 0; array[i].kc_size != 0 ; i++) {
    349  1.36.2.1   yamt 		const char *name = array[i].kc_name;
    350  1.36.2.1   yamt 		size_t cache_size = array[i].kc_size;
    351  1.36.2.2   yamt 		struct pool_allocator *pa;
    352  1.36.2.1   yamt 		int flags = PR_NOALIGN;
    353  1.36.2.1   yamt 		pool_cache_t pc;
    354  1.36.2.1   yamt 		size_t align;
    355  1.36.2.1   yamt 
    356  1.36.2.1   yamt 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    357  1.36.2.1   yamt 			align = CACHE_LINE_SIZE;
    358  1.36.2.1   yamt 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    359  1.36.2.1   yamt 			align = PAGE_SIZE;
    360  1.36.2.1   yamt 		else
    361  1.36.2.1   yamt 			align = KMEM_ALIGN;
    362  1.36.2.1   yamt 
    363  1.36.2.1   yamt 		if (cache_size < CACHE_LINE_SIZE)
    364  1.36.2.1   yamt 			flags |= PR_NOTOUCH;
    365      1.27     ad 
    366  1.36.2.1   yamt 		/* check if we reached the requested size */
    367  1.36.2.2   yamt 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    368      1.23     ad 			break;
    369      1.23     ad 		}
    370  1.36.2.2   yamt 		if ((cache_size >> shift) > maxidx) {
    371  1.36.2.2   yamt 			maxidx = cache_size >> shift;
    372  1.36.2.2   yamt 		}
    373  1.36.2.2   yamt 
    374  1.36.2.2   yamt 		if ((cache_size >> shift) > maxidx) {
    375  1.36.2.2   yamt 			maxidx = cache_size >> shift;
    376  1.36.2.1   yamt 		}
    377       1.1   yamt 
    378  1.36.2.2   yamt 		pa = &pool_allocator_kmem;
    379  1.36.2.1   yamt #if defined(KMEM_POISON)
    380  1.36.2.1   yamt 		pc = pool_cache_init(cache_size, align, 0, flags,
    381  1.36.2.2   yamt 		    name, pa, ipl,kmem_poison_ctor,
    382  1.36.2.1   yamt 		    NULL, (void *)cache_size);
    383  1.36.2.1   yamt #else /* defined(KMEM_POISON) */
    384  1.36.2.1   yamt 		pc = pool_cache_init(cache_size, align, 0, flags,
    385  1.36.2.2   yamt 		    name, pa, ipl, NULL, NULL, NULL);
    386  1.36.2.1   yamt #endif /* defined(KMEM_POISON) */
    387       1.1   yamt 
    388  1.36.2.1   yamt 		while (size <= cache_size) {
    389  1.36.2.2   yamt 			alloc_table[(size - 1) >> shift] = pc;
    390  1.36.2.1   yamt 			size += table_unit;
    391  1.36.2.1   yamt 		}
    392       1.1   yamt 	}
    393  1.36.2.2   yamt 	return maxidx;
    394       1.1   yamt }
    395       1.1   yamt 
    396  1.36.2.1   yamt void
    397  1.36.2.1   yamt kmem_init(void)
    398       1.1   yamt {
    399       1.1   yamt 
    400  1.36.2.1   yamt #ifdef KMEM_GUARD
    401  1.36.2.1   yamt 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    402  1.36.2.1   yamt 	    kmem_va_arena);
    403  1.36.2.1   yamt #endif
    404  1.36.2.2   yamt 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    405  1.36.2.2   yamt 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    406  1.36.2.2   yamt        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    407  1.36.2.2   yamt 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    408       1.1   yamt }
    409       1.4   yamt 
    410  1.36.2.1   yamt size_t
    411  1.36.2.1   yamt kmem_roundup_size(size_t size)
    412       1.7   yamt {
    413       1.7   yamt 
    414  1.36.2.1   yamt 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    415       1.7   yamt }
    416       1.7   yamt 
    417       1.4   yamt /* ---- debug */
    418       1.4   yamt 
    419      1.19   yamt #if defined(KMEM_POISON)
    420       1.4   yamt 
    421       1.4   yamt #if defined(_LP64)
    422  1.36.2.1   yamt #define PRIME 0x9e37fffffffc0000UL
    423       1.4   yamt #else /* defined(_LP64) */
    424  1.36.2.1   yamt #define PRIME 0x9e3779b1
    425       1.4   yamt #endif /* defined(_LP64) */
    426       1.4   yamt 
    427       1.4   yamt static inline uint8_t
    428       1.4   yamt kmem_poison_pattern(const void *p)
    429       1.4   yamt {
    430       1.4   yamt 
    431  1.36.2.1   yamt 	return (uint8_t)(((uintptr_t)p) * PRIME
    432  1.36.2.1   yamt 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    433  1.36.2.1   yamt }
    434  1.36.2.1   yamt 
    435  1.36.2.1   yamt static int
    436  1.36.2.1   yamt kmem_poison_ctor(void *arg, void *obj, int flag)
    437  1.36.2.1   yamt {
    438  1.36.2.1   yamt 	size_t sz = (size_t)arg;
    439  1.36.2.1   yamt 
    440  1.36.2.1   yamt 	kmem_poison_fill(obj, sz);
    441  1.36.2.1   yamt 
    442  1.36.2.1   yamt 	return 0;
    443       1.4   yamt }
    444       1.4   yamt 
    445       1.4   yamt static void
    446       1.4   yamt kmem_poison_fill(void *p, size_t sz)
    447       1.4   yamt {
    448       1.4   yamt 	uint8_t *cp;
    449       1.4   yamt 	const uint8_t *ep;
    450       1.4   yamt 
    451       1.4   yamt 	cp = p;
    452       1.4   yamt 	ep = cp + sz;
    453       1.4   yamt 	while (cp < ep) {
    454       1.4   yamt 		*cp = kmem_poison_pattern(cp);
    455       1.4   yamt 		cp++;
    456       1.4   yamt 	}
    457       1.4   yamt }
    458       1.4   yamt 
    459       1.4   yamt static void
    460       1.4   yamt kmem_poison_check(void *p, size_t sz)
    461       1.4   yamt {
    462       1.4   yamt 	uint8_t *cp;
    463       1.4   yamt 	const uint8_t *ep;
    464       1.4   yamt 
    465       1.4   yamt 	cp = p;
    466       1.4   yamt 	ep = cp + sz;
    467       1.4   yamt 	while (cp < ep) {
    468       1.4   yamt 		const uint8_t expected = kmem_poison_pattern(cp);
    469       1.4   yamt 
    470       1.4   yamt 		if (*cp != expected) {
    471       1.4   yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    472  1.36.2.1   yamt 			   __func__, cp, *cp, expected);
    473       1.4   yamt 		}
    474       1.4   yamt 		cp++;
    475       1.4   yamt 	}
    476       1.4   yamt }
    477       1.4   yamt 
    478      1.19   yamt #endif /* defined(KMEM_POISON) */
    479      1.23     ad 
    480      1.23     ad #if defined(KMEM_SIZE)
    481      1.23     ad static void
    482      1.23     ad kmem_size_set(void *p, size_t sz)
    483      1.23     ad {
    484  1.36.2.2   yamt 
    485  1.36.2.2   yamt 	memcpy(p, &sz, sizeof(sz));
    486      1.23     ad }
    487      1.23     ad 
    488      1.23     ad static void
    489  1.36.2.1   yamt kmem_size_check(void *p, size_t sz)
    490      1.23     ad {
    491      1.23     ad 	size_t psz;
    492      1.23     ad 
    493  1.36.2.2   yamt 	memcpy(&psz, p, sizeof(psz));
    494      1.23     ad 	if (psz != sz) {
    495      1.23     ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    496  1.36.2.2   yamt 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    497      1.23     ad 	}
    498      1.23     ad }
    499      1.23     ad #endif	/* defined(KMEM_SIZE) */
    500      1.33   haad 
    501      1.33   haad /*
    502      1.33   haad  * Used to dynamically allocate string with kmem accordingly to format.
    503      1.33   haad  */
    504      1.33   haad char *
    505      1.33   haad kmem_asprintf(const char *fmt, ...)
    506      1.33   haad {
    507  1.36.2.1   yamt 	int size, len;
    508      1.33   haad 	va_list va;
    509      1.33   haad 	char *str;
    510      1.33   haad 
    511      1.33   haad 	va_start(va, fmt);
    512  1.36.2.1   yamt 	len = vsnprintf(NULL, 0, fmt, va);
    513      1.33   haad 	va_end(va);
    514      1.33   haad 
    515  1.36.2.1   yamt 	str = kmem_alloc(len + 1, KM_SLEEP);
    516      1.33   haad 
    517  1.36.2.1   yamt 	va_start(va, fmt);
    518  1.36.2.1   yamt 	size = vsnprintf(str, len + 1, fmt, va);
    519  1.36.2.1   yamt 	va_end(va);
    520  1.36.2.1   yamt 
    521  1.36.2.1   yamt 	KASSERT(size == len);
    522      1.33   haad 
    523      1.33   haad 	return str;
    524      1.33   haad }
    525