subr_kmem.c revision 1.50.4.1 1 1.50.4.1 rmind /* $NetBSD: subr_kmem.c,v 1.50.4.1 2014/05/18 17:46:07 rmind Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.23 ad * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 ad * by Andrew Doran.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.1 yamt * allocator of kernel wired memory.
60 1.50 yamt */
61 1.50 yamt
62 1.50 yamt /*
63 1.50 yamt * This allocator has some debug features enabled with "option DEBUG".
64 1.50 yamt *
65 1.50 yamt * KMEM_POISON
66 1.50 yamt * Try to detect modify-after-free bugs.
67 1.50 yamt *
68 1.50 yamt * Fill freed (in the sense of kmem_free) memory with a garbage pattern.
69 1.50 yamt * Check the pattern on allocation.
70 1.50 yamt *
71 1.50 yamt * KMEM_REDZONE
72 1.50 yamt * Try to detect overrun bugs.
73 1.50 yamt *
74 1.50 yamt * Allocate some more bytes for each allocation.
75 1.50 yamt * The extra bytes are checked by KMEM_POISON on kmem_free.
76 1.50 yamt *
77 1.50 yamt * KMEM_SIZE
78 1.50 yamt * Try to detect alloc/free size mismatch bugs.
79 1.50 yamt *
80 1.50 yamt * Prefix each allocations with a fixed-sized header and record
81 1.50 yamt * the exact user-requested allocation size in it.
82 1.50 yamt * When freeing, compare it with kmem_free's "size" argument.
83 1.50 yamt *
84 1.50 yamt * KMEM_GUARD
85 1.50 yamt * See the below "kmguard" section.
86 1.50 yamt */
87 1.50 yamt
88 1.50 yamt /*
89 1.50 yamt * kmguard
90 1.50 yamt *
91 1.50 yamt * A kernel with "option DEBUG" has "kmguard" debugging feature compiled in.
92 1.50 yamt * See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries to
93 1.50 yamt * detect. Even if compiled in, it's disabled by default because it's very
94 1.50 yamt * expensive. You can enable it on boot by:
95 1.50 yamt *
96 1.50 yamt * boot -d
97 1.50 yamt * db> w kmem_guard_depth 0t30000
98 1.50 yamt * db> c
99 1.1 yamt *
100 1.50 yamt * The default value of kmem_guard_depth is 0, which means disabled.
101 1.50 yamt * It can be changed by KMEM_GUARD_DEPTH kernel config option.
102 1.1 yamt */
103 1.1 yamt
104 1.1 yamt #include <sys/cdefs.h>
105 1.50.4.1 rmind __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.50.4.1 2014/05/18 17:46:07 rmind Exp $");
106 1.1 yamt
107 1.1 yamt #include <sys/param.h>
108 1.6 yamt #include <sys/callback.h>
109 1.1 yamt #include <sys/kmem.h>
110 1.39 para #include <sys/pool.h>
111 1.13 ad #include <sys/debug.h>
112 1.17 ad #include <sys/lockdebug.h>
113 1.23 ad #include <sys/cpu.h>
114 1.1 yamt
115 1.6 yamt #include <uvm/uvm_extern.h>
116 1.6 yamt #include <uvm/uvm_map.h>
117 1.27 ad #include <uvm/uvm_kmguard.h>
118 1.6 yamt
119 1.1 yamt #include <lib/libkern/libkern.h>
120 1.1 yamt
121 1.46 para struct kmem_cache_info {
122 1.40 rmind size_t kc_size;
123 1.40 rmind const char * kc_name;
124 1.46 para };
125 1.46 para
126 1.46 para static const struct kmem_cache_info kmem_cache_sizes[] = {
127 1.39 para { 8, "kmem-8" },
128 1.39 para { 16, "kmem-16" },
129 1.39 para { 24, "kmem-24" },
130 1.39 para { 32, "kmem-32" },
131 1.39 para { 40, "kmem-40" },
132 1.39 para { 48, "kmem-48" },
133 1.39 para { 56, "kmem-56" },
134 1.39 para { 64, "kmem-64" },
135 1.39 para { 80, "kmem-80" },
136 1.39 para { 96, "kmem-96" },
137 1.39 para { 112, "kmem-112" },
138 1.39 para { 128, "kmem-128" },
139 1.39 para { 160, "kmem-160" },
140 1.39 para { 192, "kmem-192" },
141 1.39 para { 224, "kmem-224" },
142 1.39 para { 256, "kmem-256" },
143 1.39 para { 320, "kmem-320" },
144 1.39 para { 384, "kmem-384" },
145 1.39 para { 448, "kmem-448" },
146 1.39 para { 512, "kmem-512" },
147 1.39 para { 768, "kmem-768" },
148 1.39 para { 1024, "kmem-1024" },
149 1.46 para { 0, NULL }
150 1.46 para };
151 1.46 para
152 1.46 para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
153 1.39 para { 2048, "kmem-2048" },
154 1.39 para { 4096, "kmem-4096" },
155 1.46 para { 8192, "kmem-8192" },
156 1.46 para { 16384, "kmem-16384" },
157 1.39 para { 0, NULL }
158 1.39 para };
159 1.1 yamt
160 1.39 para /*
161 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
162 1.46 para * smallest allocateable quantum.
163 1.46 para * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
164 1.39 para */
165 1.40 rmind #define KMEM_ALIGN 8
166 1.40 rmind #define KMEM_SHIFT 3
167 1.46 para #define KMEM_MAXSIZE 1024
168 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
169 1.1 yamt
170 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
171 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
172 1.23 ad
173 1.46 para #define KMEM_BIG_ALIGN 2048
174 1.46 para #define KMEM_BIG_SHIFT 11
175 1.46 para #define KMEM_BIG_MAXSIZE 16384
176 1.46 para #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
177 1.46 para
178 1.46 para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
179 1.46 para static size_t kmem_cache_big_maxidx __read_mostly;
180 1.46 para
181 1.46 para
182 1.45 martin #if defined(DEBUG) && defined(_HARDKERNEL)
183 1.44 mrg #ifndef KMEM_GUARD_DEPTH
184 1.44 mrg #define KMEM_GUARD_DEPTH 0
185 1.44 mrg #endif
186 1.44 mrg int kmem_guard_depth = KMEM_GUARD_DEPTH;
187 1.27 ad size_t kmem_guard_size;
188 1.27 ad static struct uvm_kmguard kmem_guard;
189 1.13 ad static void *kmem_freecheck;
190 1.19 yamt #define KMEM_POISON
191 1.19 yamt #define KMEM_REDZONE
192 1.23 ad #define KMEM_SIZE
193 1.27 ad #define KMEM_GUARD
194 1.19 yamt #endif /* defined(DEBUG) */
195 1.19 yamt
196 1.19 yamt #if defined(KMEM_POISON)
197 1.39 para static int kmem_poison_ctor(void *, void *, int);
198 1.4 yamt static void kmem_poison_fill(void *, size_t);
199 1.4 yamt static void kmem_poison_check(void *, size_t);
200 1.19 yamt #else /* defined(KMEM_POISON) */
201 1.40 rmind #define kmem_poison_fill(p, sz) /* nothing */
202 1.40 rmind #define kmem_poison_check(p, sz) /* nothing */
203 1.19 yamt #endif /* defined(KMEM_POISON) */
204 1.19 yamt
205 1.19 yamt #if defined(KMEM_REDZONE)
206 1.19 yamt #define REDZONE_SIZE 1
207 1.19 yamt #else /* defined(KMEM_REDZONE) */
208 1.19 yamt #define REDZONE_SIZE 0
209 1.19 yamt #endif /* defined(KMEM_REDZONE) */
210 1.4 yamt
211 1.23 ad #if defined(KMEM_SIZE)
212 1.40 rmind #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
213 1.23 ad static void kmem_size_set(void *, size_t);
214 1.39 para static void kmem_size_check(void *, size_t);
215 1.23 ad #else
216 1.23 ad #define SIZE_SIZE 0
217 1.23 ad #define kmem_size_set(p, sz) /* nothing */
218 1.23 ad #define kmem_size_check(p, sz) /* nothing */
219 1.23 ad #endif
220 1.23 ad
221 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
222 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
223 1.32 skrll
224 1.46 para /*
225 1.46 para * kmem_intr_alloc: allocate wired memory.
226 1.46 para */
227 1.46 para
228 1.39 para void *
229 1.50 yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
230 1.1 yamt {
231 1.40 rmind size_t allocsz, index;
232 1.50 yamt size_t size;
233 1.39 para pool_cache_t pc;
234 1.39 para uint8_t *p;
235 1.1 yamt
236 1.50 yamt KASSERT(requested_size > 0);
237 1.1 yamt
238 1.39 para #ifdef KMEM_GUARD
239 1.50 yamt if (requested_size <= kmem_guard_size) {
240 1.50 yamt return uvm_kmguard_alloc(&kmem_guard, requested_size,
241 1.39 para (kmflags & KM_SLEEP) != 0);
242 1.1 yamt }
243 1.39 para #endif
244 1.50 yamt size = kmem_roundup_size(requested_size);
245 1.46 para allocsz = size + REDZONE_SIZE + SIZE_SIZE;
246 1.39 para
247 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
248 1.46 para < kmem_cache_maxidx) {
249 1.46 para pc = kmem_cache[index];
250 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
251 1.46 para < kmem_cache_big_maxidx) {
252 1.46 para pc = kmem_cache_big[index];
253 1.48 uebayasi } else {
254 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
255 1.43 para (vsize_t)round_page(size),
256 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
257 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
258 1.46 para if (ret) {
259 1.46 para return NULL;
260 1.46 para }
261 1.46 para FREECHECK_OUT(&kmem_freecheck, p);
262 1.46 para return p;
263 1.1 yamt }
264 1.1 yamt
265 1.39 para p = pool_cache_get(pc, kmflags);
266 1.39 para
267 1.39 para if (__predict_true(p != NULL)) {
268 1.46 para kmem_poison_check(p, size);
269 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
270 1.50 yamt kmem_size_set(p, requested_size);
271 1.47 para
272 1.47 para return p + SIZE_SIZE;
273 1.39 para }
274 1.47 para return p;
275 1.1 yamt }
276 1.1 yamt
277 1.46 para /*
278 1.46 para * kmem_intr_zalloc: allocate zeroed wired memory.
279 1.46 para */
280 1.46 para
281 1.39 para void *
282 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
283 1.23 ad {
284 1.39 para void *p;
285 1.23 ad
286 1.39 para p = kmem_intr_alloc(size, kmflags);
287 1.39 para if (p != NULL) {
288 1.39 para memset(p, 0, size);
289 1.39 para }
290 1.39 para return p;
291 1.23 ad }
292 1.23 ad
293 1.46 para /*
294 1.46 para * kmem_intr_free: free wired memory allocated by kmem_alloc.
295 1.46 para */
296 1.46 para
297 1.39 para void
298 1.50 yamt kmem_intr_free(void *p, size_t requested_size)
299 1.23 ad {
300 1.40 rmind size_t allocsz, index;
301 1.50 yamt size_t size;
302 1.39 para pool_cache_t pc;
303 1.23 ad
304 1.39 para KASSERT(p != NULL);
305 1.50 yamt KASSERT(requested_size > 0);
306 1.39 para
307 1.39 para #ifdef KMEM_GUARD
308 1.50 yamt if (requested_size <= kmem_guard_size) {
309 1.50 yamt uvm_kmguard_free(&kmem_guard, requested_size, p);
310 1.39 para return;
311 1.39 para }
312 1.39 para #endif
313 1.50 yamt size = kmem_roundup_size(requested_size);
314 1.46 para allocsz = size + REDZONE_SIZE + SIZE_SIZE;
315 1.39 para
316 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
317 1.46 para < kmem_cache_maxidx) {
318 1.46 para pc = kmem_cache[index];
319 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
320 1.46 para < kmem_cache_big_maxidx) {
321 1.46 para pc = kmem_cache_big[index];
322 1.46 para } else {
323 1.46 para FREECHECK_IN(&kmem_freecheck, p);
324 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
325 1.43 para round_page(size));
326 1.39 para return;
327 1.39 para }
328 1.39 para
329 1.46 para p = (uint8_t *)p - SIZE_SIZE;
330 1.50 yamt kmem_size_check(p, requested_size);
331 1.39 para FREECHECK_IN(&kmem_freecheck, p);
332 1.46 para LOCKDEBUG_MEM_CHECK(p, size);
333 1.46 para kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
334 1.46 para allocsz - (SIZE_SIZE + size));
335 1.39 para kmem_poison_fill(p, allocsz);
336 1.39 para
337 1.39 para pool_cache_put(pc, p);
338 1.23 ad }
339 1.23 ad
340 1.1 yamt /* ---- kmem API */
341 1.1 yamt
342 1.1 yamt /*
343 1.1 yamt * kmem_alloc: allocate wired memory.
344 1.1 yamt * => must not be called from interrupt context.
345 1.1 yamt */
346 1.1 yamt
347 1.1 yamt void *
348 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
349 1.1 yamt {
350 1.23 ad
351 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
352 1.40 rmind "kmem(9) should not be used from the interrupt context");
353 1.39 para return kmem_intr_alloc(size, kmflags);
354 1.1 yamt }
355 1.1 yamt
356 1.1 yamt /*
357 1.39 para * kmem_zalloc: allocate zeroed wired memory.
358 1.2 yamt * => must not be called from interrupt context.
359 1.2 yamt */
360 1.2 yamt
361 1.2 yamt void *
362 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
363 1.2 yamt {
364 1.2 yamt
365 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
366 1.40 rmind "kmem(9) should not be used from the interrupt context");
367 1.39 para return kmem_intr_zalloc(size, kmflags);
368 1.2 yamt }
369 1.2 yamt
370 1.2 yamt /*
371 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
372 1.1 yamt * => must not be called from interrupt context.
373 1.1 yamt */
374 1.1 yamt
375 1.1 yamt void
376 1.1 yamt kmem_free(void *p, size_t size)
377 1.1 yamt {
378 1.23 ad
379 1.23 ad KASSERT(!cpu_intr_p());
380 1.27 ad KASSERT(!cpu_softintr_p());
381 1.39 para kmem_intr_free(p, size);
382 1.1 yamt }
383 1.1 yamt
384 1.46 para static size_t
385 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
386 1.46 para pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
387 1.1 yamt {
388 1.46 para size_t maxidx = 0;
389 1.46 para size_t table_unit = (1 << shift);
390 1.39 para size_t size = table_unit;
391 1.23 ad int i;
392 1.1 yamt
393 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
394 1.40 rmind const char *name = array[i].kc_name;
395 1.39 para size_t cache_size = array[i].kc_size;
396 1.46 para struct pool_allocator *pa;
397 1.40 rmind int flags = PR_NOALIGN;
398 1.40 rmind pool_cache_t pc;
399 1.39 para size_t align;
400 1.39 para
401 1.39 para if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
402 1.39 para align = CACHE_LINE_SIZE;
403 1.39 para else if ((cache_size & (PAGE_SIZE - 1)) == 0)
404 1.39 para align = PAGE_SIZE;
405 1.39 para else
406 1.39 para align = KMEM_ALIGN;
407 1.39 para
408 1.39 para if (cache_size < CACHE_LINE_SIZE)
409 1.39 para flags |= PR_NOTOUCH;
410 1.27 ad
411 1.39 para /* check if we reached the requested size */
412 1.46 para if (cache_size > maxsize || cache_size > PAGE_SIZE) {
413 1.23 ad break;
414 1.40 rmind }
415 1.46 para if ((cache_size >> shift) > maxidx) {
416 1.46 para maxidx = cache_size >> shift;
417 1.46 para }
418 1.46 para
419 1.46 para if ((cache_size >> shift) > maxidx) {
420 1.46 para maxidx = cache_size >> shift;
421 1.40 rmind }
422 1.1 yamt
423 1.46 para pa = &pool_allocator_kmem;
424 1.39 para #if defined(KMEM_POISON)
425 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
426 1.49 yamt name, pa, ipl, kmem_poison_ctor,
427 1.39 para NULL, (void *)cache_size);
428 1.39 para #else /* defined(KMEM_POISON) */
429 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
430 1.46 para name, pa, ipl, NULL, NULL, NULL);
431 1.39 para #endif /* defined(KMEM_POISON) */
432 1.1 yamt
433 1.39 para while (size <= cache_size) {
434 1.46 para alloc_table[(size - 1) >> shift] = pc;
435 1.39 para size += table_unit;
436 1.39 para }
437 1.1 yamt }
438 1.46 para return maxidx;
439 1.1 yamt }
440 1.1 yamt
441 1.39 para void
442 1.39 para kmem_init(void)
443 1.1 yamt {
444 1.1 yamt
445 1.39 para #ifdef KMEM_GUARD
446 1.39 para uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
447 1.42 rmind kmem_va_arena);
448 1.39 para #endif
449 1.46 para kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
450 1.46 para kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
451 1.46 para kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
452 1.46 para kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
453 1.1 yamt }
454 1.4 yamt
455 1.39 para size_t
456 1.39 para kmem_roundup_size(size_t size)
457 1.7 yamt {
458 1.7 yamt
459 1.39 para return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
460 1.7 yamt }
461 1.7 yamt
462 1.4 yamt /* ---- debug */
463 1.4 yamt
464 1.19 yamt #if defined(KMEM_POISON)
465 1.4 yamt
466 1.4 yamt #if defined(_LP64)
467 1.39 para #define PRIME 0x9e37fffffffc0000UL
468 1.4 yamt #else /* defined(_LP64) */
469 1.39 para #define PRIME 0x9e3779b1
470 1.4 yamt #endif /* defined(_LP64) */
471 1.4 yamt
472 1.4 yamt static inline uint8_t
473 1.4 yamt kmem_poison_pattern(const void *p)
474 1.4 yamt {
475 1.4 yamt
476 1.39 para return (uint8_t)(((uintptr_t)p) * PRIME
477 1.39 para >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
478 1.39 para }
479 1.39 para
480 1.39 para static int
481 1.39 para kmem_poison_ctor(void *arg, void *obj, int flag)
482 1.39 para {
483 1.39 para size_t sz = (size_t)arg;
484 1.39 para
485 1.39 para kmem_poison_fill(obj, sz);
486 1.39 para
487 1.39 para return 0;
488 1.4 yamt }
489 1.4 yamt
490 1.4 yamt static void
491 1.4 yamt kmem_poison_fill(void *p, size_t sz)
492 1.4 yamt {
493 1.4 yamt uint8_t *cp;
494 1.4 yamt const uint8_t *ep;
495 1.4 yamt
496 1.4 yamt cp = p;
497 1.4 yamt ep = cp + sz;
498 1.4 yamt while (cp < ep) {
499 1.4 yamt *cp = kmem_poison_pattern(cp);
500 1.4 yamt cp++;
501 1.4 yamt }
502 1.4 yamt }
503 1.4 yamt
504 1.4 yamt static void
505 1.4 yamt kmem_poison_check(void *p, size_t sz)
506 1.4 yamt {
507 1.4 yamt uint8_t *cp;
508 1.4 yamt const uint8_t *ep;
509 1.4 yamt
510 1.4 yamt cp = p;
511 1.4 yamt ep = cp + sz;
512 1.4 yamt while (cp < ep) {
513 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
514 1.4 yamt
515 1.4 yamt if (*cp != expected) {
516 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
517 1.39 para __func__, cp, *cp, expected);
518 1.4 yamt }
519 1.4 yamt cp++;
520 1.4 yamt }
521 1.4 yamt }
522 1.4 yamt
523 1.19 yamt #endif /* defined(KMEM_POISON) */
524 1.23 ad
525 1.23 ad #if defined(KMEM_SIZE)
526 1.23 ad static void
527 1.23 ad kmem_size_set(void *p, size_t sz)
528 1.23 ad {
529 1.48 uebayasi
530 1.46 para memcpy(p, &sz, sizeof(sz));
531 1.23 ad }
532 1.23 ad
533 1.23 ad static void
534 1.39 para kmem_size_check(void *p, size_t sz)
535 1.23 ad {
536 1.23 ad size_t psz;
537 1.23 ad
538 1.46 para memcpy(&psz, p, sizeof(psz));
539 1.23 ad if (psz != sz) {
540 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
541 1.46 para (const uint8_t *)p + SIZE_SIZE, sz, psz);
542 1.23 ad }
543 1.23 ad }
544 1.23 ad #endif /* defined(KMEM_SIZE) */
545 1.33 haad
546 1.33 haad /*
547 1.33 haad * Used to dynamically allocate string with kmem accordingly to format.
548 1.33 haad */
549 1.33 haad char *
550 1.33 haad kmem_asprintf(const char *fmt, ...)
551 1.33 haad {
552 1.50.4.1 rmind int size __diagused, len;
553 1.38 christos va_list va;
554 1.33 haad char *str;
555 1.48 uebayasi
556 1.33 haad va_start(va, fmt);
557 1.38 christos len = vsnprintf(NULL, 0, fmt, va);
558 1.33 haad va_end(va);
559 1.33 haad
560 1.38 christos str = kmem_alloc(len + 1, KM_SLEEP);
561 1.33 haad
562 1.38 christos va_start(va, fmt);
563 1.38 christos size = vsnprintf(str, len + 1, fmt, va);
564 1.38 christos va_end(va);
565 1.38 christos
566 1.38 christos KASSERT(size == len);
567 1.33 haad
568 1.33 haad return str;
569 1.33 haad }
570