Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.46.2.2
      1  1.46.2.1       tls /*	$NetBSD: subr_kmem.c,v 1.46.2.2 2014/08/20 00:04:29 tls Exp $	*/
      2       1.1      yamt 
      3       1.1      yamt /*-
      4      1.23        ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5      1.23        ad  * All rights reserved.
      6      1.23        ad  *
      7      1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.23        ad  * by Andrew Doran.
      9      1.23        ad  *
     10      1.23        ad  * Redistribution and use in source and binary forms, with or without
     11      1.23        ad  * modification, are permitted provided that the following conditions
     12      1.23        ad  * are met:
     13      1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14      1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15      1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.23        ad  *    documentation and/or other materials provided with the distribution.
     18      1.23        ad  *
     19      1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.23        ad  */
     31      1.23        ad 
     32      1.23        ad /*-
     33       1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34       1.1      yamt  * All rights reserved.
     35       1.1      yamt  *
     36       1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37       1.1      yamt  * modification, are permitted provided that the following conditions
     38       1.1      yamt  * are met:
     39       1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40       1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41       1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44       1.1      yamt  *
     45       1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46       1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47       1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48       1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49       1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50       1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51       1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52       1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53       1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54       1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55       1.1      yamt  * SUCH DAMAGE.
     56       1.1      yamt  */
     57       1.1      yamt 
     58       1.1      yamt /*
     59  1.46.2.2       tls  * Allocator of kernel wired memory. This allocator has some debug features
     60  1.46.2.2       tls  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  1.46.2.1       tls  */
     62  1.46.2.1       tls 
     63  1.46.2.1       tls /*
     64  1.46.2.2       tls  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  1.46.2.2       tls  *	Prefix each allocations with a fixed-sized, aligned header and record
     66  1.46.2.2       tls  *	the exact user-requested allocation size in it. When freeing, compare
     67  1.46.2.2       tls  *	it with kmem_free's "size" argument.
     68  1.46.2.1       tls  *
     69  1.46.2.2       tls  * KMEM_REDZONE: detect overrun bugs.
     70  1.46.2.2       tls  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
     71  1.46.2.2       tls  *	end of each allocated buffer. Check this pattern on kmem_free.
     72  1.46.2.1       tls  *
     73  1.46.2.2       tls  * These options are enabled on DIAGNOSTIC.
     74  1.46.2.1       tls  *
     75  1.46.2.2       tls  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
     76  1.46.2.2       tls  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     77  1.46.2.2       tls  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     78  1.46.2.2       tls  *  |/HSZ/|     |     |     |     |     |     |     |     |   |*|**|UU|
     79  1.46.2.2       tls  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     80  1.46.2.2       tls  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     81  1.46.2.2       tls  *  |Size |    Buffer usable by the caller (requested size)   |RedZ|Unused\
     82  1.46.2.1       tls  */
     83  1.46.2.1       tls 
     84  1.46.2.1       tls /*
     85  1.46.2.2       tls  * KMEM_POISON: detect modify-after-free bugs.
     86  1.46.2.2       tls  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     87  1.46.2.2       tls  *	Check the pattern on allocation.
     88  1.46.2.1       tls  *
     89  1.46.2.2       tls  * KMEM_GUARD
     90  1.46.2.2       tls  *	A kernel with "option DEBUG" has "kmguard" debugging feature compiled
     91  1.46.2.2       tls  *	in. See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries
     92  1.46.2.2       tls  *	to detect.  Even if compiled in, it's disabled by default because it's
     93  1.46.2.2       tls  *	very expensive.  You can enable it on boot by:
     94  1.46.2.2       tls  *		boot -d
     95  1.46.2.2       tls  *		db> w kmem_guard_depth 0t30000
     96  1.46.2.2       tls  *		db> c
     97       1.1      yamt  *
     98  1.46.2.2       tls  *	The default value of kmem_guard_depth is 0, which means disabled.
     99  1.46.2.2       tls  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
    100       1.1      yamt  */
    101       1.1      yamt 
    102       1.1      yamt #include <sys/cdefs.h>
    103  1.46.2.1       tls __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.46.2.2 2014/08/20 00:04:29 tls Exp $");
    104       1.1      yamt 
    105       1.1      yamt #include <sys/param.h>
    106       1.6      yamt #include <sys/callback.h>
    107       1.1      yamt #include <sys/kmem.h>
    108      1.39      para #include <sys/pool.h>
    109      1.13        ad #include <sys/debug.h>
    110      1.17        ad #include <sys/lockdebug.h>
    111      1.23        ad #include <sys/cpu.h>
    112       1.1      yamt 
    113       1.6      yamt #include <uvm/uvm_extern.h>
    114       1.6      yamt #include <uvm/uvm_map.h>
    115      1.27        ad #include <uvm/uvm_kmguard.h>
    116       1.6      yamt 
    117       1.1      yamt #include <lib/libkern/libkern.h>
    118       1.1      yamt 
    119      1.46      para struct kmem_cache_info {
    120      1.40     rmind 	size_t		kc_size;
    121      1.40     rmind 	const char *	kc_name;
    122      1.46      para };
    123      1.46      para 
    124      1.46      para static const struct kmem_cache_info kmem_cache_sizes[] = {
    125      1.39      para 	{  8, "kmem-8" },
    126      1.39      para 	{ 16, "kmem-16" },
    127      1.39      para 	{ 24, "kmem-24" },
    128      1.39      para 	{ 32, "kmem-32" },
    129      1.39      para 	{ 40, "kmem-40" },
    130      1.39      para 	{ 48, "kmem-48" },
    131      1.39      para 	{ 56, "kmem-56" },
    132      1.39      para 	{ 64, "kmem-64" },
    133      1.39      para 	{ 80, "kmem-80" },
    134      1.39      para 	{ 96, "kmem-96" },
    135      1.39      para 	{ 112, "kmem-112" },
    136      1.39      para 	{ 128, "kmem-128" },
    137      1.39      para 	{ 160, "kmem-160" },
    138      1.39      para 	{ 192, "kmem-192" },
    139      1.39      para 	{ 224, "kmem-224" },
    140      1.39      para 	{ 256, "kmem-256" },
    141      1.39      para 	{ 320, "kmem-320" },
    142      1.39      para 	{ 384, "kmem-384" },
    143      1.39      para 	{ 448, "kmem-448" },
    144      1.39      para 	{ 512, "kmem-512" },
    145      1.39      para 	{ 768, "kmem-768" },
    146      1.39      para 	{ 1024, "kmem-1024" },
    147      1.46      para 	{ 0, NULL }
    148      1.46      para };
    149      1.46      para 
    150      1.46      para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    151      1.39      para 	{ 2048, "kmem-2048" },
    152      1.39      para 	{ 4096, "kmem-4096" },
    153      1.46      para 	{ 8192, "kmem-8192" },
    154      1.46      para 	{ 16384, "kmem-16384" },
    155      1.39      para 	{ 0, NULL }
    156      1.39      para };
    157       1.1      yamt 
    158      1.39      para /*
    159      1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    160      1.46      para  * smallest allocateable quantum.
    161      1.46      para  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    162      1.39      para  */
    163      1.40     rmind #define	KMEM_ALIGN		8
    164      1.40     rmind #define	KMEM_SHIFT		3
    165      1.46      para #define	KMEM_MAXSIZE		1024
    166      1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    167       1.1      yamt 
    168      1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    169      1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    170      1.23        ad 
    171      1.46      para #define	KMEM_BIG_ALIGN		2048
    172      1.46      para #define	KMEM_BIG_SHIFT		11
    173      1.46      para #define	KMEM_BIG_MAXSIZE	16384
    174      1.46      para #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    175      1.46      para 
    176      1.46      para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    177      1.46      para static size_t kmem_cache_big_maxidx __read_mostly;
    178      1.46      para 
    179  1.46.2.2       tls #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    180  1.46.2.2       tls #define	KMEM_SIZE
    181  1.46.2.2       tls #define	KMEM_REDZONE
    182  1.46.2.2       tls #endif /* defined(DIAGNOSTIC) */
    183      1.46      para 
    184      1.45    martin #if defined(DEBUG) && defined(_HARDKERNEL)
    185      1.19      yamt #define	KMEM_POISON
    186      1.27        ad #define	KMEM_GUARD
    187      1.19      yamt #endif /* defined(DEBUG) */
    188      1.19      yamt 
    189      1.19      yamt #if defined(KMEM_POISON)
    190      1.39      para static int kmem_poison_ctor(void *, void *, int);
    191       1.4      yamt static void kmem_poison_fill(void *, size_t);
    192       1.4      yamt static void kmem_poison_check(void *, size_t);
    193      1.19      yamt #else /* defined(KMEM_POISON) */
    194      1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    195      1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    196      1.19      yamt #endif /* defined(KMEM_POISON) */
    197      1.19      yamt 
    198      1.19      yamt #if defined(KMEM_REDZONE)
    199  1.46.2.2       tls #define	REDZONE_SIZE	2
    200  1.46.2.2       tls static void kmem_redzone_fill(void *, size_t);
    201  1.46.2.2       tls static void kmem_redzone_check(void *, size_t);
    202      1.19      yamt #else /* defined(KMEM_REDZONE) */
    203      1.19      yamt #define	REDZONE_SIZE	0
    204  1.46.2.2       tls #define	kmem_redzone_fill(p, sz)		/* nothing */
    205  1.46.2.2       tls #define	kmem_redzone_check(p, sz)	/* nothing */
    206      1.19      yamt #endif /* defined(KMEM_REDZONE) */
    207       1.4      yamt 
    208      1.23        ad #if defined(KMEM_SIZE)
    209  1.46.2.2       tls struct kmem_header {
    210  1.46.2.2       tls 	size_t		size;
    211  1.46.2.2       tls } __aligned(KMEM_ALIGN);
    212  1.46.2.2       tls #define	SIZE_SIZE	sizeof(struct kmem_header)
    213      1.23        ad static void kmem_size_set(void *, size_t);
    214      1.39      para static void kmem_size_check(void *, size_t);
    215      1.23        ad #else
    216      1.23        ad #define	SIZE_SIZE	0
    217      1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    218      1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    219      1.23        ad #endif
    220      1.23        ad 
    221  1.46.2.2       tls #if defined(KMEM_GUARD)
    222  1.46.2.2       tls #ifndef KMEM_GUARD_DEPTH
    223  1.46.2.2       tls #define KMEM_GUARD_DEPTH 0
    224  1.46.2.2       tls #endif
    225  1.46.2.2       tls int kmem_guard_depth = KMEM_GUARD_DEPTH;
    226  1.46.2.2       tls size_t kmem_guard_size;
    227  1.46.2.2       tls static struct uvm_kmguard kmem_guard;
    228  1.46.2.2       tls static void *kmem_freecheck;
    229  1.46.2.2       tls #endif /* defined(KMEM_GUARD) */
    230  1.46.2.2       tls 
    231      1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    232      1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    233      1.32     skrll 
    234      1.46      para /*
    235      1.46      para  * kmem_intr_alloc: allocate wired memory.
    236      1.46      para  */
    237      1.46      para 
    238      1.39      para void *
    239  1.46.2.1       tls kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    240       1.1      yamt {
    241      1.40     rmind 	size_t allocsz, index;
    242  1.46.2.1       tls 	size_t size;
    243      1.39      para 	pool_cache_t pc;
    244      1.39      para 	uint8_t *p;
    245       1.1      yamt 
    246  1.46.2.1       tls 	KASSERT(requested_size > 0);
    247       1.1      yamt 
    248      1.39      para #ifdef KMEM_GUARD
    249  1.46.2.1       tls 	if (requested_size <= kmem_guard_size) {
    250  1.46.2.1       tls 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
    251      1.39      para 		    (kmflags & KM_SLEEP) != 0);
    252       1.1      yamt 	}
    253      1.39      para #endif
    254  1.46.2.1       tls 	size = kmem_roundup_size(requested_size);
    255  1.46.2.2       tls 	allocsz = size + SIZE_SIZE;
    256  1.46.2.2       tls 
    257  1.46.2.2       tls #ifdef KMEM_REDZONE
    258  1.46.2.2       tls 	if (size - requested_size < REDZONE_SIZE) {
    259  1.46.2.2       tls 		/* If there isn't enough space in the padding, allocate
    260  1.46.2.2       tls 		 * one more memory chunk for the red zone. */
    261  1.46.2.2       tls 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    262  1.46.2.2       tls 	}
    263  1.46.2.2       tls #endif
    264      1.39      para 
    265      1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    266      1.46      para 	    < kmem_cache_maxidx) {
    267      1.46      para 		pc = kmem_cache[index];
    268      1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    269  1.46.2.2       tls 	    < kmem_cache_big_maxidx) {
    270      1.46      para 		pc = kmem_cache_big[index];
    271  1.46.2.1       tls 	} else {
    272      1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    273      1.43      para 		    (vsize_t)round_page(size),
    274      1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    275      1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    276      1.46      para 		if (ret) {
    277      1.46      para 			return NULL;
    278      1.46      para 		}
    279      1.46      para 		FREECHECK_OUT(&kmem_freecheck, p);
    280      1.46      para 		return p;
    281       1.1      yamt 	}
    282       1.1      yamt 
    283      1.39      para 	p = pool_cache_get(pc, kmflags);
    284      1.39      para 
    285      1.39      para 	if (__predict_true(p != NULL)) {
    286  1.46.2.2       tls 		kmem_poison_check(p, allocsz);
    287      1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    288  1.46.2.1       tls 		kmem_size_set(p, requested_size);
    289  1.46.2.2       tls 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    290  1.46.2.1       tls 
    291  1.46.2.1       tls 		return p + SIZE_SIZE;
    292      1.39      para 	}
    293  1.46.2.1       tls 	return p;
    294       1.1      yamt }
    295       1.1      yamt 
    296      1.46      para /*
    297      1.46      para  * kmem_intr_zalloc: allocate zeroed wired memory.
    298      1.46      para  */
    299      1.46      para 
    300      1.39      para void *
    301      1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    302      1.23        ad {
    303      1.39      para 	void *p;
    304      1.23        ad 
    305      1.39      para 	p = kmem_intr_alloc(size, kmflags);
    306      1.39      para 	if (p != NULL) {
    307      1.39      para 		memset(p, 0, size);
    308      1.39      para 	}
    309      1.39      para 	return p;
    310      1.23        ad }
    311      1.23        ad 
    312      1.46      para /*
    313      1.46      para  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    314      1.46      para  */
    315      1.46      para 
    316      1.39      para void
    317  1.46.2.1       tls kmem_intr_free(void *p, size_t requested_size)
    318      1.23        ad {
    319      1.40     rmind 	size_t allocsz, index;
    320  1.46.2.1       tls 	size_t size;
    321      1.39      para 	pool_cache_t pc;
    322      1.23        ad 
    323      1.39      para 	KASSERT(p != NULL);
    324  1.46.2.1       tls 	KASSERT(requested_size > 0);
    325      1.39      para 
    326      1.39      para #ifdef KMEM_GUARD
    327  1.46.2.1       tls 	if (requested_size <= kmem_guard_size) {
    328  1.46.2.1       tls 		uvm_kmguard_free(&kmem_guard, requested_size, p);
    329      1.39      para 		return;
    330      1.39      para 	}
    331      1.39      para #endif
    332  1.46.2.2       tls 
    333  1.46.2.1       tls 	size = kmem_roundup_size(requested_size);
    334  1.46.2.2       tls 	allocsz = size + SIZE_SIZE;
    335  1.46.2.2       tls 
    336  1.46.2.2       tls #ifdef KMEM_REDZONE
    337  1.46.2.2       tls 	if (size - requested_size < REDZONE_SIZE) {
    338  1.46.2.2       tls 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    339  1.46.2.2       tls 	}
    340  1.46.2.2       tls #endif
    341      1.39      para 
    342      1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    343      1.46      para 	    < kmem_cache_maxidx) {
    344      1.46      para 		pc = kmem_cache[index];
    345      1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    346  1.46.2.2       tls 	    < kmem_cache_big_maxidx) {
    347      1.46      para 		pc = kmem_cache_big[index];
    348      1.46      para 	} else {
    349      1.46      para 		FREECHECK_IN(&kmem_freecheck, p);
    350      1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    351      1.43      para 		    round_page(size));
    352      1.39      para 		return;
    353      1.39      para 	}
    354      1.39      para 
    355      1.46      para 	p = (uint8_t *)p - SIZE_SIZE;
    356  1.46.2.1       tls 	kmem_size_check(p, requested_size);
    357  1.46.2.2       tls 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    358      1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    359      1.46      para 	LOCKDEBUG_MEM_CHECK(p, size);
    360      1.39      para 	kmem_poison_fill(p, allocsz);
    361      1.39      para 
    362      1.39      para 	pool_cache_put(pc, p);
    363      1.23        ad }
    364      1.23        ad 
    365       1.1      yamt /* ---- kmem API */
    366       1.1      yamt 
    367       1.1      yamt /*
    368       1.1      yamt  * kmem_alloc: allocate wired memory.
    369       1.1      yamt  * => must not be called from interrupt context.
    370       1.1      yamt  */
    371       1.1      yamt 
    372       1.1      yamt void *
    373       1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    374       1.1      yamt {
    375      1.23        ad 
    376      1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    377      1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    378      1.39      para 	return kmem_intr_alloc(size, kmflags);
    379       1.1      yamt }
    380       1.1      yamt 
    381       1.1      yamt /*
    382      1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    383       1.2      yamt  * => must not be called from interrupt context.
    384       1.2      yamt  */
    385       1.2      yamt 
    386       1.2      yamt void *
    387       1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    388       1.2      yamt {
    389       1.2      yamt 
    390      1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    391      1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    392      1.39      para 	return kmem_intr_zalloc(size, kmflags);
    393       1.2      yamt }
    394       1.2      yamt 
    395       1.2      yamt /*
    396       1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    397       1.1      yamt  * => must not be called from interrupt context.
    398       1.1      yamt  */
    399       1.1      yamt 
    400       1.1      yamt void
    401       1.1      yamt kmem_free(void *p, size_t size)
    402       1.1      yamt {
    403      1.23        ad 
    404      1.23        ad 	KASSERT(!cpu_intr_p());
    405      1.27        ad 	KASSERT(!cpu_softintr_p());
    406      1.39      para 	kmem_intr_free(p, size);
    407       1.1      yamt }
    408       1.1      yamt 
    409      1.46      para static size_t
    410      1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    411      1.46      para     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    412       1.1      yamt {
    413      1.46      para 	size_t maxidx = 0;
    414      1.46      para 	size_t table_unit = (1 << shift);
    415      1.39      para 	size_t size = table_unit;
    416      1.23        ad 	int i;
    417       1.1      yamt 
    418      1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    419      1.40     rmind 		const char *name = array[i].kc_name;
    420      1.39      para 		size_t cache_size = array[i].kc_size;
    421      1.46      para 		struct pool_allocator *pa;
    422      1.40     rmind 		int flags = PR_NOALIGN;
    423      1.40     rmind 		pool_cache_t pc;
    424      1.39      para 		size_t align;
    425      1.39      para 
    426      1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    427      1.39      para 			align = CACHE_LINE_SIZE;
    428      1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    429      1.39      para 			align = PAGE_SIZE;
    430      1.39      para 		else
    431      1.39      para 			align = KMEM_ALIGN;
    432      1.39      para 
    433      1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    434      1.39      para 			flags |= PR_NOTOUCH;
    435      1.27        ad 
    436      1.39      para 		/* check if we reached the requested size */
    437      1.46      para 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    438      1.23        ad 			break;
    439      1.40     rmind 		}
    440      1.46      para 		if ((cache_size >> shift) > maxidx) {
    441      1.46      para 			maxidx = cache_size >> shift;
    442      1.46      para 		}
    443      1.46      para 
    444      1.46      para 		if ((cache_size >> shift) > maxidx) {
    445      1.46      para 			maxidx = cache_size >> shift;
    446      1.40     rmind 		}
    447       1.1      yamt 
    448      1.46      para 		pa = &pool_allocator_kmem;
    449      1.39      para #if defined(KMEM_POISON)
    450      1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    451  1.46.2.1       tls 		    name, pa, ipl, kmem_poison_ctor,
    452      1.39      para 		    NULL, (void *)cache_size);
    453      1.39      para #else /* defined(KMEM_POISON) */
    454      1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    455      1.46      para 		    name, pa, ipl, NULL, NULL, NULL);
    456      1.39      para #endif /* defined(KMEM_POISON) */
    457       1.1      yamt 
    458      1.39      para 		while (size <= cache_size) {
    459      1.46      para 			alloc_table[(size - 1) >> shift] = pc;
    460      1.39      para 			size += table_unit;
    461      1.39      para 		}
    462       1.1      yamt 	}
    463      1.46      para 	return maxidx;
    464       1.1      yamt }
    465       1.1      yamt 
    466      1.39      para void
    467      1.39      para kmem_init(void)
    468       1.1      yamt {
    469       1.1      yamt 
    470      1.39      para #ifdef KMEM_GUARD
    471      1.39      para 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    472      1.42     rmind 	    kmem_va_arena);
    473      1.39      para #endif
    474      1.46      para 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    475      1.46      para 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    476  1.46.2.2       tls 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    477      1.46      para 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    478       1.1      yamt }
    479       1.4      yamt 
    480      1.39      para size_t
    481      1.39      para kmem_roundup_size(size_t size)
    482       1.7      yamt {
    483       1.7      yamt 
    484      1.39      para 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    485       1.7      yamt }
    486       1.7      yamt 
    487  1.46.2.2       tls /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    488       1.4      yamt 
    489  1.46.2.2       tls #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    490       1.4      yamt #if defined(_LP64)
    491      1.39      para #define PRIME 0x9e37fffffffc0000UL
    492       1.4      yamt #else /* defined(_LP64) */
    493      1.39      para #define PRIME 0x9e3779b1
    494       1.4      yamt #endif /* defined(_LP64) */
    495       1.4      yamt 
    496       1.4      yamt static inline uint8_t
    497  1.46.2.2       tls kmem_pattern_generate(const void *p)
    498       1.4      yamt {
    499      1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    500      1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    501      1.39      para }
    502  1.46.2.2       tls #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    503      1.39      para 
    504  1.46.2.2       tls #if defined(KMEM_POISON)
    505      1.39      para static int
    506      1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    507      1.39      para {
    508      1.39      para 	size_t sz = (size_t)arg;
    509      1.39      para 
    510      1.39      para 	kmem_poison_fill(obj, sz);
    511      1.39      para 
    512      1.39      para 	return 0;
    513       1.4      yamt }
    514       1.4      yamt 
    515       1.4      yamt static void
    516       1.4      yamt kmem_poison_fill(void *p, size_t sz)
    517       1.4      yamt {
    518       1.4      yamt 	uint8_t *cp;
    519       1.4      yamt 	const uint8_t *ep;
    520       1.4      yamt 
    521       1.4      yamt 	cp = p;
    522       1.4      yamt 	ep = cp + sz;
    523       1.4      yamt 	while (cp < ep) {
    524  1.46.2.2       tls 		*cp = kmem_pattern_generate(cp);
    525       1.4      yamt 		cp++;
    526       1.4      yamt 	}
    527       1.4      yamt }
    528       1.4      yamt 
    529       1.4      yamt static void
    530       1.4      yamt kmem_poison_check(void *p, size_t sz)
    531       1.4      yamt {
    532       1.4      yamt 	uint8_t *cp;
    533       1.4      yamt 	const uint8_t *ep;
    534       1.4      yamt 
    535       1.4      yamt 	cp = p;
    536       1.4      yamt 	ep = cp + sz;
    537       1.4      yamt 	while (cp < ep) {
    538  1.46.2.2       tls 		const uint8_t expected = kmem_pattern_generate(cp);
    539       1.4      yamt 
    540       1.4      yamt 		if (*cp != expected) {
    541       1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    542      1.39      para 			   __func__, cp, *cp, expected);
    543       1.4      yamt 		}
    544       1.4      yamt 		cp++;
    545       1.4      yamt 	}
    546       1.4      yamt }
    547      1.19      yamt #endif /* defined(KMEM_POISON) */
    548      1.23        ad 
    549      1.23        ad #if defined(KMEM_SIZE)
    550      1.23        ad static void
    551      1.23        ad kmem_size_set(void *p, size_t sz)
    552      1.23        ad {
    553  1.46.2.2       tls 	struct kmem_header *hd;
    554  1.46.2.2       tls 	hd = (struct kmem_header *)p;
    555  1.46.2.2       tls 	hd->size = sz;
    556      1.23        ad }
    557      1.23        ad 
    558      1.23        ad static void
    559      1.39      para kmem_size_check(void *p, size_t sz)
    560      1.23        ad {
    561  1.46.2.2       tls 	struct kmem_header *hd;
    562  1.46.2.2       tls 	size_t hsz;
    563  1.46.2.2       tls 
    564  1.46.2.2       tls 	hd = (struct kmem_header *)p;
    565  1.46.2.2       tls 	hsz = hd->size;
    566      1.23        ad 
    567  1.46.2.2       tls 	if (hsz != sz) {
    568      1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    569  1.46.2.2       tls 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    570  1.46.2.2       tls 	}
    571  1.46.2.2       tls }
    572  1.46.2.2       tls #endif /* defined(KMEM_SIZE) */
    573  1.46.2.2       tls 
    574  1.46.2.2       tls #if defined(KMEM_REDZONE)
    575  1.46.2.2       tls #define STATIC_BYTE	0xFE
    576  1.46.2.2       tls CTASSERT(REDZONE_SIZE > 1);
    577  1.46.2.2       tls static void
    578  1.46.2.2       tls kmem_redzone_fill(void *p, size_t sz)
    579  1.46.2.2       tls {
    580  1.46.2.2       tls 	uint8_t *cp, pat;
    581  1.46.2.2       tls 	const uint8_t *ep;
    582  1.46.2.2       tls 
    583  1.46.2.2       tls 	cp = (uint8_t *)p + sz;
    584  1.46.2.2       tls 	ep = cp + REDZONE_SIZE;
    585  1.46.2.2       tls 
    586  1.46.2.2       tls 	/*
    587  1.46.2.2       tls 	 * We really don't want the first byte of the red zone to be '\0';
    588  1.46.2.2       tls 	 * an off-by-one in a string may not be properly detected.
    589  1.46.2.2       tls 	 */
    590  1.46.2.2       tls 	pat = kmem_pattern_generate(cp);
    591  1.46.2.2       tls 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
    592  1.46.2.2       tls 	cp++;
    593  1.46.2.2       tls 
    594  1.46.2.2       tls 	while (cp < ep) {
    595  1.46.2.2       tls 		*cp = kmem_pattern_generate(cp);
    596  1.46.2.2       tls 		cp++;
    597      1.23        ad 	}
    598      1.23        ad }
    599  1.46.2.2       tls 
    600  1.46.2.2       tls static void
    601  1.46.2.2       tls kmem_redzone_check(void *p, size_t sz)
    602  1.46.2.2       tls {
    603  1.46.2.2       tls 	uint8_t *cp, pat, expected;
    604  1.46.2.2       tls 	const uint8_t *ep;
    605  1.46.2.2       tls 
    606  1.46.2.2       tls 	cp = (uint8_t *)p + sz;
    607  1.46.2.2       tls 	ep = cp + REDZONE_SIZE;
    608  1.46.2.2       tls 
    609  1.46.2.2       tls 	pat = kmem_pattern_generate(cp);
    610  1.46.2.2       tls 	expected = (pat == '\0') ? STATIC_BYTE: pat;
    611  1.46.2.2       tls 	if (expected != *cp) {
    612  1.46.2.2       tls 		panic("%s: %p: 0x%02x != 0x%02x\n",
    613  1.46.2.2       tls 		   __func__, cp, *cp, expected);
    614  1.46.2.2       tls 	}
    615  1.46.2.2       tls 	cp++;
    616  1.46.2.2       tls 
    617  1.46.2.2       tls 	while (cp < ep) {
    618  1.46.2.2       tls 		expected = kmem_pattern_generate(cp);
    619  1.46.2.2       tls 		if (*cp != expected) {
    620  1.46.2.2       tls 			panic("%s: %p: 0x%02x != 0x%02x\n",
    621  1.46.2.2       tls 			   __func__, cp, *cp, expected);
    622  1.46.2.2       tls 		}
    623  1.46.2.2       tls 		cp++;
    624  1.46.2.2       tls 	}
    625  1.46.2.2       tls }
    626  1.46.2.2       tls #endif /* defined(KMEM_REDZONE) */
    627  1.46.2.2       tls 
    628      1.33      haad 
    629      1.33      haad /*
    630      1.33      haad  * Used to dynamically allocate string with kmem accordingly to format.
    631      1.33      haad  */
    632      1.33      haad char *
    633      1.33      haad kmem_asprintf(const char *fmt, ...)
    634      1.33      haad {
    635  1.46.2.2       tls 	int size __diagused, len;
    636      1.38  christos 	va_list va;
    637      1.33      haad 	char *str;
    638  1.46.2.1       tls 
    639      1.33      haad 	va_start(va, fmt);
    640      1.38  christos 	len = vsnprintf(NULL, 0, fmt, va);
    641      1.33      haad 	va_end(va);
    642      1.33      haad 
    643      1.38  christos 	str = kmem_alloc(len + 1, KM_SLEEP);
    644      1.33      haad 
    645      1.38  christos 	va_start(va, fmt);
    646      1.38  christos 	size = vsnprintf(str, len + 1, fmt, va);
    647      1.38  christos 	va_end(va);
    648      1.38  christos 
    649      1.38  christos 	KASSERT(size == len);
    650      1.33      haad 
    651      1.33      haad 	return str;
    652      1.33      haad }
    653