Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.42.2.1
      1  1.42.2.1       riz /*	$NetBSD: subr_kmem.c,v 1.42.2.1 2012/04/03 16:14:02 riz Exp $	*/
      2       1.1      yamt 
      3       1.1      yamt /*-
      4      1.23        ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5      1.23        ad  * All rights reserved.
      6      1.23        ad  *
      7      1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.23        ad  * by Andrew Doran.
      9      1.23        ad  *
     10      1.23        ad  * Redistribution and use in source and binary forms, with or without
     11      1.23        ad  * modification, are permitted provided that the following conditions
     12      1.23        ad  * are met:
     13      1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14      1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15      1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.23        ad  *    documentation and/or other materials provided with the distribution.
     18      1.23        ad  *
     19      1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.23        ad  */
     31      1.23        ad 
     32      1.23        ad /*-
     33       1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34       1.1      yamt  * All rights reserved.
     35       1.1      yamt  *
     36       1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37       1.1      yamt  * modification, are permitted provided that the following conditions
     38       1.1      yamt  * are met:
     39       1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40       1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41       1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44       1.1      yamt  *
     45       1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46       1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47       1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48       1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49       1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50       1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51       1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52       1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53       1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54       1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55       1.1      yamt  * SUCH DAMAGE.
     56       1.1      yamt  */
     57       1.1      yamt 
     58       1.1      yamt /*
     59       1.1      yamt  * allocator of kernel wired memory.
     60       1.1      yamt  *
     61       1.1      yamt  */
     62       1.1      yamt 
     63       1.1      yamt #include <sys/cdefs.h>
     64  1.42.2.1       riz __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.42.2.1 2012/04/03 16:14:02 riz Exp $");
     65       1.1      yamt 
     66       1.1      yamt #include <sys/param.h>
     67       1.6      yamt #include <sys/callback.h>
     68       1.1      yamt #include <sys/kmem.h>
     69      1.39      para #include <sys/pool.h>
     70      1.13        ad #include <sys/debug.h>
     71      1.17        ad #include <sys/lockdebug.h>
     72      1.23        ad #include <sys/cpu.h>
     73       1.1      yamt 
     74       1.6      yamt #include <uvm/uvm_extern.h>
     75       1.6      yamt #include <uvm/uvm_map.h>
     76      1.27        ad #include <uvm/uvm_kmguard.h>
     77       1.6      yamt 
     78       1.1      yamt #include <lib/libkern/libkern.h>
     79       1.1      yamt 
     80      1.40     rmind static const struct kmem_cache_info {
     81      1.40     rmind 	size_t		kc_size;
     82      1.40     rmind 	const char *	kc_name;
     83      1.40     rmind } kmem_cache_sizes[] = {
     84      1.39      para 	{  8, "kmem-8" },
     85      1.39      para 	{ 16, "kmem-16" },
     86      1.39      para 	{ 24, "kmem-24" },
     87      1.39      para 	{ 32, "kmem-32" },
     88      1.39      para 	{ 40, "kmem-40" },
     89      1.39      para 	{ 48, "kmem-48" },
     90      1.39      para 	{ 56, "kmem-56" },
     91      1.39      para 	{ 64, "kmem-64" },
     92      1.39      para 	{ 80, "kmem-80" },
     93      1.39      para 	{ 96, "kmem-96" },
     94      1.39      para 	{ 112, "kmem-112" },
     95      1.39      para 	{ 128, "kmem-128" },
     96      1.39      para 	{ 160, "kmem-160" },
     97      1.39      para 	{ 192, "kmem-192" },
     98      1.39      para 	{ 224, "kmem-224" },
     99      1.39      para 	{ 256, "kmem-256" },
    100      1.39      para 	{ 320, "kmem-320" },
    101      1.39      para 	{ 384, "kmem-384" },
    102      1.39      para 	{ 448, "kmem-448" },
    103      1.39      para 	{ 512, "kmem-512" },
    104      1.39      para 	{ 768, "kmem-768" },
    105      1.39      para 	{ 1024, "kmem-1024" },
    106      1.39      para 	{ 2048, "kmem-2048" },
    107      1.39      para 	{ 4096, "kmem-4096" },
    108      1.39      para 	{ 0, NULL }
    109      1.39      para };
    110       1.1      yamt 
    111      1.39      para /*
    112      1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    113      1.40     rmind  * smallest allocateable quantum.  Every cache size is a multiply
    114      1.40     rmind  * of CACHE_LINE_SIZE and gets CACHE_LINE_SIZE alignment.
    115      1.39      para  */
    116      1.40     rmind #define	KMEM_ALIGN		8
    117      1.40     rmind #define	KMEM_SHIFT		3
    118      1.40     rmind #define	KMEM_MAXSIZE		4096
    119      1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    120       1.1      yamt 
    121      1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    122      1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    123      1.23        ad 
    124       1.4      yamt #if defined(DEBUG)
    125      1.34      matt int kmem_guard_depth = 0;
    126      1.27        ad size_t kmem_guard_size;
    127      1.27        ad static struct uvm_kmguard kmem_guard;
    128      1.13        ad static void *kmem_freecheck;
    129      1.19      yamt #define	KMEM_POISON
    130      1.19      yamt #define	KMEM_REDZONE
    131      1.23        ad #define	KMEM_SIZE
    132      1.27        ad #define	KMEM_GUARD
    133      1.19      yamt #endif /* defined(DEBUG) */
    134      1.19      yamt 
    135      1.19      yamt #if defined(KMEM_POISON)
    136      1.39      para static int kmem_poison_ctor(void *, void *, int);
    137       1.4      yamt static void kmem_poison_fill(void *, size_t);
    138       1.4      yamt static void kmem_poison_check(void *, size_t);
    139      1.19      yamt #else /* defined(KMEM_POISON) */
    140      1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    141      1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    142      1.19      yamt #endif /* defined(KMEM_POISON) */
    143      1.19      yamt 
    144      1.19      yamt #if defined(KMEM_REDZONE)
    145      1.19      yamt #define	REDZONE_SIZE	1
    146      1.19      yamt #else /* defined(KMEM_REDZONE) */
    147      1.19      yamt #define	REDZONE_SIZE	0
    148      1.19      yamt #endif /* defined(KMEM_REDZONE) */
    149       1.4      yamt 
    150      1.23        ad #if defined(KMEM_SIZE)
    151      1.40     rmind #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    152      1.23        ad static void kmem_size_set(void *, size_t);
    153      1.39      para static void kmem_size_check(void *, size_t);
    154      1.23        ad #else
    155      1.23        ad #define	SIZE_SIZE	0
    156      1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    157      1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    158      1.23        ad #endif
    159      1.23        ad 
    160      1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    161      1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    162      1.32     skrll 
    163      1.39      para void *
    164      1.39      para kmem_intr_alloc(size_t size, km_flag_t kmflags)
    165       1.1      yamt {
    166      1.40     rmind 	size_t allocsz, index;
    167      1.39      para 	pool_cache_t pc;
    168      1.39      para 	uint8_t *p;
    169       1.1      yamt 
    170      1.39      para 	KASSERT(size > 0);
    171       1.1      yamt 
    172      1.39      para #ifdef KMEM_GUARD
    173      1.42     rmind 	if (size <= kmem_guard_size) {
    174      1.39      para 		return uvm_kmguard_alloc(&kmem_guard, size,
    175      1.39      para 		    (kmflags & KM_SLEEP) != 0);
    176       1.1      yamt 	}
    177      1.39      para #endif
    178      1.40     rmind 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
    179      1.40     rmind 	index = (allocsz - 1) >> KMEM_SHIFT;
    180      1.39      para 
    181      1.40     rmind 	if (index >= kmem_cache_maxidx) {
    182      1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    183  1.42.2.1       riz 		    (vsize_t)round_page(size),
    184      1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    185      1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    186      1.40     rmind 		return ret ? NULL : p;
    187       1.1      yamt 	}
    188       1.1      yamt 
    189      1.40     rmind 	pc = kmem_cache[index];
    190      1.39      para 	p = pool_cache_get(pc, kmflags);
    191      1.39      para 
    192      1.39      para 	if (__predict_true(p != NULL)) {
    193      1.39      para 		kmem_poison_check(p, kmem_roundup_size(size));
    194      1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    195      1.39      para 		kmem_size_set(p, allocsz);
    196      1.39      para 	}
    197      1.39      para 	return p;
    198       1.1      yamt }
    199       1.1      yamt 
    200      1.39      para void *
    201      1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    202      1.23        ad {
    203      1.39      para 	void *p;
    204      1.23        ad 
    205      1.39      para 	p = kmem_intr_alloc(size, kmflags);
    206      1.39      para 	if (p != NULL) {
    207      1.39      para 		memset(p, 0, size);
    208      1.39      para 	}
    209      1.39      para 	return p;
    210      1.23        ad }
    211      1.23        ad 
    212      1.39      para void
    213      1.39      para kmem_intr_free(void *p, size_t size)
    214      1.23        ad {
    215      1.40     rmind 	size_t allocsz, index;
    216      1.39      para 	pool_cache_t pc;
    217      1.23        ad 
    218      1.39      para 	KASSERT(p != NULL);
    219      1.39      para 	KASSERT(size > 0);
    220      1.39      para 
    221      1.39      para #ifdef KMEM_GUARD
    222      1.42     rmind 	if (size <= kmem_guard_size) {
    223      1.39      para 		uvm_kmguard_free(&kmem_guard, size, p);
    224      1.39      para 		return;
    225      1.39      para 	}
    226      1.39      para #endif
    227      1.40     rmind 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
    228      1.40     rmind 	index = (allocsz - 1) >> KMEM_SHIFT;
    229      1.39      para 
    230      1.40     rmind 	if (index >= kmem_cache_maxidx) {
    231      1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    232  1.42.2.1       riz 		    round_page(size));
    233      1.39      para 		return;
    234      1.39      para 	}
    235      1.39      para 
    236      1.39      para 	kmem_size_check(p, allocsz);
    237      1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    238      1.39      para 	LOCKDEBUG_MEM_CHECK(p, allocsz - (REDZONE_SIZE + SIZE_SIZE));
    239      1.39      para 	kmem_poison_check((uint8_t *)p + size, allocsz - size - SIZE_SIZE);
    240      1.39      para 	kmem_poison_fill(p, allocsz);
    241      1.39      para 
    242      1.40     rmind 	pc = kmem_cache[index];
    243      1.39      para 	pool_cache_put(pc, p);
    244      1.23        ad }
    245      1.23        ad 
    246       1.1      yamt /* ---- kmem API */
    247       1.1      yamt 
    248       1.1      yamt /*
    249       1.1      yamt  * kmem_alloc: allocate wired memory.
    250       1.1      yamt  * => must not be called from interrupt context.
    251       1.1      yamt  */
    252       1.1      yamt 
    253       1.1      yamt void *
    254       1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    255       1.1      yamt {
    256      1.23        ad 
    257      1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    258      1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    259      1.39      para 	return kmem_intr_alloc(size, kmflags);
    260       1.1      yamt }
    261       1.1      yamt 
    262       1.1      yamt /*
    263      1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    264       1.2      yamt  * => must not be called from interrupt context.
    265       1.2      yamt  */
    266       1.2      yamt 
    267       1.2      yamt void *
    268       1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    269       1.2      yamt {
    270       1.2      yamt 
    271      1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    272      1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    273      1.39      para 	return kmem_intr_zalloc(size, kmflags);
    274       1.2      yamt }
    275       1.2      yamt 
    276       1.2      yamt /*
    277       1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    278       1.1      yamt  * => must not be called from interrupt context.
    279       1.1      yamt  */
    280       1.1      yamt 
    281       1.1      yamt void
    282       1.1      yamt kmem_free(void *p, size_t size)
    283       1.1      yamt {
    284      1.23        ad 
    285      1.23        ad 	KASSERT(!cpu_intr_p());
    286      1.27        ad 	KASSERT(!cpu_softintr_p());
    287      1.39      para 	kmem_intr_free(p, size);
    288       1.1      yamt }
    289       1.1      yamt 
    290      1.39      para static void
    291      1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    292      1.39      para     pool_cache_t alloc_table[], size_t maxsize)
    293       1.1      yamt {
    294      1.39      para 	size_t table_unit = (1 << KMEM_SHIFT);
    295      1.39      para 	size_t size = table_unit;
    296      1.23        ad 	int i;
    297       1.1      yamt 
    298      1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    299      1.40     rmind 		const char *name = array[i].kc_name;
    300      1.39      para 		size_t cache_size = array[i].kc_size;
    301      1.40     rmind 		int flags = PR_NOALIGN;
    302      1.40     rmind 		pool_cache_t pc;
    303      1.39      para 		size_t align;
    304      1.39      para 
    305      1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    306      1.39      para 			align = CACHE_LINE_SIZE;
    307      1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    308      1.39      para 			align = PAGE_SIZE;
    309      1.39      para 		else
    310      1.39      para 			align = KMEM_ALIGN;
    311      1.39      para 
    312      1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    313      1.39      para 			flags |= PR_NOTOUCH;
    314      1.27        ad 
    315      1.39      para 		/* check if we reached the requested size */
    316      1.40     rmind 		if (cache_size > maxsize) {
    317      1.23        ad 			break;
    318      1.40     rmind 		}
    319      1.40     rmind 		if ((cache_size >> KMEM_SHIFT) > kmem_cache_maxidx) {
    320      1.40     rmind 			kmem_cache_maxidx = cache_size >> KMEM_SHIFT;
    321      1.40     rmind 		}
    322       1.1      yamt 
    323      1.39      para #if defined(KMEM_POISON)
    324      1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    325      1.39      para 		    name, &pool_allocator_kmem, IPL_VM, kmem_poison_ctor,
    326      1.39      para 		    NULL, (void *)cache_size);
    327      1.39      para #else /* defined(KMEM_POISON) */
    328      1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    329      1.39      para 		    name, &pool_allocator_kmem, IPL_VM, NULL, NULL, NULL);
    330      1.39      para #endif /* defined(KMEM_POISON) */
    331       1.1      yamt 
    332      1.39      para 		while (size <= cache_size) {
    333      1.39      para 			alloc_table[(size - 1) >> KMEM_SHIFT] = pc;
    334      1.39      para 			size += table_unit;
    335      1.39      para 		}
    336       1.1      yamt 	}
    337       1.1      yamt }
    338       1.1      yamt 
    339      1.39      para void
    340      1.39      para kmem_init(void)
    341       1.1      yamt {
    342       1.1      yamt 
    343      1.39      para #ifdef KMEM_GUARD
    344      1.39      para 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    345      1.42     rmind 	    kmem_va_arena);
    346      1.39      para #endif
    347      1.39      para 	kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE);
    348       1.1      yamt }
    349       1.4      yamt 
    350      1.39      para size_t
    351      1.39      para kmem_roundup_size(size_t size)
    352       1.7      yamt {
    353       1.7      yamt 
    354      1.39      para 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    355       1.7      yamt }
    356       1.7      yamt 
    357       1.4      yamt /* ---- debug */
    358       1.4      yamt 
    359      1.19      yamt #if defined(KMEM_POISON)
    360       1.4      yamt 
    361       1.4      yamt #if defined(_LP64)
    362      1.39      para #define PRIME 0x9e37fffffffc0000UL
    363       1.4      yamt #else /* defined(_LP64) */
    364      1.39      para #define PRIME 0x9e3779b1
    365       1.4      yamt #endif /* defined(_LP64) */
    366       1.4      yamt 
    367       1.4      yamt static inline uint8_t
    368       1.4      yamt kmem_poison_pattern(const void *p)
    369       1.4      yamt {
    370       1.4      yamt 
    371      1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    372      1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    373      1.39      para }
    374      1.39      para 
    375      1.39      para static int
    376      1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    377      1.39      para {
    378      1.39      para 	size_t sz = (size_t)arg;
    379      1.39      para 
    380      1.39      para 	kmem_poison_fill(obj, sz);
    381      1.39      para 
    382      1.39      para 	return 0;
    383       1.4      yamt }
    384       1.4      yamt 
    385       1.4      yamt static void
    386       1.4      yamt kmem_poison_fill(void *p, size_t sz)
    387       1.4      yamt {
    388       1.4      yamt 	uint8_t *cp;
    389       1.4      yamt 	const uint8_t *ep;
    390       1.4      yamt 
    391       1.4      yamt 	cp = p;
    392       1.4      yamt 	ep = cp + sz;
    393       1.4      yamt 	while (cp < ep) {
    394       1.4      yamt 		*cp = kmem_poison_pattern(cp);
    395       1.4      yamt 		cp++;
    396       1.4      yamt 	}
    397       1.4      yamt }
    398       1.4      yamt 
    399       1.4      yamt static void
    400       1.4      yamt kmem_poison_check(void *p, size_t sz)
    401       1.4      yamt {
    402       1.4      yamt 	uint8_t *cp;
    403       1.4      yamt 	const uint8_t *ep;
    404       1.4      yamt 
    405       1.4      yamt 	cp = p;
    406       1.4      yamt 	ep = cp + sz;
    407       1.4      yamt 	while (cp < ep) {
    408       1.4      yamt 		const uint8_t expected = kmem_poison_pattern(cp);
    409       1.4      yamt 
    410       1.4      yamt 		if (*cp != expected) {
    411       1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    412      1.39      para 			   __func__, cp, *cp, expected);
    413       1.4      yamt 		}
    414       1.4      yamt 		cp++;
    415       1.4      yamt 	}
    416       1.4      yamt }
    417       1.4      yamt 
    418      1.19      yamt #endif /* defined(KMEM_POISON) */
    419      1.23        ad 
    420      1.23        ad #if defined(KMEM_SIZE)
    421      1.23        ad static void
    422      1.23        ad kmem_size_set(void *p, size_t sz)
    423      1.23        ad {
    424      1.39      para 	void *szp;
    425      1.23        ad 
    426      1.39      para 	szp = (uint8_t *)p + sz - SIZE_SIZE;
    427      1.39      para 	memcpy(szp, &sz, sizeof(sz));
    428      1.23        ad }
    429      1.23        ad 
    430      1.23        ad static void
    431      1.39      para kmem_size_check(void *p, size_t sz)
    432      1.23        ad {
    433      1.39      para 	uint8_t *szp;
    434      1.23        ad 	size_t psz;
    435      1.23        ad 
    436      1.39      para 	szp = (uint8_t *)p + sz - SIZE_SIZE;
    437      1.39      para 	memcpy(&psz, szp, sizeof(psz));
    438      1.23        ad 	if (psz != sz) {
    439      1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    440      1.30      yamt 		    (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
    441      1.23        ad 	}
    442      1.23        ad }
    443      1.23        ad #endif	/* defined(KMEM_SIZE) */
    444      1.33      haad 
    445      1.33      haad /*
    446      1.33      haad  * Used to dynamically allocate string with kmem accordingly to format.
    447      1.33      haad  */
    448      1.33      haad char *
    449      1.33      haad kmem_asprintf(const char *fmt, ...)
    450      1.33      haad {
    451      1.38  christos 	int size, len;
    452      1.38  christos 	va_list va;
    453      1.33      haad 	char *str;
    454      1.33      haad 
    455      1.33      haad 	va_start(va, fmt);
    456      1.38  christos 	len = vsnprintf(NULL, 0, fmt, va);
    457      1.33      haad 	va_end(va);
    458      1.33      haad 
    459      1.38  christos 	str = kmem_alloc(len + 1, KM_SLEEP);
    460      1.33      haad 
    461      1.38  christos 	va_start(va, fmt);
    462      1.38  christos 	size = vsnprintf(str, len + 1, fmt, va);
    463      1.38  christos 	va_end(va);
    464      1.38  christos 
    465      1.38  christos 	KASSERT(size == len);
    466      1.33      haad 
    467      1.33      haad 	return str;
    468      1.33      haad }
    469