Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.42.2.2.4.1
      1  1.42.2.2.4.1    bouyer /*	$NetBSD: subr_kmem.c,v 1.42.2.2.4.1 2013/04/20 10:16:31 bouyer Exp $	*/
      2           1.1      yamt 
      3           1.1      yamt /*-
      4          1.23        ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5          1.23        ad  * All rights reserved.
      6          1.23        ad  *
      7          1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8          1.23        ad  * by Andrew Doran.
      9          1.23        ad  *
     10          1.23        ad  * Redistribution and use in source and binary forms, with or without
     11          1.23        ad  * modification, are permitted provided that the following conditions
     12          1.23        ad  * are met:
     13          1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14          1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15          1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16          1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17          1.23        ad  *    documentation and/or other materials provided with the distribution.
     18          1.23        ad  *
     19          1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20          1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21          1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22          1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23          1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24          1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25          1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26          1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27          1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28          1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29          1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30          1.23        ad  */
     31          1.23        ad 
     32          1.23        ad /*-
     33           1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34           1.1      yamt  * All rights reserved.
     35           1.1      yamt  *
     36           1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37           1.1      yamt  * modification, are permitted provided that the following conditions
     38           1.1      yamt  * are met:
     39           1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40           1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41           1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42           1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43           1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44           1.1      yamt  *
     45           1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46           1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47           1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48           1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49           1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50           1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51           1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52           1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53           1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54           1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55           1.1      yamt  * SUCH DAMAGE.
     56           1.1      yamt  */
     57           1.1      yamt 
     58           1.1      yamt /*
     59           1.1      yamt  * allocator of kernel wired memory.
     60           1.1      yamt  *
     61           1.1      yamt  */
     62           1.1      yamt 
     63           1.1      yamt #include <sys/cdefs.h>
     64  1.42.2.2.4.1    bouyer __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.42.2.2.4.1 2013/04/20 10:16:31 bouyer Exp $");
     65           1.1      yamt 
     66           1.1      yamt #include <sys/param.h>
     67           1.6      yamt #include <sys/callback.h>
     68           1.1      yamt #include <sys/kmem.h>
     69          1.39      para #include <sys/pool.h>
     70          1.13        ad #include <sys/debug.h>
     71          1.17        ad #include <sys/lockdebug.h>
     72          1.23        ad #include <sys/cpu.h>
     73           1.1      yamt 
     74           1.6      yamt #include <uvm/uvm_extern.h>
     75           1.6      yamt #include <uvm/uvm_map.h>
     76          1.27        ad #include <uvm/uvm_kmguard.h>
     77           1.6      yamt 
     78           1.1      yamt #include <lib/libkern/libkern.h>
     79           1.1      yamt 
     80      1.42.2.2    martin struct kmem_cache_info {
     81          1.40     rmind 	size_t		kc_size;
     82          1.40     rmind 	const char *	kc_name;
     83      1.42.2.2    martin };
     84      1.42.2.2    martin 
     85      1.42.2.2    martin static const struct kmem_cache_info kmem_cache_sizes[] = {
     86          1.39      para 	{  8, "kmem-8" },
     87          1.39      para 	{ 16, "kmem-16" },
     88          1.39      para 	{ 24, "kmem-24" },
     89          1.39      para 	{ 32, "kmem-32" },
     90          1.39      para 	{ 40, "kmem-40" },
     91          1.39      para 	{ 48, "kmem-48" },
     92          1.39      para 	{ 56, "kmem-56" },
     93          1.39      para 	{ 64, "kmem-64" },
     94          1.39      para 	{ 80, "kmem-80" },
     95          1.39      para 	{ 96, "kmem-96" },
     96          1.39      para 	{ 112, "kmem-112" },
     97          1.39      para 	{ 128, "kmem-128" },
     98          1.39      para 	{ 160, "kmem-160" },
     99          1.39      para 	{ 192, "kmem-192" },
    100          1.39      para 	{ 224, "kmem-224" },
    101          1.39      para 	{ 256, "kmem-256" },
    102          1.39      para 	{ 320, "kmem-320" },
    103          1.39      para 	{ 384, "kmem-384" },
    104          1.39      para 	{ 448, "kmem-448" },
    105          1.39      para 	{ 512, "kmem-512" },
    106          1.39      para 	{ 768, "kmem-768" },
    107          1.39      para 	{ 1024, "kmem-1024" },
    108      1.42.2.2    martin 	{ 0, NULL }
    109      1.42.2.2    martin };
    110      1.42.2.2    martin 
    111      1.42.2.2    martin static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    112          1.39      para 	{ 2048, "kmem-2048" },
    113          1.39      para 	{ 4096, "kmem-4096" },
    114      1.42.2.2    martin 	{ 8192, "kmem-8192" },
    115      1.42.2.2    martin 	{ 16384, "kmem-16384" },
    116          1.39      para 	{ 0, NULL }
    117          1.39      para };
    118           1.1      yamt 
    119          1.39      para /*
    120          1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    121      1.42.2.2    martin  * smallest allocateable quantum.
    122      1.42.2.2    martin  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    123          1.39      para  */
    124          1.40     rmind #define	KMEM_ALIGN		8
    125          1.40     rmind #define	KMEM_SHIFT		3
    126      1.42.2.2    martin #define	KMEM_MAXSIZE		1024
    127          1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    128           1.1      yamt 
    129          1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    130          1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    131          1.23        ad 
    132      1.42.2.2    martin #define	KMEM_BIG_ALIGN		2048
    133      1.42.2.2    martin #define	KMEM_BIG_SHIFT		11
    134      1.42.2.2    martin #define	KMEM_BIG_MAXSIZE	16384
    135      1.42.2.2    martin #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    136      1.42.2.2    martin 
    137      1.42.2.2    martin static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    138      1.42.2.2    martin static size_t kmem_cache_big_maxidx __read_mostly;
    139      1.42.2.2    martin 
    140      1.42.2.2    martin 
    141           1.4      yamt #if defined(DEBUG)
    142          1.34      matt int kmem_guard_depth = 0;
    143          1.27        ad size_t kmem_guard_size;
    144          1.27        ad static struct uvm_kmguard kmem_guard;
    145          1.13        ad static void *kmem_freecheck;
    146          1.19      yamt #define	KMEM_POISON
    147          1.19      yamt #define	KMEM_REDZONE
    148          1.23        ad #define	KMEM_SIZE
    149          1.27        ad #define	KMEM_GUARD
    150          1.19      yamt #endif /* defined(DEBUG) */
    151          1.19      yamt 
    152          1.19      yamt #if defined(KMEM_POISON)
    153          1.39      para static int kmem_poison_ctor(void *, void *, int);
    154           1.4      yamt static void kmem_poison_fill(void *, size_t);
    155           1.4      yamt static void kmem_poison_check(void *, size_t);
    156          1.19      yamt #else /* defined(KMEM_POISON) */
    157          1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    158          1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    159          1.19      yamt #endif /* defined(KMEM_POISON) */
    160          1.19      yamt 
    161          1.19      yamt #if defined(KMEM_REDZONE)
    162          1.19      yamt #define	REDZONE_SIZE	1
    163          1.19      yamt #else /* defined(KMEM_REDZONE) */
    164          1.19      yamt #define	REDZONE_SIZE	0
    165          1.19      yamt #endif /* defined(KMEM_REDZONE) */
    166           1.4      yamt 
    167          1.23        ad #if defined(KMEM_SIZE)
    168          1.40     rmind #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    169          1.23        ad static void kmem_size_set(void *, size_t);
    170          1.39      para static void kmem_size_check(void *, size_t);
    171          1.23        ad #else
    172          1.23        ad #define	SIZE_SIZE	0
    173          1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    174          1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    175          1.23        ad #endif
    176          1.23        ad 
    177          1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    178          1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    179          1.32     skrll 
    180      1.42.2.2    martin /*
    181      1.42.2.2    martin  * kmem_intr_alloc: allocate wired memory.
    182      1.42.2.2    martin  */
    183      1.42.2.2    martin 
    184          1.39      para void *
    185          1.39      para kmem_intr_alloc(size_t size, km_flag_t kmflags)
    186           1.1      yamt {
    187          1.40     rmind 	size_t allocsz, index;
    188          1.39      para 	pool_cache_t pc;
    189          1.39      para 	uint8_t *p;
    190           1.1      yamt 
    191          1.39      para 	KASSERT(size > 0);
    192           1.1      yamt 
    193          1.39      para #ifdef KMEM_GUARD
    194          1.42     rmind 	if (size <= kmem_guard_size) {
    195          1.39      para 		return uvm_kmguard_alloc(&kmem_guard, size,
    196          1.39      para 		    (kmflags & KM_SLEEP) != 0);
    197           1.1      yamt 	}
    198          1.39      para #endif
    199      1.42.2.2    martin 	size = kmem_roundup_size(size);
    200      1.42.2.2    martin 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    201          1.39      para 
    202      1.42.2.2    martin 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    203      1.42.2.2    martin 	    < kmem_cache_maxidx) {
    204      1.42.2.2    martin 		pc = kmem_cache[index];
    205      1.42.2.2    martin 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    206      1.42.2.2    martin             < kmem_cache_big_maxidx) {
    207      1.42.2.2    martin 		pc = kmem_cache_big[index];
    208      1.42.2.2    martin 	} else {
    209          1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    210      1.42.2.1       riz 		    (vsize_t)round_page(size),
    211          1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    212          1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    213      1.42.2.2    martin 		if (ret) {
    214      1.42.2.2    martin 			return NULL;
    215      1.42.2.2    martin 		}
    216      1.42.2.2    martin 		FREECHECK_OUT(&kmem_freecheck, p);
    217      1.42.2.2    martin 		return p;
    218           1.1      yamt 	}
    219           1.1      yamt 
    220          1.39      para 	p = pool_cache_get(pc, kmflags);
    221          1.39      para 
    222          1.39      para 	if (__predict_true(p != NULL)) {
    223      1.42.2.2    martin 		kmem_poison_check(p, size);
    224          1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    225      1.42.2.2    martin 		kmem_size_set(p, size);
    226  1.42.2.2.4.1    bouyer 
    227  1.42.2.2.4.1    bouyer 		return p + SIZE_SIZE;
    228          1.39      para 	}
    229  1.42.2.2.4.1    bouyer 	return p;
    230           1.1      yamt }
    231           1.1      yamt 
    232      1.42.2.2    martin /*
    233      1.42.2.2    martin  * kmem_intr_zalloc: allocate zeroed wired memory.
    234      1.42.2.2    martin  */
    235      1.42.2.2    martin 
    236          1.39      para void *
    237          1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    238          1.23        ad {
    239          1.39      para 	void *p;
    240          1.23        ad 
    241          1.39      para 	p = kmem_intr_alloc(size, kmflags);
    242          1.39      para 	if (p != NULL) {
    243          1.39      para 		memset(p, 0, size);
    244          1.39      para 	}
    245          1.39      para 	return p;
    246          1.23        ad }
    247          1.23        ad 
    248      1.42.2.2    martin /*
    249      1.42.2.2    martin  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    250      1.42.2.2    martin  */
    251      1.42.2.2    martin 
    252          1.39      para void
    253          1.39      para kmem_intr_free(void *p, size_t size)
    254          1.23        ad {
    255          1.40     rmind 	size_t allocsz, index;
    256          1.39      para 	pool_cache_t pc;
    257          1.23        ad 
    258          1.39      para 	KASSERT(p != NULL);
    259          1.39      para 	KASSERT(size > 0);
    260          1.39      para 
    261          1.39      para #ifdef KMEM_GUARD
    262          1.42     rmind 	if (size <= kmem_guard_size) {
    263          1.39      para 		uvm_kmguard_free(&kmem_guard, size, p);
    264          1.39      para 		return;
    265          1.39      para 	}
    266          1.39      para #endif
    267      1.42.2.2    martin 	size = kmem_roundup_size(size);
    268      1.42.2.2    martin 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    269          1.39      para 
    270      1.42.2.2    martin 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    271      1.42.2.2    martin 	    < kmem_cache_maxidx) {
    272      1.42.2.2    martin 		pc = kmem_cache[index];
    273      1.42.2.2    martin 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    274      1.42.2.2    martin             < kmem_cache_big_maxidx) {
    275      1.42.2.2    martin 		pc = kmem_cache_big[index];
    276      1.42.2.2    martin 	} else {
    277      1.42.2.2    martin 		FREECHECK_IN(&kmem_freecheck, p);
    278          1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    279      1.42.2.1       riz 		    round_page(size));
    280          1.39      para 		return;
    281          1.39      para 	}
    282          1.39      para 
    283      1.42.2.2    martin 	p = (uint8_t *)p - SIZE_SIZE;
    284      1.42.2.2    martin 	kmem_size_check(p, size);
    285          1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    286      1.42.2.2    martin 	LOCKDEBUG_MEM_CHECK(p, size);
    287      1.42.2.2    martin 	kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
    288      1.42.2.2    martin       	    allocsz - (SIZE_SIZE + size));
    289          1.39      para 	kmem_poison_fill(p, allocsz);
    290          1.39      para 
    291          1.39      para 	pool_cache_put(pc, p);
    292          1.23        ad }
    293          1.23        ad 
    294           1.1      yamt /* ---- kmem API */
    295           1.1      yamt 
    296           1.1      yamt /*
    297           1.1      yamt  * kmem_alloc: allocate wired memory.
    298           1.1      yamt  * => must not be called from interrupt context.
    299           1.1      yamt  */
    300           1.1      yamt 
    301           1.1      yamt void *
    302           1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    303           1.1      yamt {
    304          1.23        ad 
    305          1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    306          1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    307          1.39      para 	return kmem_intr_alloc(size, kmflags);
    308           1.1      yamt }
    309           1.1      yamt 
    310           1.1      yamt /*
    311          1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    312           1.2      yamt  * => must not be called from interrupt context.
    313           1.2      yamt  */
    314           1.2      yamt 
    315           1.2      yamt void *
    316           1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    317           1.2      yamt {
    318           1.2      yamt 
    319          1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    320          1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    321          1.39      para 	return kmem_intr_zalloc(size, kmflags);
    322           1.2      yamt }
    323           1.2      yamt 
    324           1.2      yamt /*
    325           1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    326           1.1      yamt  * => must not be called from interrupt context.
    327           1.1      yamt  */
    328           1.1      yamt 
    329           1.1      yamt void
    330           1.1      yamt kmem_free(void *p, size_t size)
    331           1.1      yamt {
    332          1.23        ad 
    333          1.23        ad 	KASSERT(!cpu_intr_p());
    334          1.27        ad 	KASSERT(!cpu_softintr_p());
    335          1.39      para 	kmem_intr_free(p, size);
    336           1.1      yamt }
    337           1.1      yamt 
    338      1.42.2.2    martin static size_t
    339          1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    340      1.42.2.2    martin     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    341           1.1      yamt {
    342      1.42.2.2    martin 	size_t maxidx = 0;
    343      1.42.2.2    martin 	size_t table_unit = (1 << shift);
    344          1.39      para 	size_t size = table_unit;
    345          1.23        ad 	int i;
    346           1.1      yamt 
    347          1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    348          1.40     rmind 		const char *name = array[i].kc_name;
    349          1.39      para 		size_t cache_size = array[i].kc_size;
    350      1.42.2.2    martin 		struct pool_allocator *pa;
    351          1.40     rmind 		int flags = PR_NOALIGN;
    352          1.40     rmind 		pool_cache_t pc;
    353          1.39      para 		size_t align;
    354          1.39      para 
    355          1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    356          1.39      para 			align = CACHE_LINE_SIZE;
    357          1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    358          1.39      para 			align = PAGE_SIZE;
    359          1.39      para 		else
    360          1.39      para 			align = KMEM_ALIGN;
    361          1.39      para 
    362          1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    363          1.39      para 			flags |= PR_NOTOUCH;
    364          1.27        ad 
    365          1.39      para 		/* check if we reached the requested size */
    366      1.42.2.2    martin 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    367          1.23        ad 			break;
    368          1.40     rmind 		}
    369      1.42.2.2    martin 		if ((cache_size >> shift) > maxidx) {
    370      1.42.2.2    martin 			maxidx = cache_size >> shift;
    371      1.42.2.2    martin 		}
    372      1.42.2.2    martin 
    373      1.42.2.2    martin 		if ((cache_size >> shift) > maxidx) {
    374      1.42.2.2    martin 			maxidx = cache_size >> shift;
    375          1.40     rmind 		}
    376           1.1      yamt 
    377      1.42.2.2    martin 		pa = &pool_allocator_kmem;
    378          1.39      para #if defined(KMEM_POISON)
    379          1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    380      1.42.2.2    martin 		    name, pa, ipl,kmem_poison_ctor,
    381          1.39      para 		    NULL, (void *)cache_size);
    382          1.39      para #else /* defined(KMEM_POISON) */
    383          1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    384      1.42.2.2    martin 		    name, pa, ipl, NULL, NULL, NULL);
    385          1.39      para #endif /* defined(KMEM_POISON) */
    386           1.1      yamt 
    387          1.39      para 		while (size <= cache_size) {
    388      1.42.2.2    martin 			alloc_table[(size - 1) >> shift] = pc;
    389          1.39      para 			size += table_unit;
    390          1.39      para 		}
    391           1.1      yamt 	}
    392      1.42.2.2    martin 	return maxidx;
    393           1.1      yamt }
    394           1.1      yamt 
    395          1.39      para void
    396          1.39      para kmem_init(void)
    397           1.1      yamt {
    398           1.1      yamt 
    399          1.39      para #ifdef KMEM_GUARD
    400          1.39      para 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    401          1.42     rmind 	    kmem_va_arena);
    402          1.39      para #endif
    403      1.42.2.2    martin 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    404      1.42.2.2    martin 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    405      1.42.2.2    martin        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    406      1.42.2.2    martin 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    407           1.1      yamt }
    408           1.4      yamt 
    409          1.39      para size_t
    410          1.39      para kmem_roundup_size(size_t size)
    411           1.7      yamt {
    412           1.7      yamt 
    413          1.39      para 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    414           1.7      yamt }
    415           1.7      yamt 
    416           1.4      yamt /* ---- debug */
    417           1.4      yamt 
    418          1.19      yamt #if defined(KMEM_POISON)
    419           1.4      yamt 
    420           1.4      yamt #if defined(_LP64)
    421          1.39      para #define PRIME 0x9e37fffffffc0000UL
    422           1.4      yamt #else /* defined(_LP64) */
    423          1.39      para #define PRIME 0x9e3779b1
    424           1.4      yamt #endif /* defined(_LP64) */
    425           1.4      yamt 
    426           1.4      yamt static inline uint8_t
    427           1.4      yamt kmem_poison_pattern(const void *p)
    428           1.4      yamt {
    429           1.4      yamt 
    430          1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    431          1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    432          1.39      para }
    433          1.39      para 
    434          1.39      para static int
    435          1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    436          1.39      para {
    437          1.39      para 	size_t sz = (size_t)arg;
    438          1.39      para 
    439          1.39      para 	kmem_poison_fill(obj, sz);
    440          1.39      para 
    441          1.39      para 	return 0;
    442           1.4      yamt }
    443           1.4      yamt 
    444           1.4      yamt static void
    445           1.4      yamt kmem_poison_fill(void *p, size_t sz)
    446           1.4      yamt {
    447           1.4      yamt 	uint8_t *cp;
    448           1.4      yamt 	const uint8_t *ep;
    449           1.4      yamt 
    450           1.4      yamt 	cp = p;
    451           1.4      yamt 	ep = cp + sz;
    452           1.4      yamt 	while (cp < ep) {
    453           1.4      yamt 		*cp = kmem_poison_pattern(cp);
    454           1.4      yamt 		cp++;
    455           1.4      yamt 	}
    456           1.4      yamt }
    457           1.4      yamt 
    458           1.4      yamt static void
    459           1.4      yamt kmem_poison_check(void *p, size_t sz)
    460           1.4      yamt {
    461           1.4      yamt 	uint8_t *cp;
    462           1.4      yamt 	const uint8_t *ep;
    463           1.4      yamt 
    464           1.4      yamt 	cp = p;
    465           1.4      yamt 	ep = cp + sz;
    466           1.4      yamt 	while (cp < ep) {
    467           1.4      yamt 		const uint8_t expected = kmem_poison_pattern(cp);
    468           1.4      yamt 
    469           1.4      yamt 		if (*cp != expected) {
    470           1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    471          1.39      para 			   __func__, cp, *cp, expected);
    472           1.4      yamt 		}
    473           1.4      yamt 		cp++;
    474           1.4      yamt 	}
    475           1.4      yamt }
    476           1.4      yamt 
    477          1.19      yamt #endif /* defined(KMEM_POISON) */
    478          1.23        ad 
    479          1.23        ad #if defined(KMEM_SIZE)
    480          1.23        ad static void
    481          1.23        ad kmem_size_set(void *p, size_t sz)
    482          1.23        ad {
    483      1.42.2.2    martin 
    484      1.42.2.2    martin 	memcpy(p, &sz, sizeof(sz));
    485          1.23        ad }
    486          1.23        ad 
    487          1.23        ad static void
    488          1.39      para kmem_size_check(void *p, size_t sz)
    489          1.23        ad {
    490          1.23        ad 	size_t psz;
    491          1.23        ad 
    492      1.42.2.2    martin 	memcpy(&psz, p, sizeof(psz));
    493          1.23        ad 	if (psz != sz) {
    494          1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    495      1.42.2.2    martin 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    496          1.23        ad 	}
    497          1.23        ad }
    498          1.23        ad #endif	/* defined(KMEM_SIZE) */
    499          1.33      haad 
    500          1.33      haad /*
    501          1.33      haad  * Used to dynamically allocate string with kmem accordingly to format.
    502          1.33      haad  */
    503          1.33      haad char *
    504          1.33      haad kmem_asprintf(const char *fmt, ...)
    505          1.33      haad {
    506          1.38  christos 	int size, len;
    507          1.38  christos 	va_list va;
    508          1.33      haad 	char *str;
    509          1.33      haad 
    510          1.33      haad 	va_start(va, fmt);
    511          1.38  christos 	len = vsnprintf(NULL, 0, fmt, va);
    512          1.33      haad 	va_end(va);
    513          1.33      haad 
    514          1.38  christos 	str = kmem_alloc(len + 1, KM_SLEEP);
    515          1.33      haad 
    516          1.38  christos 	va_start(va, fmt);
    517          1.38  christos 	size = vsnprintf(str, len + 1, fmt, va);
    518          1.38  christos 	va_end(va);
    519          1.38  christos 
    520          1.38  christos 	KASSERT(size == len);
    521          1.33      haad 
    522          1.33      haad 	return str;
    523          1.33      haad }
    524