subr_kmem.c revision 1.44 1 1.44 mrg /* $NetBSD: subr_kmem.c,v 1.44 2012/04/13 06:27:02 mrg Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.23 ad * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 ad * by Andrew Doran.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.1 yamt * allocator of kernel wired memory.
60 1.1 yamt *
61 1.1 yamt */
62 1.1 yamt
63 1.1 yamt #include <sys/cdefs.h>
64 1.44 mrg __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.44 2012/04/13 06:27:02 mrg Exp $");
65 1.1 yamt
66 1.1 yamt #include <sys/param.h>
67 1.6 yamt #include <sys/callback.h>
68 1.1 yamt #include <sys/kmem.h>
69 1.39 para #include <sys/pool.h>
70 1.13 ad #include <sys/debug.h>
71 1.17 ad #include <sys/lockdebug.h>
72 1.23 ad #include <sys/cpu.h>
73 1.1 yamt
74 1.6 yamt #include <uvm/uvm_extern.h>
75 1.6 yamt #include <uvm/uvm_map.h>
76 1.27 ad #include <uvm/uvm_kmguard.h>
77 1.6 yamt
78 1.1 yamt #include <lib/libkern/libkern.h>
79 1.1 yamt
80 1.40 rmind static const struct kmem_cache_info {
81 1.40 rmind size_t kc_size;
82 1.40 rmind const char * kc_name;
83 1.40 rmind } kmem_cache_sizes[] = {
84 1.39 para { 8, "kmem-8" },
85 1.39 para { 16, "kmem-16" },
86 1.39 para { 24, "kmem-24" },
87 1.39 para { 32, "kmem-32" },
88 1.39 para { 40, "kmem-40" },
89 1.39 para { 48, "kmem-48" },
90 1.39 para { 56, "kmem-56" },
91 1.39 para { 64, "kmem-64" },
92 1.39 para { 80, "kmem-80" },
93 1.39 para { 96, "kmem-96" },
94 1.39 para { 112, "kmem-112" },
95 1.39 para { 128, "kmem-128" },
96 1.39 para { 160, "kmem-160" },
97 1.39 para { 192, "kmem-192" },
98 1.39 para { 224, "kmem-224" },
99 1.39 para { 256, "kmem-256" },
100 1.39 para { 320, "kmem-320" },
101 1.39 para { 384, "kmem-384" },
102 1.39 para { 448, "kmem-448" },
103 1.39 para { 512, "kmem-512" },
104 1.39 para { 768, "kmem-768" },
105 1.39 para { 1024, "kmem-1024" },
106 1.39 para { 2048, "kmem-2048" },
107 1.39 para { 4096, "kmem-4096" },
108 1.39 para { 0, NULL }
109 1.39 para };
110 1.1 yamt
111 1.39 para /*
112 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
113 1.40 rmind * smallest allocateable quantum. Every cache size is a multiply
114 1.40 rmind * of CACHE_LINE_SIZE and gets CACHE_LINE_SIZE alignment.
115 1.39 para */
116 1.40 rmind #define KMEM_ALIGN 8
117 1.40 rmind #define KMEM_SHIFT 3
118 1.40 rmind #define KMEM_MAXSIZE 4096
119 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
120 1.1 yamt
121 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
122 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
123 1.23 ad
124 1.4 yamt #if defined(DEBUG)
125 1.44 mrg #ifndef KMEM_GUARD_DEPTH
126 1.44 mrg #define KMEM_GUARD_DEPTH 0
127 1.44 mrg #endif
128 1.44 mrg int kmem_guard_depth = KMEM_GUARD_DEPTH;
129 1.27 ad size_t kmem_guard_size;
130 1.27 ad static struct uvm_kmguard kmem_guard;
131 1.13 ad static void *kmem_freecheck;
132 1.19 yamt #define KMEM_POISON
133 1.19 yamt #define KMEM_REDZONE
134 1.23 ad #define KMEM_SIZE
135 1.27 ad #define KMEM_GUARD
136 1.19 yamt #endif /* defined(DEBUG) */
137 1.19 yamt
138 1.19 yamt #if defined(KMEM_POISON)
139 1.39 para static int kmem_poison_ctor(void *, void *, int);
140 1.4 yamt static void kmem_poison_fill(void *, size_t);
141 1.4 yamt static void kmem_poison_check(void *, size_t);
142 1.19 yamt #else /* defined(KMEM_POISON) */
143 1.40 rmind #define kmem_poison_fill(p, sz) /* nothing */
144 1.40 rmind #define kmem_poison_check(p, sz) /* nothing */
145 1.19 yamt #endif /* defined(KMEM_POISON) */
146 1.19 yamt
147 1.19 yamt #if defined(KMEM_REDZONE)
148 1.19 yamt #define REDZONE_SIZE 1
149 1.19 yamt #else /* defined(KMEM_REDZONE) */
150 1.19 yamt #define REDZONE_SIZE 0
151 1.19 yamt #endif /* defined(KMEM_REDZONE) */
152 1.4 yamt
153 1.23 ad #if defined(KMEM_SIZE)
154 1.40 rmind #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
155 1.23 ad static void kmem_size_set(void *, size_t);
156 1.39 para static void kmem_size_check(void *, size_t);
157 1.23 ad #else
158 1.23 ad #define SIZE_SIZE 0
159 1.23 ad #define kmem_size_set(p, sz) /* nothing */
160 1.23 ad #define kmem_size_check(p, sz) /* nothing */
161 1.23 ad #endif
162 1.23 ad
163 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
164 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
165 1.32 skrll
166 1.39 para void *
167 1.39 para kmem_intr_alloc(size_t size, km_flag_t kmflags)
168 1.1 yamt {
169 1.40 rmind size_t allocsz, index;
170 1.39 para pool_cache_t pc;
171 1.39 para uint8_t *p;
172 1.1 yamt
173 1.39 para KASSERT(size > 0);
174 1.1 yamt
175 1.39 para #ifdef KMEM_GUARD
176 1.42 rmind if (size <= kmem_guard_size) {
177 1.39 para return uvm_kmguard_alloc(&kmem_guard, size,
178 1.39 para (kmflags & KM_SLEEP) != 0);
179 1.1 yamt }
180 1.39 para #endif
181 1.40 rmind allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
182 1.40 rmind index = (allocsz - 1) >> KMEM_SHIFT;
183 1.39 para
184 1.40 rmind if (index >= kmem_cache_maxidx) {
185 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
186 1.43 para (vsize_t)round_page(size),
187 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
188 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
189 1.40 rmind return ret ? NULL : p;
190 1.1 yamt }
191 1.1 yamt
192 1.40 rmind pc = kmem_cache[index];
193 1.39 para p = pool_cache_get(pc, kmflags);
194 1.39 para
195 1.39 para if (__predict_true(p != NULL)) {
196 1.39 para kmem_poison_check(p, kmem_roundup_size(size));
197 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
198 1.39 para kmem_size_set(p, allocsz);
199 1.39 para }
200 1.39 para return p;
201 1.1 yamt }
202 1.1 yamt
203 1.39 para void *
204 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
205 1.23 ad {
206 1.39 para void *p;
207 1.23 ad
208 1.39 para p = kmem_intr_alloc(size, kmflags);
209 1.39 para if (p != NULL) {
210 1.39 para memset(p, 0, size);
211 1.39 para }
212 1.39 para return p;
213 1.23 ad }
214 1.23 ad
215 1.39 para void
216 1.39 para kmem_intr_free(void *p, size_t size)
217 1.23 ad {
218 1.40 rmind size_t allocsz, index;
219 1.39 para pool_cache_t pc;
220 1.23 ad
221 1.39 para KASSERT(p != NULL);
222 1.39 para KASSERT(size > 0);
223 1.39 para
224 1.39 para #ifdef KMEM_GUARD
225 1.42 rmind if (size <= kmem_guard_size) {
226 1.39 para uvm_kmguard_free(&kmem_guard, size, p);
227 1.39 para return;
228 1.39 para }
229 1.39 para #endif
230 1.40 rmind allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
231 1.40 rmind index = (allocsz - 1) >> KMEM_SHIFT;
232 1.39 para
233 1.40 rmind if (index >= kmem_cache_maxidx) {
234 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
235 1.43 para round_page(size));
236 1.39 para return;
237 1.39 para }
238 1.39 para
239 1.39 para kmem_size_check(p, allocsz);
240 1.39 para FREECHECK_IN(&kmem_freecheck, p);
241 1.39 para LOCKDEBUG_MEM_CHECK(p, allocsz - (REDZONE_SIZE + SIZE_SIZE));
242 1.39 para kmem_poison_check((uint8_t *)p + size, allocsz - size - SIZE_SIZE);
243 1.39 para kmem_poison_fill(p, allocsz);
244 1.39 para
245 1.40 rmind pc = kmem_cache[index];
246 1.39 para pool_cache_put(pc, p);
247 1.23 ad }
248 1.23 ad
249 1.1 yamt /* ---- kmem API */
250 1.1 yamt
251 1.1 yamt /*
252 1.1 yamt * kmem_alloc: allocate wired memory.
253 1.1 yamt * => must not be called from interrupt context.
254 1.1 yamt */
255 1.1 yamt
256 1.1 yamt void *
257 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
258 1.1 yamt {
259 1.23 ad
260 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
261 1.40 rmind "kmem(9) should not be used from the interrupt context");
262 1.39 para return kmem_intr_alloc(size, kmflags);
263 1.1 yamt }
264 1.1 yamt
265 1.1 yamt /*
266 1.39 para * kmem_zalloc: allocate zeroed wired memory.
267 1.2 yamt * => must not be called from interrupt context.
268 1.2 yamt */
269 1.2 yamt
270 1.2 yamt void *
271 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
272 1.2 yamt {
273 1.2 yamt
274 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
275 1.40 rmind "kmem(9) should not be used from the interrupt context");
276 1.39 para return kmem_intr_zalloc(size, kmflags);
277 1.2 yamt }
278 1.2 yamt
279 1.2 yamt /*
280 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
281 1.1 yamt * => must not be called from interrupt context.
282 1.1 yamt */
283 1.1 yamt
284 1.1 yamt void
285 1.1 yamt kmem_free(void *p, size_t size)
286 1.1 yamt {
287 1.23 ad
288 1.23 ad KASSERT(!cpu_intr_p());
289 1.27 ad KASSERT(!cpu_softintr_p());
290 1.39 para kmem_intr_free(p, size);
291 1.1 yamt }
292 1.1 yamt
293 1.39 para static void
294 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
295 1.39 para pool_cache_t alloc_table[], size_t maxsize)
296 1.1 yamt {
297 1.39 para size_t table_unit = (1 << KMEM_SHIFT);
298 1.39 para size_t size = table_unit;
299 1.23 ad int i;
300 1.1 yamt
301 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
302 1.40 rmind const char *name = array[i].kc_name;
303 1.39 para size_t cache_size = array[i].kc_size;
304 1.40 rmind int flags = PR_NOALIGN;
305 1.40 rmind pool_cache_t pc;
306 1.39 para size_t align;
307 1.39 para
308 1.39 para if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
309 1.39 para align = CACHE_LINE_SIZE;
310 1.39 para else if ((cache_size & (PAGE_SIZE - 1)) == 0)
311 1.39 para align = PAGE_SIZE;
312 1.39 para else
313 1.39 para align = KMEM_ALIGN;
314 1.39 para
315 1.39 para if (cache_size < CACHE_LINE_SIZE)
316 1.39 para flags |= PR_NOTOUCH;
317 1.27 ad
318 1.39 para /* check if we reached the requested size */
319 1.40 rmind if (cache_size > maxsize) {
320 1.23 ad break;
321 1.40 rmind }
322 1.40 rmind if ((cache_size >> KMEM_SHIFT) > kmem_cache_maxidx) {
323 1.40 rmind kmem_cache_maxidx = cache_size >> KMEM_SHIFT;
324 1.40 rmind }
325 1.1 yamt
326 1.39 para #if defined(KMEM_POISON)
327 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
328 1.39 para name, &pool_allocator_kmem, IPL_VM, kmem_poison_ctor,
329 1.39 para NULL, (void *)cache_size);
330 1.39 para #else /* defined(KMEM_POISON) */
331 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
332 1.39 para name, &pool_allocator_kmem, IPL_VM, NULL, NULL, NULL);
333 1.39 para #endif /* defined(KMEM_POISON) */
334 1.1 yamt
335 1.39 para while (size <= cache_size) {
336 1.39 para alloc_table[(size - 1) >> KMEM_SHIFT] = pc;
337 1.39 para size += table_unit;
338 1.39 para }
339 1.1 yamt }
340 1.1 yamt }
341 1.1 yamt
342 1.39 para void
343 1.39 para kmem_init(void)
344 1.1 yamt {
345 1.1 yamt
346 1.39 para #ifdef KMEM_GUARD
347 1.39 para uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
348 1.42 rmind kmem_va_arena);
349 1.39 para #endif
350 1.39 para kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE);
351 1.1 yamt }
352 1.4 yamt
353 1.39 para size_t
354 1.39 para kmem_roundup_size(size_t size)
355 1.7 yamt {
356 1.7 yamt
357 1.39 para return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
358 1.7 yamt }
359 1.7 yamt
360 1.4 yamt /* ---- debug */
361 1.4 yamt
362 1.19 yamt #if defined(KMEM_POISON)
363 1.4 yamt
364 1.4 yamt #if defined(_LP64)
365 1.39 para #define PRIME 0x9e37fffffffc0000UL
366 1.4 yamt #else /* defined(_LP64) */
367 1.39 para #define PRIME 0x9e3779b1
368 1.4 yamt #endif /* defined(_LP64) */
369 1.4 yamt
370 1.4 yamt static inline uint8_t
371 1.4 yamt kmem_poison_pattern(const void *p)
372 1.4 yamt {
373 1.4 yamt
374 1.39 para return (uint8_t)(((uintptr_t)p) * PRIME
375 1.39 para >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
376 1.39 para }
377 1.39 para
378 1.39 para static int
379 1.39 para kmem_poison_ctor(void *arg, void *obj, int flag)
380 1.39 para {
381 1.39 para size_t sz = (size_t)arg;
382 1.39 para
383 1.39 para kmem_poison_fill(obj, sz);
384 1.39 para
385 1.39 para return 0;
386 1.4 yamt }
387 1.4 yamt
388 1.4 yamt static void
389 1.4 yamt kmem_poison_fill(void *p, size_t sz)
390 1.4 yamt {
391 1.4 yamt uint8_t *cp;
392 1.4 yamt const uint8_t *ep;
393 1.4 yamt
394 1.4 yamt cp = p;
395 1.4 yamt ep = cp + sz;
396 1.4 yamt while (cp < ep) {
397 1.4 yamt *cp = kmem_poison_pattern(cp);
398 1.4 yamt cp++;
399 1.4 yamt }
400 1.4 yamt }
401 1.4 yamt
402 1.4 yamt static void
403 1.4 yamt kmem_poison_check(void *p, size_t sz)
404 1.4 yamt {
405 1.4 yamt uint8_t *cp;
406 1.4 yamt const uint8_t *ep;
407 1.4 yamt
408 1.4 yamt cp = p;
409 1.4 yamt ep = cp + sz;
410 1.4 yamt while (cp < ep) {
411 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
412 1.4 yamt
413 1.4 yamt if (*cp != expected) {
414 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
415 1.39 para __func__, cp, *cp, expected);
416 1.4 yamt }
417 1.4 yamt cp++;
418 1.4 yamt }
419 1.4 yamt }
420 1.4 yamt
421 1.19 yamt #endif /* defined(KMEM_POISON) */
422 1.23 ad
423 1.23 ad #if defined(KMEM_SIZE)
424 1.23 ad static void
425 1.23 ad kmem_size_set(void *p, size_t sz)
426 1.23 ad {
427 1.39 para void *szp;
428 1.23 ad
429 1.39 para szp = (uint8_t *)p + sz - SIZE_SIZE;
430 1.39 para memcpy(szp, &sz, sizeof(sz));
431 1.23 ad }
432 1.23 ad
433 1.23 ad static void
434 1.39 para kmem_size_check(void *p, size_t sz)
435 1.23 ad {
436 1.39 para uint8_t *szp;
437 1.23 ad size_t psz;
438 1.23 ad
439 1.39 para szp = (uint8_t *)p + sz - SIZE_SIZE;
440 1.39 para memcpy(&psz, szp, sizeof(psz));
441 1.23 ad if (psz != sz) {
442 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
443 1.30 yamt (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
444 1.23 ad }
445 1.23 ad }
446 1.23 ad #endif /* defined(KMEM_SIZE) */
447 1.33 haad
448 1.33 haad /*
449 1.33 haad * Used to dynamically allocate string with kmem accordingly to format.
450 1.33 haad */
451 1.33 haad char *
452 1.33 haad kmem_asprintf(const char *fmt, ...)
453 1.33 haad {
454 1.38 christos int size, len;
455 1.38 christos va_list va;
456 1.33 haad char *str;
457 1.33 haad
458 1.33 haad va_start(va, fmt);
459 1.38 christos len = vsnprintf(NULL, 0, fmt, va);
460 1.33 haad va_end(va);
461 1.33 haad
462 1.38 christos str = kmem_alloc(len + 1, KM_SLEEP);
463 1.33 haad
464 1.38 christos va_start(va, fmt);
465 1.38 christos size = vsnprintf(str, len + 1, fmt, va);
466 1.38 christos va_end(va);
467 1.38 christos
468 1.38 christos KASSERT(size == len);
469 1.33 haad
470 1.33 haad return str;
471 1.33 haad }
472