subr_kmem.c revision 1.42.2.2.4.1 1 1.42.2.2.4.1 bouyer /* $NetBSD: subr_kmem.c,v 1.42.2.2.4.1 2013/04/20 10:16:31 bouyer Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.23 ad * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 ad * by Andrew Doran.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.1 yamt * allocator of kernel wired memory.
60 1.1 yamt *
61 1.1 yamt */
62 1.1 yamt
63 1.1 yamt #include <sys/cdefs.h>
64 1.42.2.2.4.1 bouyer __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.42.2.2.4.1 2013/04/20 10:16:31 bouyer Exp $");
65 1.1 yamt
66 1.1 yamt #include <sys/param.h>
67 1.6 yamt #include <sys/callback.h>
68 1.1 yamt #include <sys/kmem.h>
69 1.39 para #include <sys/pool.h>
70 1.13 ad #include <sys/debug.h>
71 1.17 ad #include <sys/lockdebug.h>
72 1.23 ad #include <sys/cpu.h>
73 1.1 yamt
74 1.6 yamt #include <uvm/uvm_extern.h>
75 1.6 yamt #include <uvm/uvm_map.h>
76 1.27 ad #include <uvm/uvm_kmguard.h>
77 1.6 yamt
78 1.1 yamt #include <lib/libkern/libkern.h>
79 1.1 yamt
80 1.42.2.2 martin struct kmem_cache_info {
81 1.40 rmind size_t kc_size;
82 1.40 rmind const char * kc_name;
83 1.42.2.2 martin };
84 1.42.2.2 martin
85 1.42.2.2 martin static const struct kmem_cache_info kmem_cache_sizes[] = {
86 1.39 para { 8, "kmem-8" },
87 1.39 para { 16, "kmem-16" },
88 1.39 para { 24, "kmem-24" },
89 1.39 para { 32, "kmem-32" },
90 1.39 para { 40, "kmem-40" },
91 1.39 para { 48, "kmem-48" },
92 1.39 para { 56, "kmem-56" },
93 1.39 para { 64, "kmem-64" },
94 1.39 para { 80, "kmem-80" },
95 1.39 para { 96, "kmem-96" },
96 1.39 para { 112, "kmem-112" },
97 1.39 para { 128, "kmem-128" },
98 1.39 para { 160, "kmem-160" },
99 1.39 para { 192, "kmem-192" },
100 1.39 para { 224, "kmem-224" },
101 1.39 para { 256, "kmem-256" },
102 1.39 para { 320, "kmem-320" },
103 1.39 para { 384, "kmem-384" },
104 1.39 para { 448, "kmem-448" },
105 1.39 para { 512, "kmem-512" },
106 1.39 para { 768, "kmem-768" },
107 1.39 para { 1024, "kmem-1024" },
108 1.42.2.2 martin { 0, NULL }
109 1.42.2.2 martin };
110 1.42.2.2 martin
111 1.42.2.2 martin static const struct kmem_cache_info kmem_cache_big_sizes[] = {
112 1.39 para { 2048, "kmem-2048" },
113 1.39 para { 4096, "kmem-4096" },
114 1.42.2.2 martin { 8192, "kmem-8192" },
115 1.42.2.2 martin { 16384, "kmem-16384" },
116 1.39 para { 0, NULL }
117 1.39 para };
118 1.1 yamt
119 1.39 para /*
120 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
121 1.42.2.2 martin * smallest allocateable quantum.
122 1.42.2.2 martin * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
123 1.39 para */
124 1.40 rmind #define KMEM_ALIGN 8
125 1.40 rmind #define KMEM_SHIFT 3
126 1.42.2.2 martin #define KMEM_MAXSIZE 1024
127 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
128 1.1 yamt
129 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
130 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
131 1.23 ad
132 1.42.2.2 martin #define KMEM_BIG_ALIGN 2048
133 1.42.2.2 martin #define KMEM_BIG_SHIFT 11
134 1.42.2.2 martin #define KMEM_BIG_MAXSIZE 16384
135 1.42.2.2 martin #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
136 1.42.2.2 martin
137 1.42.2.2 martin static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
138 1.42.2.2 martin static size_t kmem_cache_big_maxidx __read_mostly;
139 1.42.2.2 martin
140 1.42.2.2 martin
141 1.4 yamt #if defined(DEBUG)
142 1.34 matt int kmem_guard_depth = 0;
143 1.27 ad size_t kmem_guard_size;
144 1.27 ad static struct uvm_kmguard kmem_guard;
145 1.13 ad static void *kmem_freecheck;
146 1.19 yamt #define KMEM_POISON
147 1.19 yamt #define KMEM_REDZONE
148 1.23 ad #define KMEM_SIZE
149 1.27 ad #define KMEM_GUARD
150 1.19 yamt #endif /* defined(DEBUG) */
151 1.19 yamt
152 1.19 yamt #if defined(KMEM_POISON)
153 1.39 para static int kmem_poison_ctor(void *, void *, int);
154 1.4 yamt static void kmem_poison_fill(void *, size_t);
155 1.4 yamt static void kmem_poison_check(void *, size_t);
156 1.19 yamt #else /* defined(KMEM_POISON) */
157 1.40 rmind #define kmem_poison_fill(p, sz) /* nothing */
158 1.40 rmind #define kmem_poison_check(p, sz) /* nothing */
159 1.19 yamt #endif /* defined(KMEM_POISON) */
160 1.19 yamt
161 1.19 yamt #if defined(KMEM_REDZONE)
162 1.19 yamt #define REDZONE_SIZE 1
163 1.19 yamt #else /* defined(KMEM_REDZONE) */
164 1.19 yamt #define REDZONE_SIZE 0
165 1.19 yamt #endif /* defined(KMEM_REDZONE) */
166 1.4 yamt
167 1.23 ad #if defined(KMEM_SIZE)
168 1.40 rmind #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
169 1.23 ad static void kmem_size_set(void *, size_t);
170 1.39 para static void kmem_size_check(void *, size_t);
171 1.23 ad #else
172 1.23 ad #define SIZE_SIZE 0
173 1.23 ad #define kmem_size_set(p, sz) /* nothing */
174 1.23 ad #define kmem_size_check(p, sz) /* nothing */
175 1.23 ad #endif
176 1.23 ad
177 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
178 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
179 1.32 skrll
180 1.42.2.2 martin /*
181 1.42.2.2 martin * kmem_intr_alloc: allocate wired memory.
182 1.42.2.2 martin */
183 1.42.2.2 martin
184 1.39 para void *
185 1.39 para kmem_intr_alloc(size_t size, km_flag_t kmflags)
186 1.1 yamt {
187 1.40 rmind size_t allocsz, index;
188 1.39 para pool_cache_t pc;
189 1.39 para uint8_t *p;
190 1.1 yamt
191 1.39 para KASSERT(size > 0);
192 1.1 yamt
193 1.39 para #ifdef KMEM_GUARD
194 1.42 rmind if (size <= kmem_guard_size) {
195 1.39 para return uvm_kmguard_alloc(&kmem_guard, size,
196 1.39 para (kmflags & KM_SLEEP) != 0);
197 1.1 yamt }
198 1.39 para #endif
199 1.42.2.2 martin size = kmem_roundup_size(size);
200 1.42.2.2 martin allocsz = size + REDZONE_SIZE + SIZE_SIZE;
201 1.39 para
202 1.42.2.2 martin if ((index = ((allocsz -1) >> KMEM_SHIFT))
203 1.42.2.2 martin < kmem_cache_maxidx) {
204 1.42.2.2 martin pc = kmem_cache[index];
205 1.42.2.2 martin } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
206 1.42.2.2 martin < kmem_cache_big_maxidx) {
207 1.42.2.2 martin pc = kmem_cache_big[index];
208 1.42.2.2 martin } else {
209 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
210 1.42.2.1 riz (vsize_t)round_page(size),
211 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
212 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
213 1.42.2.2 martin if (ret) {
214 1.42.2.2 martin return NULL;
215 1.42.2.2 martin }
216 1.42.2.2 martin FREECHECK_OUT(&kmem_freecheck, p);
217 1.42.2.2 martin return p;
218 1.1 yamt }
219 1.1 yamt
220 1.39 para p = pool_cache_get(pc, kmflags);
221 1.39 para
222 1.39 para if (__predict_true(p != NULL)) {
223 1.42.2.2 martin kmem_poison_check(p, size);
224 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
225 1.42.2.2 martin kmem_size_set(p, size);
226 1.42.2.2.4.1 bouyer
227 1.42.2.2.4.1 bouyer return p + SIZE_SIZE;
228 1.39 para }
229 1.42.2.2.4.1 bouyer return p;
230 1.1 yamt }
231 1.1 yamt
232 1.42.2.2 martin /*
233 1.42.2.2 martin * kmem_intr_zalloc: allocate zeroed wired memory.
234 1.42.2.2 martin */
235 1.42.2.2 martin
236 1.39 para void *
237 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
238 1.23 ad {
239 1.39 para void *p;
240 1.23 ad
241 1.39 para p = kmem_intr_alloc(size, kmflags);
242 1.39 para if (p != NULL) {
243 1.39 para memset(p, 0, size);
244 1.39 para }
245 1.39 para return p;
246 1.23 ad }
247 1.23 ad
248 1.42.2.2 martin /*
249 1.42.2.2 martin * kmem_intr_free: free wired memory allocated by kmem_alloc.
250 1.42.2.2 martin */
251 1.42.2.2 martin
252 1.39 para void
253 1.39 para kmem_intr_free(void *p, size_t size)
254 1.23 ad {
255 1.40 rmind size_t allocsz, index;
256 1.39 para pool_cache_t pc;
257 1.23 ad
258 1.39 para KASSERT(p != NULL);
259 1.39 para KASSERT(size > 0);
260 1.39 para
261 1.39 para #ifdef KMEM_GUARD
262 1.42 rmind if (size <= kmem_guard_size) {
263 1.39 para uvm_kmguard_free(&kmem_guard, size, p);
264 1.39 para return;
265 1.39 para }
266 1.39 para #endif
267 1.42.2.2 martin size = kmem_roundup_size(size);
268 1.42.2.2 martin allocsz = size + REDZONE_SIZE + SIZE_SIZE;
269 1.39 para
270 1.42.2.2 martin if ((index = ((allocsz -1) >> KMEM_SHIFT))
271 1.42.2.2 martin < kmem_cache_maxidx) {
272 1.42.2.2 martin pc = kmem_cache[index];
273 1.42.2.2 martin } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
274 1.42.2.2 martin < kmem_cache_big_maxidx) {
275 1.42.2.2 martin pc = kmem_cache_big[index];
276 1.42.2.2 martin } else {
277 1.42.2.2 martin FREECHECK_IN(&kmem_freecheck, p);
278 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
279 1.42.2.1 riz round_page(size));
280 1.39 para return;
281 1.39 para }
282 1.39 para
283 1.42.2.2 martin p = (uint8_t *)p - SIZE_SIZE;
284 1.42.2.2 martin kmem_size_check(p, size);
285 1.39 para FREECHECK_IN(&kmem_freecheck, p);
286 1.42.2.2 martin LOCKDEBUG_MEM_CHECK(p, size);
287 1.42.2.2 martin kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
288 1.42.2.2 martin allocsz - (SIZE_SIZE + size));
289 1.39 para kmem_poison_fill(p, allocsz);
290 1.39 para
291 1.39 para pool_cache_put(pc, p);
292 1.23 ad }
293 1.23 ad
294 1.1 yamt /* ---- kmem API */
295 1.1 yamt
296 1.1 yamt /*
297 1.1 yamt * kmem_alloc: allocate wired memory.
298 1.1 yamt * => must not be called from interrupt context.
299 1.1 yamt */
300 1.1 yamt
301 1.1 yamt void *
302 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
303 1.1 yamt {
304 1.23 ad
305 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
306 1.40 rmind "kmem(9) should not be used from the interrupt context");
307 1.39 para return kmem_intr_alloc(size, kmflags);
308 1.1 yamt }
309 1.1 yamt
310 1.1 yamt /*
311 1.39 para * kmem_zalloc: allocate zeroed wired memory.
312 1.2 yamt * => must not be called from interrupt context.
313 1.2 yamt */
314 1.2 yamt
315 1.2 yamt void *
316 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
317 1.2 yamt {
318 1.2 yamt
319 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
320 1.40 rmind "kmem(9) should not be used from the interrupt context");
321 1.39 para return kmem_intr_zalloc(size, kmflags);
322 1.2 yamt }
323 1.2 yamt
324 1.2 yamt /*
325 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
326 1.1 yamt * => must not be called from interrupt context.
327 1.1 yamt */
328 1.1 yamt
329 1.1 yamt void
330 1.1 yamt kmem_free(void *p, size_t size)
331 1.1 yamt {
332 1.23 ad
333 1.23 ad KASSERT(!cpu_intr_p());
334 1.27 ad KASSERT(!cpu_softintr_p());
335 1.39 para kmem_intr_free(p, size);
336 1.1 yamt }
337 1.1 yamt
338 1.42.2.2 martin static size_t
339 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
340 1.42.2.2 martin pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
341 1.1 yamt {
342 1.42.2.2 martin size_t maxidx = 0;
343 1.42.2.2 martin size_t table_unit = (1 << shift);
344 1.39 para size_t size = table_unit;
345 1.23 ad int i;
346 1.1 yamt
347 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
348 1.40 rmind const char *name = array[i].kc_name;
349 1.39 para size_t cache_size = array[i].kc_size;
350 1.42.2.2 martin struct pool_allocator *pa;
351 1.40 rmind int flags = PR_NOALIGN;
352 1.40 rmind pool_cache_t pc;
353 1.39 para size_t align;
354 1.39 para
355 1.39 para if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
356 1.39 para align = CACHE_LINE_SIZE;
357 1.39 para else if ((cache_size & (PAGE_SIZE - 1)) == 0)
358 1.39 para align = PAGE_SIZE;
359 1.39 para else
360 1.39 para align = KMEM_ALIGN;
361 1.39 para
362 1.39 para if (cache_size < CACHE_LINE_SIZE)
363 1.39 para flags |= PR_NOTOUCH;
364 1.27 ad
365 1.39 para /* check if we reached the requested size */
366 1.42.2.2 martin if (cache_size > maxsize || cache_size > PAGE_SIZE) {
367 1.23 ad break;
368 1.40 rmind }
369 1.42.2.2 martin if ((cache_size >> shift) > maxidx) {
370 1.42.2.2 martin maxidx = cache_size >> shift;
371 1.42.2.2 martin }
372 1.42.2.2 martin
373 1.42.2.2 martin if ((cache_size >> shift) > maxidx) {
374 1.42.2.2 martin maxidx = cache_size >> shift;
375 1.40 rmind }
376 1.1 yamt
377 1.42.2.2 martin pa = &pool_allocator_kmem;
378 1.39 para #if defined(KMEM_POISON)
379 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
380 1.42.2.2 martin name, pa, ipl,kmem_poison_ctor,
381 1.39 para NULL, (void *)cache_size);
382 1.39 para #else /* defined(KMEM_POISON) */
383 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
384 1.42.2.2 martin name, pa, ipl, NULL, NULL, NULL);
385 1.39 para #endif /* defined(KMEM_POISON) */
386 1.1 yamt
387 1.39 para while (size <= cache_size) {
388 1.42.2.2 martin alloc_table[(size - 1) >> shift] = pc;
389 1.39 para size += table_unit;
390 1.39 para }
391 1.1 yamt }
392 1.42.2.2 martin return maxidx;
393 1.1 yamt }
394 1.1 yamt
395 1.39 para void
396 1.39 para kmem_init(void)
397 1.1 yamt {
398 1.1 yamt
399 1.39 para #ifdef KMEM_GUARD
400 1.39 para uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
401 1.42 rmind kmem_va_arena);
402 1.39 para #endif
403 1.42.2.2 martin kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
404 1.42.2.2 martin kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
405 1.42.2.2 martin kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
406 1.42.2.2 martin kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
407 1.1 yamt }
408 1.4 yamt
409 1.39 para size_t
410 1.39 para kmem_roundup_size(size_t size)
411 1.7 yamt {
412 1.7 yamt
413 1.39 para return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
414 1.7 yamt }
415 1.7 yamt
416 1.4 yamt /* ---- debug */
417 1.4 yamt
418 1.19 yamt #if defined(KMEM_POISON)
419 1.4 yamt
420 1.4 yamt #if defined(_LP64)
421 1.39 para #define PRIME 0x9e37fffffffc0000UL
422 1.4 yamt #else /* defined(_LP64) */
423 1.39 para #define PRIME 0x9e3779b1
424 1.4 yamt #endif /* defined(_LP64) */
425 1.4 yamt
426 1.4 yamt static inline uint8_t
427 1.4 yamt kmem_poison_pattern(const void *p)
428 1.4 yamt {
429 1.4 yamt
430 1.39 para return (uint8_t)(((uintptr_t)p) * PRIME
431 1.39 para >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
432 1.39 para }
433 1.39 para
434 1.39 para static int
435 1.39 para kmem_poison_ctor(void *arg, void *obj, int flag)
436 1.39 para {
437 1.39 para size_t sz = (size_t)arg;
438 1.39 para
439 1.39 para kmem_poison_fill(obj, sz);
440 1.39 para
441 1.39 para return 0;
442 1.4 yamt }
443 1.4 yamt
444 1.4 yamt static void
445 1.4 yamt kmem_poison_fill(void *p, size_t sz)
446 1.4 yamt {
447 1.4 yamt uint8_t *cp;
448 1.4 yamt const uint8_t *ep;
449 1.4 yamt
450 1.4 yamt cp = p;
451 1.4 yamt ep = cp + sz;
452 1.4 yamt while (cp < ep) {
453 1.4 yamt *cp = kmem_poison_pattern(cp);
454 1.4 yamt cp++;
455 1.4 yamt }
456 1.4 yamt }
457 1.4 yamt
458 1.4 yamt static void
459 1.4 yamt kmem_poison_check(void *p, size_t sz)
460 1.4 yamt {
461 1.4 yamt uint8_t *cp;
462 1.4 yamt const uint8_t *ep;
463 1.4 yamt
464 1.4 yamt cp = p;
465 1.4 yamt ep = cp + sz;
466 1.4 yamt while (cp < ep) {
467 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
468 1.4 yamt
469 1.4 yamt if (*cp != expected) {
470 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
471 1.39 para __func__, cp, *cp, expected);
472 1.4 yamt }
473 1.4 yamt cp++;
474 1.4 yamt }
475 1.4 yamt }
476 1.4 yamt
477 1.19 yamt #endif /* defined(KMEM_POISON) */
478 1.23 ad
479 1.23 ad #if defined(KMEM_SIZE)
480 1.23 ad static void
481 1.23 ad kmem_size_set(void *p, size_t sz)
482 1.23 ad {
483 1.42.2.2 martin
484 1.42.2.2 martin memcpy(p, &sz, sizeof(sz));
485 1.23 ad }
486 1.23 ad
487 1.23 ad static void
488 1.39 para kmem_size_check(void *p, size_t sz)
489 1.23 ad {
490 1.23 ad size_t psz;
491 1.23 ad
492 1.42.2.2 martin memcpy(&psz, p, sizeof(psz));
493 1.23 ad if (psz != sz) {
494 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
495 1.42.2.2 martin (const uint8_t *)p + SIZE_SIZE, sz, psz);
496 1.23 ad }
497 1.23 ad }
498 1.23 ad #endif /* defined(KMEM_SIZE) */
499 1.33 haad
500 1.33 haad /*
501 1.33 haad * Used to dynamically allocate string with kmem accordingly to format.
502 1.33 haad */
503 1.33 haad char *
504 1.33 haad kmem_asprintf(const char *fmt, ...)
505 1.33 haad {
506 1.38 christos int size, len;
507 1.38 christos va_list va;
508 1.33 haad char *str;
509 1.33 haad
510 1.33 haad va_start(va, fmt);
511 1.38 christos len = vsnprintf(NULL, 0, fmt, va);
512 1.33 haad va_end(va);
513 1.33 haad
514 1.38 christos str = kmem_alloc(len + 1, KM_SLEEP);
515 1.33 haad
516 1.38 christos va_start(va, fmt);
517 1.38 christos size = vsnprintf(str, len + 1, fmt, va);
518 1.38 christos va_end(va);
519 1.38 christos
520 1.38 christos KASSERT(size == len);
521 1.33 haad
522 1.33 haad return str;
523 1.33 haad }
524