Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.43
      1  1.43      para /*	$NetBSD: subr_kmem.c,v 1.43 2012/04/01 17:02:46 para Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4  1.23        ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  1.23        ad  * All rights reserved.
      6  1.23        ad  *
      7  1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.23        ad  * by Andrew Doran.
      9  1.23        ad  *
     10  1.23        ad  * Redistribution and use in source and binary forms, with or without
     11  1.23        ad  * modification, are permitted provided that the following conditions
     12  1.23        ad  * are met:
     13  1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.23        ad  *    documentation and/or other materials provided with the distribution.
     18  1.23        ad  *
     19  1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.23        ad  */
     31  1.23        ad 
     32  1.23        ad /*-
     33   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34   1.1      yamt  * All rights reserved.
     35   1.1      yamt  *
     36   1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37   1.1      yamt  * modification, are permitted provided that the following conditions
     38   1.1      yamt  * are met:
     39   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44   1.1      yamt  *
     45   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55   1.1      yamt  * SUCH DAMAGE.
     56   1.1      yamt  */
     57   1.1      yamt 
     58   1.1      yamt /*
     59   1.1      yamt  * allocator of kernel wired memory.
     60   1.1      yamt  *
     61   1.1      yamt  */
     62   1.1      yamt 
     63   1.1      yamt #include <sys/cdefs.h>
     64  1.43      para __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.43 2012/04/01 17:02:46 para Exp $");
     65   1.1      yamt 
     66   1.1      yamt #include <sys/param.h>
     67   1.6      yamt #include <sys/callback.h>
     68   1.1      yamt #include <sys/kmem.h>
     69  1.39      para #include <sys/pool.h>
     70  1.13        ad #include <sys/debug.h>
     71  1.17        ad #include <sys/lockdebug.h>
     72  1.23        ad #include <sys/cpu.h>
     73   1.1      yamt 
     74   1.6      yamt #include <uvm/uvm_extern.h>
     75   1.6      yamt #include <uvm/uvm_map.h>
     76  1.27        ad #include <uvm/uvm_kmguard.h>
     77   1.6      yamt 
     78   1.1      yamt #include <lib/libkern/libkern.h>
     79   1.1      yamt 
     80  1.40     rmind static const struct kmem_cache_info {
     81  1.40     rmind 	size_t		kc_size;
     82  1.40     rmind 	const char *	kc_name;
     83  1.40     rmind } kmem_cache_sizes[] = {
     84  1.39      para 	{  8, "kmem-8" },
     85  1.39      para 	{ 16, "kmem-16" },
     86  1.39      para 	{ 24, "kmem-24" },
     87  1.39      para 	{ 32, "kmem-32" },
     88  1.39      para 	{ 40, "kmem-40" },
     89  1.39      para 	{ 48, "kmem-48" },
     90  1.39      para 	{ 56, "kmem-56" },
     91  1.39      para 	{ 64, "kmem-64" },
     92  1.39      para 	{ 80, "kmem-80" },
     93  1.39      para 	{ 96, "kmem-96" },
     94  1.39      para 	{ 112, "kmem-112" },
     95  1.39      para 	{ 128, "kmem-128" },
     96  1.39      para 	{ 160, "kmem-160" },
     97  1.39      para 	{ 192, "kmem-192" },
     98  1.39      para 	{ 224, "kmem-224" },
     99  1.39      para 	{ 256, "kmem-256" },
    100  1.39      para 	{ 320, "kmem-320" },
    101  1.39      para 	{ 384, "kmem-384" },
    102  1.39      para 	{ 448, "kmem-448" },
    103  1.39      para 	{ 512, "kmem-512" },
    104  1.39      para 	{ 768, "kmem-768" },
    105  1.39      para 	{ 1024, "kmem-1024" },
    106  1.39      para 	{ 2048, "kmem-2048" },
    107  1.39      para 	{ 4096, "kmem-4096" },
    108  1.39      para 	{ 0, NULL }
    109  1.39      para };
    110   1.1      yamt 
    111  1.39      para /*
    112  1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    113  1.40     rmind  * smallest allocateable quantum.  Every cache size is a multiply
    114  1.40     rmind  * of CACHE_LINE_SIZE and gets CACHE_LINE_SIZE alignment.
    115  1.39      para  */
    116  1.40     rmind #define	KMEM_ALIGN		8
    117  1.40     rmind #define	KMEM_SHIFT		3
    118  1.40     rmind #define	KMEM_MAXSIZE		4096
    119  1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    120   1.1      yamt 
    121  1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    122  1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    123  1.23        ad 
    124   1.4      yamt #if defined(DEBUG)
    125  1.34      matt int kmem_guard_depth = 0;
    126  1.27        ad size_t kmem_guard_size;
    127  1.27        ad static struct uvm_kmguard kmem_guard;
    128  1.13        ad static void *kmem_freecheck;
    129  1.19      yamt #define	KMEM_POISON
    130  1.19      yamt #define	KMEM_REDZONE
    131  1.23        ad #define	KMEM_SIZE
    132  1.27        ad #define	KMEM_GUARD
    133  1.19      yamt #endif /* defined(DEBUG) */
    134  1.19      yamt 
    135  1.19      yamt #if defined(KMEM_POISON)
    136  1.39      para static int kmem_poison_ctor(void *, void *, int);
    137   1.4      yamt static void kmem_poison_fill(void *, size_t);
    138   1.4      yamt static void kmem_poison_check(void *, size_t);
    139  1.19      yamt #else /* defined(KMEM_POISON) */
    140  1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    141  1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    142  1.19      yamt #endif /* defined(KMEM_POISON) */
    143  1.19      yamt 
    144  1.19      yamt #if defined(KMEM_REDZONE)
    145  1.19      yamt #define	REDZONE_SIZE	1
    146  1.19      yamt #else /* defined(KMEM_REDZONE) */
    147  1.19      yamt #define	REDZONE_SIZE	0
    148  1.19      yamt #endif /* defined(KMEM_REDZONE) */
    149   1.4      yamt 
    150  1.23        ad #if defined(KMEM_SIZE)
    151  1.40     rmind #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    152  1.23        ad static void kmem_size_set(void *, size_t);
    153  1.39      para static void kmem_size_check(void *, size_t);
    154  1.23        ad #else
    155  1.23        ad #define	SIZE_SIZE	0
    156  1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    157  1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    158  1.23        ad #endif
    159  1.23        ad 
    160  1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    161  1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    162  1.32     skrll 
    163  1.39      para void *
    164  1.39      para kmem_intr_alloc(size_t size, km_flag_t kmflags)
    165   1.1      yamt {
    166  1.40     rmind 	size_t allocsz, index;
    167  1.39      para 	pool_cache_t pc;
    168  1.39      para 	uint8_t *p;
    169   1.1      yamt 
    170  1.39      para 	KASSERT(size > 0);
    171   1.1      yamt 
    172  1.39      para #ifdef KMEM_GUARD
    173  1.42     rmind 	if (size <= kmem_guard_size) {
    174  1.39      para 		return uvm_kmguard_alloc(&kmem_guard, size,
    175  1.39      para 		    (kmflags & KM_SLEEP) != 0);
    176   1.1      yamt 	}
    177  1.39      para #endif
    178  1.40     rmind 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
    179  1.40     rmind 	index = (allocsz - 1) >> KMEM_SHIFT;
    180  1.39      para 
    181  1.40     rmind 	if (index >= kmem_cache_maxidx) {
    182  1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    183  1.43      para 		    (vsize_t)round_page(size),
    184  1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    185  1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    186  1.40     rmind 		return ret ? NULL : p;
    187   1.1      yamt 	}
    188   1.1      yamt 
    189  1.40     rmind 	pc = kmem_cache[index];
    190  1.39      para 	p = pool_cache_get(pc, kmflags);
    191  1.39      para 
    192  1.39      para 	if (__predict_true(p != NULL)) {
    193  1.39      para 		kmem_poison_check(p, kmem_roundup_size(size));
    194  1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    195  1.39      para 		kmem_size_set(p, allocsz);
    196  1.39      para 	}
    197  1.39      para 	return p;
    198   1.1      yamt }
    199   1.1      yamt 
    200  1.39      para void *
    201  1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    202  1.23        ad {
    203  1.39      para 	void *p;
    204  1.23        ad 
    205  1.39      para 	p = kmem_intr_alloc(size, kmflags);
    206  1.39      para 	if (p != NULL) {
    207  1.39      para 		memset(p, 0, size);
    208  1.39      para 	}
    209  1.39      para 	return p;
    210  1.23        ad }
    211  1.23        ad 
    212  1.39      para void
    213  1.39      para kmem_intr_free(void *p, size_t size)
    214  1.23        ad {
    215  1.40     rmind 	size_t allocsz, index;
    216  1.39      para 	pool_cache_t pc;
    217  1.23        ad 
    218  1.39      para 	KASSERT(p != NULL);
    219  1.39      para 	KASSERT(size > 0);
    220  1.39      para 
    221  1.39      para #ifdef KMEM_GUARD
    222  1.42     rmind 	if (size <= kmem_guard_size) {
    223  1.39      para 		uvm_kmguard_free(&kmem_guard, size, p);
    224  1.39      para 		return;
    225  1.39      para 	}
    226  1.39      para #endif
    227  1.40     rmind 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
    228  1.40     rmind 	index = (allocsz - 1) >> KMEM_SHIFT;
    229  1.39      para 
    230  1.40     rmind 	if (index >= kmem_cache_maxidx) {
    231  1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    232  1.43      para 		    round_page(size));
    233  1.39      para 		return;
    234  1.39      para 	}
    235  1.39      para 
    236  1.39      para 	kmem_size_check(p, allocsz);
    237  1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    238  1.39      para 	LOCKDEBUG_MEM_CHECK(p, allocsz - (REDZONE_SIZE + SIZE_SIZE));
    239  1.39      para 	kmem_poison_check((uint8_t *)p + size, allocsz - size - SIZE_SIZE);
    240  1.39      para 	kmem_poison_fill(p, allocsz);
    241  1.39      para 
    242  1.40     rmind 	pc = kmem_cache[index];
    243  1.39      para 	pool_cache_put(pc, p);
    244  1.23        ad }
    245  1.23        ad 
    246   1.1      yamt /* ---- kmem API */
    247   1.1      yamt 
    248   1.1      yamt /*
    249   1.1      yamt  * kmem_alloc: allocate wired memory.
    250   1.1      yamt  * => must not be called from interrupt context.
    251   1.1      yamt  */
    252   1.1      yamt 
    253   1.1      yamt void *
    254   1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    255   1.1      yamt {
    256  1.23        ad 
    257  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    258  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    259  1.39      para 	return kmem_intr_alloc(size, kmflags);
    260   1.1      yamt }
    261   1.1      yamt 
    262   1.1      yamt /*
    263  1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    264   1.2      yamt  * => must not be called from interrupt context.
    265   1.2      yamt  */
    266   1.2      yamt 
    267   1.2      yamt void *
    268   1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    269   1.2      yamt {
    270   1.2      yamt 
    271  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    272  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    273  1.39      para 	return kmem_intr_zalloc(size, kmflags);
    274   1.2      yamt }
    275   1.2      yamt 
    276   1.2      yamt /*
    277   1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    278   1.1      yamt  * => must not be called from interrupt context.
    279   1.1      yamt  */
    280   1.1      yamt 
    281   1.1      yamt void
    282   1.1      yamt kmem_free(void *p, size_t size)
    283   1.1      yamt {
    284  1.23        ad 
    285  1.23        ad 	KASSERT(!cpu_intr_p());
    286  1.27        ad 	KASSERT(!cpu_softintr_p());
    287  1.39      para 	kmem_intr_free(p, size);
    288   1.1      yamt }
    289   1.1      yamt 
    290  1.39      para static void
    291  1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    292  1.39      para     pool_cache_t alloc_table[], size_t maxsize)
    293   1.1      yamt {
    294  1.39      para 	size_t table_unit = (1 << KMEM_SHIFT);
    295  1.39      para 	size_t size = table_unit;
    296  1.23        ad 	int i;
    297   1.1      yamt 
    298  1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    299  1.40     rmind 		const char *name = array[i].kc_name;
    300  1.39      para 		size_t cache_size = array[i].kc_size;
    301  1.40     rmind 		int flags = PR_NOALIGN;
    302  1.40     rmind 		pool_cache_t pc;
    303  1.39      para 		size_t align;
    304  1.39      para 
    305  1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    306  1.39      para 			align = CACHE_LINE_SIZE;
    307  1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    308  1.39      para 			align = PAGE_SIZE;
    309  1.39      para 		else
    310  1.39      para 			align = KMEM_ALIGN;
    311  1.39      para 
    312  1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    313  1.39      para 			flags |= PR_NOTOUCH;
    314  1.27        ad 
    315  1.39      para 		/* check if we reached the requested size */
    316  1.40     rmind 		if (cache_size > maxsize) {
    317  1.23        ad 			break;
    318  1.40     rmind 		}
    319  1.40     rmind 		if ((cache_size >> KMEM_SHIFT) > kmem_cache_maxidx) {
    320  1.40     rmind 			kmem_cache_maxidx = cache_size >> KMEM_SHIFT;
    321  1.40     rmind 		}
    322   1.1      yamt 
    323  1.39      para #if defined(KMEM_POISON)
    324  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    325  1.39      para 		    name, &pool_allocator_kmem, IPL_VM, kmem_poison_ctor,
    326  1.39      para 		    NULL, (void *)cache_size);
    327  1.39      para #else /* defined(KMEM_POISON) */
    328  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    329  1.39      para 		    name, &pool_allocator_kmem, IPL_VM, NULL, NULL, NULL);
    330  1.39      para #endif /* defined(KMEM_POISON) */
    331   1.1      yamt 
    332  1.39      para 		while (size <= cache_size) {
    333  1.39      para 			alloc_table[(size - 1) >> KMEM_SHIFT] = pc;
    334  1.39      para 			size += table_unit;
    335  1.39      para 		}
    336   1.1      yamt 	}
    337   1.1      yamt }
    338   1.1      yamt 
    339  1.39      para void
    340  1.39      para kmem_init(void)
    341   1.1      yamt {
    342   1.1      yamt 
    343  1.39      para #ifdef KMEM_GUARD
    344  1.39      para 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    345  1.42     rmind 	    kmem_va_arena);
    346  1.39      para #endif
    347  1.39      para 	kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE);
    348   1.1      yamt }
    349   1.4      yamt 
    350  1.39      para size_t
    351  1.39      para kmem_roundup_size(size_t size)
    352   1.7      yamt {
    353   1.7      yamt 
    354  1.39      para 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    355   1.7      yamt }
    356   1.7      yamt 
    357   1.4      yamt /* ---- debug */
    358   1.4      yamt 
    359  1.19      yamt #if defined(KMEM_POISON)
    360   1.4      yamt 
    361   1.4      yamt #if defined(_LP64)
    362  1.39      para #define PRIME 0x9e37fffffffc0000UL
    363   1.4      yamt #else /* defined(_LP64) */
    364  1.39      para #define PRIME 0x9e3779b1
    365   1.4      yamt #endif /* defined(_LP64) */
    366   1.4      yamt 
    367   1.4      yamt static inline uint8_t
    368   1.4      yamt kmem_poison_pattern(const void *p)
    369   1.4      yamt {
    370   1.4      yamt 
    371  1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    372  1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    373  1.39      para }
    374  1.39      para 
    375  1.39      para static int
    376  1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    377  1.39      para {
    378  1.39      para 	size_t sz = (size_t)arg;
    379  1.39      para 
    380  1.39      para 	kmem_poison_fill(obj, sz);
    381  1.39      para 
    382  1.39      para 	return 0;
    383   1.4      yamt }
    384   1.4      yamt 
    385   1.4      yamt static void
    386   1.4      yamt kmem_poison_fill(void *p, size_t sz)
    387   1.4      yamt {
    388   1.4      yamt 	uint8_t *cp;
    389   1.4      yamt 	const uint8_t *ep;
    390   1.4      yamt 
    391   1.4      yamt 	cp = p;
    392   1.4      yamt 	ep = cp + sz;
    393   1.4      yamt 	while (cp < ep) {
    394   1.4      yamt 		*cp = kmem_poison_pattern(cp);
    395   1.4      yamt 		cp++;
    396   1.4      yamt 	}
    397   1.4      yamt }
    398   1.4      yamt 
    399   1.4      yamt static void
    400   1.4      yamt kmem_poison_check(void *p, size_t sz)
    401   1.4      yamt {
    402   1.4      yamt 	uint8_t *cp;
    403   1.4      yamt 	const uint8_t *ep;
    404   1.4      yamt 
    405   1.4      yamt 	cp = p;
    406   1.4      yamt 	ep = cp + sz;
    407   1.4      yamt 	while (cp < ep) {
    408   1.4      yamt 		const uint8_t expected = kmem_poison_pattern(cp);
    409   1.4      yamt 
    410   1.4      yamt 		if (*cp != expected) {
    411   1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    412  1.39      para 			   __func__, cp, *cp, expected);
    413   1.4      yamt 		}
    414   1.4      yamt 		cp++;
    415   1.4      yamt 	}
    416   1.4      yamt }
    417   1.4      yamt 
    418  1.19      yamt #endif /* defined(KMEM_POISON) */
    419  1.23        ad 
    420  1.23        ad #if defined(KMEM_SIZE)
    421  1.23        ad static void
    422  1.23        ad kmem_size_set(void *p, size_t sz)
    423  1.23        ad {
    424  1.39      para 	void *szp;
    425  1.23        ad 
    426  1.39      para 	szp = (uint8_t *)p + sz - SIZE_SIZE;
    427  1.39      para 	memcpy(szp, &sz, sizeof(sz));
    428  1.23        ad }
    429  1.23        ad 
    430  1.23        ad static void
    431  1.39      para kmem_size_check(void *p, size_t sz)
    432  1.23        ad {
    433  1.39      para 	uint8_t *szp;
    434  1.23        ad 	size_t psz;
    435  1.23        ad 
    436  1.39      para 	szp = (uint8_t *)p + sz - SIZE_SIZE;
    437  1.39      para 	memcpy(&psz, szp, sizeof(psz));
    438  1.23        ad 	if (psz != sz) {
    439  1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    440  1.30      yamt 		    (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
    441  1.23        ad 	}
    442  1.23        ad }
    443  1.23        ad #endif	/* defined(KMEM_SIZE) */
    444  1.33      haad 
    445  1.33      haad /*
    446  1.33      haad  * Used to dynamically allocate string with kmem accordingly to format.
    447  1.33      haad  */
    448  1.33      haad char *
    449  1.33      haad kmem_asprintf(const char *fmt, ...)
    450  1.33      haad {
    451  1.38  christos 	int size, len;
    452  1.38  christos 	va_list va;
    453  1.33      haad 	char *str;
    454  1.33      haad 
    455  1.33      haad 	va_start(va, fmt);
    456  1.38  christos 	len = vsnprintf(NULL, 0, fmt, va);
    457  1.33      haad 	va_end(va);
    458  1.33      haad 
    459  1.38  christos 	str = kmem_alloc(len + 1, KM_SLEEP);
    460  1.33      haad 
    461  1.38  christos 	va_start(va, fmt);
    462  1.38  christos 	size = vsnprintf(str, len + 1, fmt, va);
    463  1.38  christos 	va_end(va);
    464  1.38  christos 
    465  1.38  christos 	KASSERT(size == len);
    466  1.33      haad 
    467  1.33      haad 	return str;
    468  1.33      haad }
    469