subr_kmem.c revision 1.38.2.1 1 1.38.2.1 mrg /* $NetBSD: subr_kmem.c,v 1.38.2.1 2012/02/18 07:35:32 mrg Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.23 ad * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 ad * by Andrew Doran.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.1 yamt * allocator of kernel wired memory.
60 1.1 yamt *
61 1.1 yamt */
62 1.1 yamt
63 1.1 yamt #include <sys/cdefs.h>
64 1.38.2.1 mrg __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.38.2.1 2012/02/18 07:35:32 mrg Exp $");
65 1.1 yamt
66 1.1 yamt #include <sys/param.h>
67 1.6 yamt #include <sys/callback.h>
68 1.1 yamt #include <sys/kmem.h>
69 1.38.2.1 mrg #include <sys/pool.h>
70 1.13 ad #include <sys/debug.h>
71 1.17 ad #include <sys/lockdebug.h>
72 1.23 ad #include <sys/cpu.h>
73 1.1 yamt
74 1.6 yamt #include <uvm/uvm_extern.h>
75 1.6 yamt #include <uvm/uvm_map.h>
76 1.27 ad #include <uvm/uvm_kmguard.h>
77 1.6 yamt
78 1.1 yamt #include <lib/libkern/libkern.h>
79 1.1 yamt
80 1.38.2.1 mrg static const struct kmem_cache_info {
81 1.38.2.1 mrg size_t kc_size;
82 1.38.2.1 mrg const char * kc_name;
83 1.38.2.1 mrg } kmem_cache_sizes[] = {
84 1.38.2.1 mrg { 8, "kmem-8" },
85 1.38.2.1 mrg { 16, "kmem-16" },
86 1.38.2.1 mrg { 24, "kmem-24" },
87 1.38.2.1 mrg { 32, "kmem-32" },
88 1.38.2.1 mrg { 40, "kmem-40" },
89 1.38.2.1 mrg { 48, "kmem-48" },
90 1.38.2.1 mrg { 56, "kmem-56" },
91 1.38.2.1 mrg { 64, "kmem-64" },
92 1.38.2.1 mrg { 80, "kmem-80" },
93 1.38.2.1 mrg { 96, "kmem-96" },
94 1.38.2.1 mrg { 112, "kmem-112" },
95 1.38.2.1 mrg { 128, "kmem-128" },
96 1.38.2.1 mrg { 160, "kmem-160" },
97 1.38.2.1 mrg { 192, "kmem-192" },
98 1.38.2.1 mrg { 224, "kmem-224" },
99 1.38.2.1 mrg { 256, "kmem-256" },
100 1.38.2.1 mrg { 320, "kmem-320" },
101 1.38.2.1 mrg { 384, "kmem-384" },
102 1.38.2.1 mrg { 448, "kmem-448" },
103 1.38.2.1 mrg { 512, "kmem-512" },
104 1.38.2.1 mrg { 768, "kmem-768" },
105 1.38.2.1 mrg { 1024, "kmem-1024" },
106 1.38.2.1 mrg { 2048, "kmem-2048" },
107 1.38.2.1 mrg { 4096, "kmem-4096" },
108 1.38.2.1 mrg { 0, NULL }
109 1.38.2.1 mrg };
110 1.38.2.1 mrg
111 1.38.2.1 mrg /*
112 1.38.2.1 mrg * KMEM_ALIGN is the smallest guaranteed alignment and also the
113 1.38.2.1 mrg * smallest allocateable quantum. Every cache size is a multiply
114 1.38.2.1 mrg * of CACHE_LINE_SIZE and gets CACHE_LINE_SIZE alignment.
115 1.38.2.1 mrg */
116 1.38.2.1 mrg #define KMEM_ALIGN 8
117 1.38.2.1 mrg #define KMEM_SHIFT 3
118 1.38.2.1 mrg #define KMEM_MAXSIZE 4096
119 1.38.2.1 mrg #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
120 1.38.2.1 mrg
121 1.38.2.1 mrg static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
122 1.38.2.1 mrg static size_t kmem_cache_maxidx __read_mostly;
123 1.23 ad
124 1.4 yamt #if defined(DEBUG)
125 1.34 matt int kmem_guard_depth = 0;
126 1.27 ad size_t kmem_guard_size;
127 1.27 ad static struct uvm_kmguard kmem_guard;
128 1.13 ad static void *kmem_freecheck;
129 1.19 yamt #define KMEM_POISON
130 1.19 yamt #define KMEM_REDZONE
131 1.23 ad #define KMEM_SIZE
132 1.27 ad #define KMEM_GUARD
133 1.19 yamt #endif /* defined(DEBUG) */
134 1.19 yamt
135 1.19 yamt #if defined(KMEM_POISON)
136 1.38.2.1 mrg static int kmem_poison_ctor(void *, void *, int);
137 1.4 yamt static void kmem_poison_fill(void *, size_t);
138 1.4 yamt static void kmem_poison_check(void *, size_t);
139 1.19 yamt #else /* defined(KMEM_POISON) */
140 1.4 yamt #define kmem_poison_fill(p, sz) /* nothing */
141 1.4 yamt #define kmem_poison_check(p, sz) /* nothing */
142 1.19 yamt #endif /* defined(KMEM_POISON) */
143 1.19 yamt
144 1.19 yamt #if defined(KMEM_REDZONE)
145 1.19 yamt #define REDZONE_SIZE 1
146 1.19 yamt #else /* defined(KMEM_REDZONE) */
147 1.19 yamt #define REDZONE_SIZE 0
148 1.19 yamt #endif /* defined(KMEM_REDZONE) */
149 1.4 yamt
150 1.23 ad #if defined(KMEM_SIZE)
151 1.38.2.1 mrg #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
152 1.23 ad static void kmem_size_set(void *, size_t);
153 1.38.2.1 mrg static void kmem_size_check(void *, size_t);
154 1.23 ad #else
155 1.23 ad #define SIZE_SIZE 0
156 1.23 ad #define kmem_size_set(p, sz) /* nothing */
157 1.23 ad #define kmem_size_check(p, sz) /* nothing */
158 1.23 ad #endif
159 1.23 ad
160 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
161 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
162 1.32 skrll
163 1.38.2.1 mrg void *
164 1.38.2.1 mrg kmem_intr_alloc(size_t size, km_flag_t kmflags)
165 1.1 yamt {
166 1.38.2.1 mrg size_t allocsz, index;
167 1.38.2.1 mrg pool_cache_t pc;
168 1.38.2.1 mrg uint8_t *p;
169 1.1 yamt
170 1.38.2.1 mrg KASSERT(size > 0);
171 1.1 yamt
172 1.38.2.1 mrg #ifdef KMEM_GUARD
173 1.38.2.1 mrg if (size <= kmem_guard_size) {
174 1.38.2.1 mrg return uvm_kmguard_alloc(&kmem_guard, size,
175 1.38.2.1 mrg (kmflags & KM_SLEEP) != 0);
176 1.1 yamt }
177 1.38.2.1 mrg #endif
178 1.38.2.1 mrg allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
179 1.38.2.1 mrg index = (allocsz - 1) >> KMEM_SHIFT;
180 1.38.2.1 mrg
181 1.38.2.1 mrg if (index >= kmem_cache_maxidx) {
182 1.38.2.1 mrg int ret = uvm_km_kmem_alloc(kmem_va_arena,
183 1.38.2.1 mrg (vsize_t)round_page(allocsz),
184 1.38.2.1 mrg ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
185 1.38.2.1 mrg | VM_INSTANTFIT, (vmem_addr_t *)&p);
186 1.38.2.1 mrg return ret ? NULL : p;
187 1.1 yamt }
188 1.1 yamt
189 1.38.2.1 mrg pc = kmem_cache[index];
190 1.38.2.1 mrg p = pool_cache_get(pc, kmflags);
191 1.38.2.1 mrg
192 1.38.2.1 mrg if (__predict_true(p != NULL)) {
193 1.38.2.1 mrg kmem_poison_check(p, kmem_roundup_size(size));
194 1.38.2.1 mrg FREECHECK_OUT(&kmem_freecheck, p);
195 1.38.2.1 mrg kmem_size_set(p, allocsz);
196 1.38.2.1 mrg }
197 1.38.2.1 mrg return p;
198 1.1 yamt }
199 1.1 yamt
200 1.38.2.1 mrg void *
201 1.38.2.1 mrg kmem_intr_zalloc(size_t size, km_flag_t kmflags)
202 1.23 ad {
203 1.38.2.1 mrg void *p;
204 1.23 ad
205 1.38.2.1 mrg p = kmem_intr_alloc(size, kmflags);
206 1.38.2.1 mrg if (p != NULL) {
207 1.38.2.1 mrg memset(p, 0, size);
208 1.38.2.1 mrg }
209 1.38.2.1 mrg return p;
210 1.23 ad }
211 1.23 ad
212 1.38.2.1 mrg void
213 1.38.2.1 mrg kmem_intr_free(void *p, size_t size)
214 1.23 ad {
215 1.38.2.1 mrg size_t allocsz, index;
216 1.38.2.1 mrg pool_cache_t pc;
217 1.38.2.1 mrg
218 1.38.2.1 mrg KASSERT(p != NULL);
219 1.38.2.1 mrg KASSERT(size > 0);
220 1.23 ad
221 1.38.2.1 mrg #ifdef KMEM_GUARD
222 1.38.2.1 mrg if (size <= kmem_guard_size) {
223 1.38.2.1 mrg uvm_kmguard_free(&kmem_guard, size, p);
224 1.38.2.1 mrg return;
225 1.38.2.1 mrg }
226 1.38.2.1 mrg #endif
227 1.38.2.1 mrg allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
228 1.38.2.1 mrg index = (allocsz - 1) >> KMEM_SHIFT;
229 1.38.2.1 mrg
230 1.38.2.1 mrg if (index >= kmem_cache_maxidx) {
231 1.38.2.1 mrg uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
232 1.38.2.1 mrg round_page(allocsz));
233 1.38.2.1 mrg return;
234 1.38.2.1 mrg }
235 1.38.2.1 mrg
236 1.38.2.1 mrg kmem_size_check(p, allocsz);
237 1.38.2.1 mrg FREECHECK_IN(&kmem_freecheck, p);
238 1.38.2.1 mrg LOCKDEBUG_MEM_CHECK(p, allocsz - (REDZONE_SIZE + SIZE_SIZE));
239 1.38.2.1 mrg kmem_poison_check((uint8_t *)p + size, allocsz - size - SIZE_SIZE);
240 1.38.2.1 mrg kmem_poison_fill(p, allocsz);
241 1.38.2.1 mrg
242 1.38.2.1 mrg pc = kmem_cache[index];
243 1.38.2.1 mrg pool_cache_put(pc, p);
244 1.23 ad }
245 1.23 ad
246 1.1 yamt /* ---- kmem API */
247 1.1 yamt
248 1.1 yamt /*
249 1.1 yamt * kmem_alloc: allocate wired memory.
250 1.1 yamt * => must not be called from interrupt context.
251 1.1 yamt */
252 1.1 yamt
253 1.1 yamt void *
254 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
255 1.1 yamt {
256 1.23 ad
257 1.38.2.1 mrg KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
258 1.38.2.1 mrg "kmem(9) should not be used from the interrupt context");
259 1.38.2.1 mrg return kmem_intr_alloc(size, kmflags);
260 1.1 yamt }
261 1.1 yamt
262 1.1 yamt /*
263 1.38.2.1 mrg * kmem_zalloc: allocate zeroed wired memory.
264 1.2 yamt * => must not be called from interrupt context.
265 1.2 yamt */
266 1.2 yamt
267 1.2 yamt void *
268 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
269 1.2 yamt {
270 1.2 yamt
271 1.38.2.1 mrg KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
272 1.38.2.1 mrg "kmem(9) should not be used from the interrupt context");
273 1.38.2.1 mrg return kmem_intr_zalloc(size, kmflags);
274 1.2 yamt }
275 1.2 yamt
276 1.2 yamt /*
277 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
278 1.1 yamt * => must not be called from interrupt context.
279 1.1 yamt */
280 1.1 yamt
281 1.1 yamt void
282 1.1 yamt kmem_free(void *p, size_t size)
283 1.1 yamt {
284 1.23 ad
285 1.23 ad KASSERT(!cpu_intr_p());
286 1.27 ad KASSERT(!cpu_softintr_p());
287 1.38.2.1 mrg kmem_intr_free(p, size);
288 1.1 yamt }
289 1.1 yamt
290 1.38.2.1 mrg static void
291 1.38.2.1 mrg kmem_create_caches(const struct kmem_cache_info *array,
292 1.38.2.1 mrg pool_cache_t alloc_table[], size_t maxsize)
293 1.1 yamt {
294 1.38.2.1 mrg size_t table_unit = (1 << KMEM_SHIFT);
295 1.38.2.1 mrg size_t size = table_unit;
296 1.23 ad int i;
297 1.1 yamt
298 1.38.2.1 mrg for (i = 0; array[i].kc_size != 0 ; i++) {
299 1.38.2.1 mrg const char *name = array[i].kc_name;
300 1.38.2.1 mrg size_t cache_size = array[i].kc_size;
301 1.38.2.1 mrg int flags = PR_NOALIGN;
302 1.38.2.1 mrg pool_cache_t pc;
303 1.38.2.1 mrg size_t align;
304 1.38.2.1 mrg
305 1.38.2.1 mrg if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
306 1.38.2.1 mrg align = CACHE_LINE_SIZE;
307 1.38.2.1 mrg else if ((cache_size & (PAGE_SIZE - 1)) == 0)
308 1.38.2.1 mrg align = PAGE_SIZE;
309 1.38.2.1 mrg else
310 1.38.2.1 mrg align = KMEM_ALIGN;
311 1.38.2.1 mrg
312 1.38.2.1 mrg if (cache_size < CACHE_LINE_SIZE)
313 1.38.2.1 mrg flags |= PR_NOTOUCH;
314 1.27 ad
315 1.38.2.1 mrg /* check if we reached the requested size */
316 1.38.2.1 mrg if (cache_size > maxsize) {
317 1.23 ad break;
318 1.23 ad }
319 1.38.2.1 mrg if ((cache_size >> KMEM_SHIFT) > kmem_cache_maxidx) {
320 1.38.2.1 mrg kmem_cache_maxidx = cache_size >> KMEM_SHIFT;
321 1.38.2.1 mrg }
322 1.1 yamt
323 1.38.2.1 mrg #if defined(KMEM_POISON)
324 1.38.2.1 mrg pc = pool_cache_init(cache_size, align, 0, flags,
325 1.38.2.1 mrg name, &pool_allocator_kmem, IPL_VM, kmem_poison_ctor,
326 1.38.2.1 mrg NULL, (void *)cache_size);
327 1.38.2.1 mrg #else /* defined(KMEM_POISON) */
328 1.38.2.1 mrg pc = pool_cache_init(cache_size, align, 0, flags,
329 1.38.2.1 mrg name, &pool_allocator_kmem, IPL_VM, NULL, NULL, NULL);
330 1.38.2.1 mrg #endif /* defined(KMEM_POISON) */
331 1.1 yamt
332 1.38.2.1 mrg while (size <= cache_size) {
333 1.38.2.1 mrg alloc_table[(size - 1) >> KMEM_SHIFT] = pc;
334 1.38.2.1 mrg size += table_unit;
335 1.38.2.1 mrg }
336 1.1 yamt }
337 1.1 yamt }
338 1.1 yamt
339 1.38.2.1 mrg void
340 1.38.2.1 mrg kmem_init(void)
341 1.1 yamt {
342 1.1 yamt
343 1.38.2.1 mrg #ifdef KMEM_GUARD
344 1.38.2.1 mrg uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
345 1.38.2.1 mrg kmem_va_arena);
346 1.38.2.1 mrg #endif
347 1.38.2.1 mrg kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE);
348 1.1 yamt }
349 1.4 yamt
350 1.38.2.1 mrg size_t
351 1.38.2.1 mrg kmem_roundup_size(size_t size)
352 1.7 yamt {
353 1.7 yamt
354 1.38.2.1 mrg return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
355 1.7 yamt }
356 1.7 yamt
357 1.4 yamt /* ---- debug */
358 1.4 yamt
359 1.19 yamt #if defined(KMEM_POISON)
360 1.4 yamt
361 1.4 yamt #if defined(_LP64)
362 1.38.2.1 mrg #define PRIME 0x9e37fffffffc0000UL
363 1.4 yamt #else /* defined(_LP64) */
364 1.38.2.1 mrg #define PRIME 0x9e3779b1
365 1.4 yamt #endif /* defined(_LP64) */
366 1.4 yamt
367 1.4 yamt static inline uint8_t
368 1.4 yamt kmem_poison_pattern(const void *p)
369 1.4 yamt {
370 1.4 yamt
371 1.38.2.1 mrg return (uint8_t)(((uintptr_t)p) * PRIME
372 1.38.2.1 mrg >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
373 1.38.2.1 mrg }
374 1.38.2.1 mrg
375 1.38.2.1 mrg static int
376 1.38.2.1 mrg kmem_poison_ctor(void *arg, void *obj, int flag)
377 1.38.2.1 mrg {
378 1.38.2.1 mrg size_t sz = (size_t)arg;
379 1.38.2.1 mrg
380 1.38.2.1 mrg kmem_poison_fill(obj, sz);
381 1.38.2.1 mrg
382 1.38.2.1 mrg return 0;
383 1.4 yamt }
384 1.4 yamt
385 1.4 yamt static void
386 1.4 yamt kmem_poison_fill(void *p, size_t sz)
387 1.4 yamt {
388 1.4 yamt uint8_t *cp;
389 1.4 yamt const uint8_t *ep;
390 1.4 yamt
391 1.4 yamt cp = p;
392 1.4 yamt ep = cp + sz;
393 1.4 yamt while (cp < ep) {
394 1.4 yamt *cp = kmem_poison_pattern(cp);
395 1.4 yamt cp++;
396 1.4 yamt }
397 1.4 yamt }
398 1.4 yamt
399 1.4 yamt static void
400 1.4 yamt kmem_poison_check(void *p, size_t sz)
401 1.4 yamt {
402 1.4 yamt uint8_t *cp;
403 1.4 yamt const uint8_t *ep;
404 1.4 yamt
405 1.4 yamt cp = p;
406 1.4 yamt ep = cp + sz;
407 1.4 yamt while (cp < ep) {
408 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
409 1.4 yamt
410 1.4 yamt if (*cp != expected) {
411 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
412 1.38.2.1 mrg __func__, cp, *cp, expected);
413 1.4 yamt }
414 1.4 yamt cp++;
415 1.4 yamt }
416 1.4 yamt }
417 1.4 yamt
418 1.19 yamt #endif /* defined(KMEM_POISON) */
419 1.23 ad
420 1.23 ad #if defined(KMEM_SIZE)
421 1.23 ad static void
422 1.23 ad kmem_size_set(void *p, size_t sz)
423 1.23 ad {
424 1.38.2.1 mrg void *szp;
425 1.23 ad
426 1.38.2.1 mrg szp = (uint8_t *)p + sz - SIZE_SIZE;
427 1.38.2.1 mrg memcpy(szp, &sz, sizeof(sz));
428 1.23 ad }
429 1.23 ad
430 1.23 ad static void
431 1.38.2.1 mrg kmem_size_check(void *p, size_t sz)
432 1.23 ad {
433 1.38.2.1 mrg uint8_t *szp;
434 1.23 ad size_t psz;
435 1.23 ad
436 1.38.2.1 mrg szp = (uint8_t *)p + sz - SIZE_SIZE;
437 1.38.2.1 mrg memcpy(&psz, szp, sizeof(psz));
438 1.23 ad if (psz != sz) {
439 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
440 1.30 yamt (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
441 1.23 ad }
442 1.23 ad }
443 1.23 ad #endif /* defined(KMEM_SIZE) */
444 1.33 haad
445 1.33 haad /*
446 1.33 haad * Used to dynamically allocate string with kmem accordingly to format.
447 1.33 haad */
448 1.33 haad char *
449 1.33 haad kmem_asprintf(const char *fmt, ...)
450 1.33 haad {
451 1.38 christos int size, len;
452 1.38 christos va_list va;
453 1.33 haad char *str;
454 1.33 haad
455 1.33 haad va_start(va, fmt);
456 1.38 christos len = vsnprintf(NULL, 0, fmt, va);
457 1.33 haad va_end(va);
458 1.33 haad
459 1.38 christos str = kmem_alloc(len + 1, KM_SLEEP);
460 1.33 haad
461 1.38 christos va_start(va, fmt);
462 1.38 christos size = vsnprintf(str, len + 1, fmt, va);
463 1.38 christos va_end(va);
464 1.38 christos
465 1.38 christos KASSERT(size == len);
466 1.33 haad
467 1.33 haad return str;
468 1.33 haad }
469