Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.50.4.1
      1  1.50.4.1     rmind /*	$NetBSD: subr_kmem.c,v 1.50.4.1 2014/05/18 17:46:07 rmind Exp $	*/
      2       1.1      yamt 
      3       1.1      yamt /*-
      4      1.23        ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5      1.23        ad  * All rights reserved.
      6      1.23        ad  *
      7      1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.23        ad  * by Andrew Doran.
      9      1.23        ad  *
     10      1.23        ad  * Redistribution and use in source and binary forms, with or without
     11      1.23        ad  * modification, are permitted provided that the following conditions
     12      1.23        ad  * are met:
     13      1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14      1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15      1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.23        ad  *    documentation and/or other materials provided with the distribution.
     18      1.23        ad  *
     19      1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.23        ad  */
     31      1.23        ad 
     32      1.23        ad /*-
     33       1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34       1.1      yamt  * All rights reserved.
     35       1.1      yamt  *
     36       1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37       1.1      yamt  * modification, are permitted provided that the following conditions
     38       1.1      yamt  * are met:
     39       1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40       1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41       1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44       1.1      yamt  *
     45       1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46       1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47       1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48       1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49       1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50       1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51       1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52       1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53       1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54       1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55       1.1      yamt  * SUCH DAMAGE.
     56       1.1      yamt  */
     57       1.1      yamt 
     58       1.1      yamt /*
     59       1.1      yamt  * allocator of kernel wired memory.
     60      1.50      yamt  */
     61      1.50      yamt 
     62      1.50      yamt /*
     63      1.50      yamt  * This allocator has some debug features enabled with "option DEBUG".
     64      1.50      yamt  *
     65      1.50      yamt  * KMEM_POISON
     66      1.50      yamt  *	Try to detect modify-after-free bugs.
     67      1.50      yamt  *
     68      1.50      yamt  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     69      1.50      yamt  *	Check the pattern on allocation.
     70      1.50      yamt  *
     71      1.50      yamt  * KMEM_REDZONE
     72      1.50      yamt  *	Try to detect overrun bugs.
     73      1.50      yamt  *
     74      1.50      yamt  *	Allocate some more bytes for each allocation.
     75      1.50      yamt  *	The extra bytes are checked by KMEM_POISON on kmem_free.
     76      1.50      yamt  *
     77      1.50      yamt  * KMEM_SIZE
     78      1.50      yamt  *	Try to detect alloc/free size mismatch bugs.
     79      1.50      yamt  *
     80      1.50      yamt  *	Prefix each allocations with a fixed-sized header and record
     81      1.50      yamt  *	the exact user-requested allocation size in it.
     82      1.50      yamt  *	When freeing, compare it with kmem_free's "size" argument.
     83      1.50      yamt  *
     84      1.50      yamt  * KMEM_GUARD
     85      1.50      yamt  *	See the below "kmguard" section.
     86      1.50      yamt  */
     87      1.50      yamt 
     88      1.50      yamt /*
     89      1.50      yamt  * kmguard
     90      1.50      yamt  *
     91      1.50      yamt  * A kernel with "option DEBUG" has "kmguard" debugging feature compiled in.
     92      1.50      yamt  * See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries to
     93      1.50      yamt  * detect.  Even if compiled in, it's disabled by default because it's very
     94      1.50      yamt  * expensive.  You can enable it on boot by:
     95      1.50      yamt  *
     96      1.50      yamt  * 	boot -d
     97      1.50      yamt  * 	db> w kmem_guard_depth 0t30000
     98      1.50      yamt  * 	db> c
     99       1.1      yamt  *
    100      1.50      yamt  * The default value of kmem_guard_depth is 0, which means disabled.
    101      1.50      yamt  * It can be changed by KMEM_GUARD_DEPTH kernel config option.
    102       1.1      yamt  */
    103       1.1      yamt 
    104       1.1      yamt #include <sys/cdefs.h>
    105  1.50.4.1     rmind __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.50.4.1 2014/05/18 17:46:07 rmind Exp $");
    106       1.1      yamt 
    107       1.1      yamt #include <sys/param.h>
    108       1.6      yamt #include <sys/callback.h>
    109       1.1      yamt #include <sys/kmem.h>
    110      1.39      para #include <sys/pool.h>
    111      1.13        ad #include <sys/debug.h>
    112      1.17        ad #include <sys/lockdebug.h>
    113      1.23        ad #include <sys/cpu.h>
    114       1.1      yamt 
    115       1.6      yamt #include <uvm/uvm_extern.h>
    116       1.6      yamt #include <uvm/uvm_map.h>
    117      1.27        ad #include <uvm/uvm_kmguard.h>
    118       1.6      yamt 
    119       1.1      yamt #include <lib/libkern/libkern.h>
    120       1.1      yamt 
    121      1.46      para struct kmem_cache_info {
    122      1.40     rmind 	size_t		kc_size;
    123      1.40     rmind 	const char *	kc_name;
    124      1.46      para };
    125      1.46      para 
    126      1.46      para static const struct kmem_cache_info kmem_cache_sizes[] = {
    127      1.39      para 	{  8, "kmem-8" },
    128      1.39      para 	{ 16, "kmem-16" },
    129      1.39      para 	{ 24, "kmem-24" },
    130      1.39      para 	{ 32, "kmem-32" },
    131      1.39      para 	{ 40, "kmem-40" },
    132      1.39      para 	{ 48, "kmem-48" },
    133      1.39      para 	{ 56, "kmem-56" },
    134      1.39      para 	{ 64, "kmem-64" },
    135      1.39      para 	{ 80, "kmem-80" },
    136      1.39      para 	{ 96, "kmem-96" },
    137      1.39      para 	{ 112, "kmem-112" },
    138      1.39      para 	{ 128, "kmem-128" },
    139      1.39      para 	{ 160, "kmem-160" },
    140      1.39      para 	{ 192, "kmem-192" },
    141      1.39      para 	{ 224, "kmem-224" },
    142      1.39      para 	{ 256, "kmem-256" },
    143      1.39      para 	{ 320, "kmem-320" },
    144      1.39      para 	{ 384, "kmem-384" },
    145      1.39      para 	{ 448, "kmem-448" },
    146      1.39      para 	{ 512, "kmem-512" },
    147      1.39      para 	{ 768, "kmem-768" },
    148      1.39      para 	{ 1024, "kmem-1024" },
    149      1.46      para 	{ 0, NULL }
    150      1.46      para };
    151      1.46      para 
    152      1.46      para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    153      1.39      para 	{ 2048, "kmem-2048" },
    154      1.39      para 	{ 4096, "kmem-4096" },
    155      1.46      para 	{ 8192, "kmem-8192" },
    156      1.46      para 	{ 16384, "kmem-16384" },
    157      1.39      para 	{ 0, NULL }
    158      1.39      para };
    159       1.1      yamt 
    160      1.39      para /*
    161      1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    162      1.46      para  * smallest allocateable quantum.
    163      1.46      para  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    164      1.39      para  */
    165      1.40     rmind #define	KMEM_ALIGN		8
    166      1.40     rmind #define	KMEM_SHIFT		3
    167      1.46      para #define	KMEM_MAXSIZE		1024
    168      1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    169       1.1      yamt 
    170      1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    171      1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    172      1.23        ad 
    173      1.46      para #define	KMEM_BIG_ALIGN		2048
    174      1.46      para #define	KMEM_BIG_SHIFT		11
    175      1.46      para #define	KMEM_BIG_MAXSIZE	16384
    176      1.46      para #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    177      1.46      para 
    178      1.46      para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    179      1.46      para static size_t kmem_cache_big_maxidx __read_mostly;
    180      1.46      para 
    181      1.46      para 
    182      1.45    martin #if defined(DEBUG) && defined(_HARDKERNEL)
    183      1.44       mrg #ifndef KMEM_GUARD_DEPTH
    184      1.44       mrg #define KMEM_GUARD_DEPTH 0
    185      1.44       mrg #endif
    186      1.44       mrg int kmem_guard_depth = KMEM_GUARD_DEPTH;
    187      1.27        ad size_t kmem_guard_size;
    188      1.27        ad static struct uvm_kmguard kmem_guard;
    189      1.13        ad static void *kmem_freecheck;
    190      1.19      yamt #define	KMEM_POISON
    191      1.19      yamt #define	KMEM_REDZONE
    192      1.23        ad #define	KMEM_SIZE
    193      1.27        ad #define	KMEM_GUARD
    194      1.19      yamt #endif /* defined(DEBUG) */
    195      1.19      yamt 
    196      1.19      yamt #if defined(KMEM_POISON)
    197      1.39      para static int kmem_poison_ctor(void *, void *, int);
    198       1.4      yamt static void kmem_poison_fill(void *, size_t);
    199       1.4      yamt static void kmem_poison_check(void *, size_t);
    200      1.19      yamt #else /* defined(KMEM_POISON) */
    201      1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    202      1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    203      1.19      yamt #endif /* defined(KMEM_POISON) */
    204      1.19      yamt 
    205      1.19      yamt #if defined(KMEM_REDZONE)
    206      1.19      yamt #define	REDZONE_SIZE	1
    207      1.19      yamt #else /* defined(KMEM_REDZONE) */
    208      1.19      yamt #define	REDZONE_SIZE	0
    209      1.19      yamt #endif /* defined(KMEM_REDZONE) */
    210       1.4      yamt 
    211      1.23        ad #if defined(KMEM_SIZE)
    212      1.40     rmind #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    213      1.23        ad static void kmem_size_set(void *, size_t);
    214      1.39      para static void kmem_size_check(void *, size_t);
    215      1.23        ad #else
    216      1.23        ad #define	SIZE_SIZE	0
    217      1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    218      1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    219      1.23        ad #endif
    220      1.23        ad 
    221      1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    222      1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    223      1.32     skrll 
    224      1.46      para /*
    225      1.46      para  * kmem_intr_alloc: allocate wired memory.
    226      1.46      para  */
    227      1.46      para 
    228      1.39      para void *
    229      1.50      yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    230       1.1      yamt {
    231      1.40     rmind 	size_t allocsz, index;
    232      1.50      yamt 	size_t size;
    233      1.39      para 	pool_cache_t pc;
    234      1.39      para 	uint8_t *p;
    235       1.1      yamt 
    236      1.50      yamt 	KASSERT(requested_size > 0);
    237       1.1      yamt 
    238      1.39      para #ifdef KMEM_GUARD
    239      1.50      yamt 	if (requested_size <= kmem_guard_size) {
    240      1.50      yamt 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
    241      1.39      para 		    (kmflags & KM_SLEEP) != 0);
    242       1.1      yamt 	}
    243      1.39      para #endif
    244      1.50      yamt 	size = kmem_roundup_size(requested_size);
    245      1.46      para 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    246      1.39      para 
    247      1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    248      1.46      para 	    < kmem_cache_maxidx) {
    249      1.46      para 		pc = kmem_cache[index];
    250      1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    251      1.46      para             < kmem_cache_big_maxidx) {
    252      1.46      para 		pc = kmem_cache_big[index];
    253      1.48  uebayasi 	} else {
    254      1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    255      1.43      para 		    (vsize_t)round_page(size),
    256      1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    257      1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    258      1.46      para 		if (ret) {
    259      1.46      para 			return NULL;
    260      1.46      para 		}
    261      1.46      para 		FREECHECK_OUT(&kmem_freecheck, p);
    262      1.46      para 		return p;
    263       1.1      yamt 	}
    264       1.1      yamt 
    265      1.39      para 	p = pool_cache_get(pc, kmflags);
    266      1.39      para 
    267      1.39      para 	if (__predict_true(p != NULL)) {
    268      1.46      para 		kmem_poison_check(p, size);
    269      1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    270      1.50      yamt 		kmem_size_set(p, requested_size);
    271      1.47      para 
    272      1.47      para 		return p + SIZE_SIZE;
    273      1.39      para 	}
    274      1.47      para 	return p;
    275       1.1      yamt }
    276       1.1      yamt 
    277      1.46      para /*
    278      1.46      para  * kmem_intr_zalloc: allocate zeroed wired memory.
    279      1.46      para  */
    280      1.46      para 
    281      1.39      para void *
    282      1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    283      1.23        ad {
    284      1.39      para 	void *p;
    285      1.23        ad 
    286      1.39      para 	p = kmem_intr_alloc(size, kmflags);
    287      1.39      para 	if (p != NULL) {
    288      1.39      para 		memset(p, 0, size);
    289      1.39      para 	}
    290      1.39      para 	return p;
    291      1.23        ad }
    292      1.23        ad 
    293      1.46      para /*
    294      1.46      para  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    295      1.46      para  */
    296      1.46      para 
    297      1.39      para void
    298      1.50      yamt kmem_intr_free(void *p, size_t requested_size)
    299      1.23        ad {
    300      1.40     rmind 	size_t allocsz, index;
    301      1.50      yamt 	size_t size;
    302      1.39      para 	pool_cache_t pc;
    303      1.23        ad 
    304      1.39      para 	KASSERT(p != NULL);
    305      1.50      yamt 	KASSERT(requested_size > 0);
    306      1.39      para 
    307      1.39      para #ifdef KMEM_GUARD
    308      1.50      yamt 	if (requested_size <= kmem_guard_size) {
    309      1.50      yamt 		uvm_kmguard_free(&kmem_guard, requested_size, p);
    310      1.39      para 		return;
    311      1.39      para 	}
    312      1.39      para #endif
    313      1.50      yamt 	size = kmem_roundup_size(requested_size);
    314      1.46      para 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    315      1.39      para 
    316      1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    317      1.46      para 	    < kmem_cache_maxidx) {
    318      1.46      para 		pc = kmem_cache[index];
    319      1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    320      1.46      para             < kmem_cache_big_maxidx) {
    321      1.46      para 		pc = kmem_cache_big[index];
    322      1.46      para 	} else {
    323      1.46      para 		FREECHECK_IN(&kmem_freecheck, p);
    324      1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    325      1.43      para 		    round_page(size));
    326      1.39      para 		return;
    327      1.39      para 	}
    328      1.39      para 
    329      1.46      para 	p = (uint8_t *)p - SIZE_SIZE;
    330      1.50      yamt 	kmem_size_check(p, requested_size);
    331      1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    332      1.46      para 	LOCKDEBUG_MEM_CHECK(p, size);
    333      1.46      para 	kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
    334      1.46      para       	    allocsz - (SIZE_SIZE + size));
    335      1.39      para 	kmem_poison_fill(p, allocsz);
    336      1.39      para 
    337      1.39      para 	pool_cache_put(pc, p);
    338      1.23        ad }
    339      1.23        ad 
    340       1.1      yamt /* ---- kmem API */
    341       1.1      yamt 
    342       1.1      yamt /*
    343       1.1      yamt  * kmem_alloc: allocate wired memory.
    344       1.1      yamt  * => must not be called from interrupt context.
    345       1.1      yamt  */
    346       1.1      yamt 
    347       1.1      yamt void *
    348       1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    349       1.1      yamt {
    350      1.23        ad 
    351      1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    352      1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    353      1.39      para 	return kmem_intr_alloc(size, kmflags);
    354       1.1      yamt }
    355       1.1      yamt 
    356       1.1      yamt /*
    357      1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    358       1.2      yamt  * => must not be called from interrupt context.
    359       1.2      yamt  */
    360       1.2      yamt 
    361       1.2      yamt void *
    362       1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    363       1.2      yamt {
    364       1.2      yamt 
    365      1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    366      1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    367      1.39      para 	return kmem_intr_zalloc(size, kmflags);
    368       1.2      yamt }
    369       1.2      yamt 
    370       1.2      yamt /*
    371       1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    372       1.1      yamt  * => must not be called from interrupt context.
    373       1.1      yamt  */
    374       1.1      yamt 
    375       1.1      yamt void
    376       1.1      yamt kmem_free(void *p, size_t size)
    377       1.1      yamt {
    378      1.23        ad 
    379      1.23        ad 	KASSERT(!cpu_intr_p());
    380      1.27        ad 	KASSERT(!cpu_softintr_p());
    381      1.39      para 	kmem_intr_free(p, size);
    382       1.1      yamt }
    383       1.1      yamt 
    384      1.46      para static size_t
    385      1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    386      1.46      para     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    387       1.1      yamt {
    388      1.46      para 	size_t maxidx = 0;
    389      1.46      para 	size_t table_unit = (1 << shift);
    390      1.39      para 	size_t size = table_unit;
    391      1.23        ad 	int i;
    392       1.1      yamt 
    393      1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    394      1.40     rmind 		const char *name = array[i].kc_name;
    395      1.39      para 		size_t cache_size = array[i].kc_size;
    396      1.46      para 		struct pool_allocator *pa;
    397      1.40     rmind 		int flags = PR_NOALIGN;
    398      1.40     rmind 		pool_cache_t pc;
    399      1.39      para 		size_t align;
    400      1.39      para 
    401      1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    402      1.39      para 			align = CACHE_LINE_SIZE;
    403      1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    404      1.39      para 			align = PAGE_SIZE;
    405      1.39      para 		else
    406      1.39      para 			align = KMEM_ALIGN;
    407      1.39      para 
    408      1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    409      1.39      para 			flags |= PR_NOTOUCH;
    410      1.27        ad 
    411      1.39      para 		/* check if we reached the requested size */
    412      1.46      para 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    413      1.23        ad 			break;
    414      1.40     rmind 		}
    415      1.46      para 		if ((cache_size >> shift) > maxidx) {
    416      1.46      para 			maxidx = cache_size >> shift;
    417      1.46      para 		}
    418      1.46      para 
    419      1.46      para 		if ((cache_size >> shift) > maxidx) {
    420      1.46      para 			maxidx = cache_size >> shift;
    421      1.40     rmind 		}
    422       1.1      yamt 
    423      1.46      para 		pa = &pool_allocator_kmem;
    424      1.39      para #if defined(KMEM_POISON)
    425      1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    426      1.49      yamt 		    name, pa, ipl, kmem_poison_ctor,
    427      1.39      para 		    NULL, (void *)cache_size);
    428      1.39      para #else /* defined(KMEM_POISON) */
    429      1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    430      1.46      para 		    name, pa, ipl, NULL, NULL, NULL);
    431      1.39      para #endif /* defined(KMEM_POISON) */
    432       1.1      yamt 
    433      1.39      para 		while (size <= cache_size) {
    434      1.46      para 			alloc_table[(size - 1) >> shift] = pc;
    435      1.39      para 			size += table_unit;
    436      1.39      para 		}
    437       1.1      yamt 	}
    438      1.46      para 	return maxidx;
    439       1.1      yamt }
    440       1.1      yamt 
    441      1.39      para void
    442      1.39      para kmem_init(void)
    443       1.1      yamt {
    444       1.1      yamt 
    445      1.39      para #ifdef KMEM_GUARD
    446      1.39      para 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    447      1.42     rmind 	    kmem_va_arena);
    448      1.39      para #endif
    449      1.46      para 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    450      1.46      para 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    451      1.46      para        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    452      1.46      para 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    453       1.1      yamt }
    454       1.4      yamt 
    455      1.39      para size_t
    456      1.39      para kmem_roundup_size(size_t size)
    457       1.7      yamt {
    458       1.7      yamt 
    459      1.39      para 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    460       1.7      yamt }
    461       1.7      yamt 
    462       1.4      yamt /* ---- debug */
    463       1.4      yamt 
    464      1.19      yamt #if defined(KMEM_POISON)
    465       1.4      yamt 
    466       1.4      yamt #if defined(_LP64)
    467      1.39      para #define PRIME 0x9e37fffffffc0000UL
    468       1.4      yamt #else /* defined(_LP64) */
    469      1.39      para #define PRIME 0x9e3779b1
    470       1.4      yamt #endif /* defined(_LP64) */
    471       1.4      yamt 
    472       1.4      yamt static inline uint8_t
    473       1.4      yamt kmem_poison_pattern(const void *p)
    474       1.4      yamt {
    475       1.4      yamt 
    476      1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    477      1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    478      1.39      para }
    479      1.39      para 
    480      1.39      para static int
    481      1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    482      1.39      para {
    483      1.39      para 	size_t sz = (size_t)arg;
    484      1.39      para 
    485      1.39      para 	kmem_poison_fill(obj, sz);
    486      1.39      para 
    487      1.39      para 	return 0;
    488       1.4      yamt }
    489       1.4      yamt 
    490       1.4      yamt static void
    491       1.4      yamt kmem_poison_fill(void *p, size_t sz)
    492       1.4      yamt {
    493       1.4      yamt 	uint8_t *cp;
    494       1.4      yamt 	const uint8_t *ep;
    495       1.4      yamt 
    496       1.4      yamt 	cp = p;
    497       1.4      yamt 	ep = cp + sz;
    498       1.4      yamt 	while (cp < ep) {
    499       1.4      yamt 		*cp = kmem_poison_pattern(cp);
    500       1.4      yamt 		cp++;
    501       1.4      yamt 	}
    502       1.4      yamt }
    503       1.4      yamt 
    504       1.4      yamt static void
    505       1.4      yamt kmem_poison_check(void *p, size_t sz)
    506       1.4      yamt {
    507       1.4      yamt 	uint8_t *cp;
    508       1.4      yamt 	const uint8_t *ep;
    509       1.4      yamt 
    510       1.4      yamt 	cp = p;
    511       1.4      yamt 	ep = cp + sz;
    512       1.4      yamt 	while (cp < ep) {
    513       1.4      yamt 		const uint8_t expected = kmem_poison_pattern(cp);
    514       1.4      yamt 
    515       1.4      yamt 		if (*cp != expected) {
    516       1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    517      1.39      para 			   __func__, cp, *cp, expected);
    518       1.4      yamt 		}
    519       1.4      yamt 		cp++;
    520       1.4      yamt 	}
    521       1.4      yamt }
    522       1.4      yamt 
    523      1.19      yamt #endif /* defined(KMEM_POISON) */
    524      1.23        ad 
    525      1.23        ad #if defined(KMEM_SIZE)
    526      1.23        ad static void
    527      1.23        ad kmem_size_set(void *p, size_t sz)
    528      1.23        ad {
    529      1.48  uebayasi 
    530      1.46      para 	memcpy(p, &sz, sizeof(sz));
    531      1.23        ad }
    532      1.23        ad 
    533      1.23        ad static void
    534      1.39      para kmem_size_check(void *p, size_t sz)
    535      1.23        ad {
    536      1.23        ad 	size_t psz;
    537      1.23        ad 
    538      1.46      para 	memcpy(&psz, p, sizeof(psz));
    539      1.23        ad 	if (psz != sz) {
    540      1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    541      1.46      para 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    542      1.23        ad 	}
    543      1.23        ad }
    544      1.23        ad #endif	/* defined(KMEM_SIZE) */
    545      1.33      haad 
    546      1.33      haad /*
    547      1.33      haad  * Used to dynamically allocate string with kmem accordingly to format.
    548      1.33      haad  */
    549      1.33      haad char *
    550      1.33      haad kmem_asprintf(const char *fmt, ...)
    551      1.33      haad {
    552  1.50.4.1     rmind 	int size __diagused, len;
    553      1.38  christos 	va_list va;
    554      1.33      haad 	char *str;
    555      1.48  uebayasi 
    556      1.33      haad 	va_start(va, fmt);
    557      1.38  christos 	len = vsnprintf(NULL, 0, fmt, va);
    558      1.33      haad 	va_end(va);
    559      1.33      haad 
    560      1.38  christos 	str = kmem_alloc(len + 1, KM_SLEEP);
    561      1.33      haad 
    562      1.38  christos 	va_start(va, fmt);
    563      1.38  christos 	size = vsnprintf(str, len + 1, fmt, va);
    564      1.38  christos 	va_end(va);
    565      1.38  christos 
    566      1.38  christos 	KASSERT(size == len);
    567      1.33      haad 
    568      1.33      haad 	return str;
    569      1.33      haad }
    570