Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.54
      1  1.54      maxv /*	$NetBSD: subr_kmem.c,v 1.54 2014/06/24 07:28:23 maxv Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4  1.23        ad  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  1.23        ad  * All rights reserved.
      6  1.23        ad  *
      7  1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.23        ad  * by Andrew Doran.
      9  1.23        ad  *
     10  1.23        ad  * Redistribution and use in source and binary forms, with or without
     11  1.23        ad  * modification, are permitted provided that the following conditions
     12  1.23        ad  * are met:
     13  1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.23        ad  *    documentation and/or other materials provided with the distribution.
     18  1.23        ad  *
     19  1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.23        ad  */
     31  1.23        ad 
     32  1.23        ad /*-
     33   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34   1.1      yamt  * All rights reserved.
     35   1.1      yamt  *
     36   1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37   1.1      yamt  * modification, are permitted provided that the following conditions
     38   1.1      yamt  * are met:
     39   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44   1.1      yamt  *
     45   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55   1.1      yamt  * SUCH DAMAGE.
     56   1.1      yamt  */
     57   1.1      yamt 
     58   1.1      yamt /*
     59  1.52      maxv  * Allocator of kernel wired memory.
     60  1.50      yamt  */
     61  1.50      yamt 
     62  1.50      yamt /*
     63  1.53      maxv  * This allocator has some debug features enabled with "option DEBUG" and
     64  1.53      maxv  * "option DIAGNOSTIC".
     65  1.50      yamt  *
     66  1.50      yamt  * KMEM_POISON
     67  1.50      yamt  *	Try to detect modify-after-free bugs.
     68  1.50      yamt  *
     69  1.50      yamt  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     70  1.50      yamt  *	Check the pattern on allocation.
     71  1.50      yamt  *
     72  1.50      yamt  * KMEM_REDZONE
     73  1.50      yamt  *	Try to detect overrun bugs.
     74  1.50      yamt  *
     75  1.54      maxv  *	Add a 2-byte pattern (allocate some more bytes if needed) at the end
     76  1.54      maxv  *	of each allocated buffer. Check this pattern on kmem_free.
     77  1.50      yamt  *
     78  1.50      yamt  * KMEM_SIZE
     79  1.50      yamt  *	Try to detect alloc/free size mismatch bugs.
     80  1.50      yamt  *
     81  1.50      yamt  *	Prefix each allocations with a fixed-sized header and record
     82  1.50      yamt  *	the exact user-requested allocation size in it.
     83  1.50      yamt  *	When freeing, compare it with kmem_free's "size" argument.
     84  1.50      yamt  *
     85  1.50      yamt  * KMEM_GUARD
     86  1.50      yamt  *	See the below "kmguard" section.
     87  1.50      yamt  */
     88  1.50      yamt 
     89  1.50      yamt /*
     90  1.50      yamt  * kmguard
     91  1.50      yamt  *
     92  1.50      yamt  * A kernel with "option DEBUG" has "kmguard" debugging feature compiled in.
     93  1.50      yamt  * See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries to
     94  1.50      yamt  * detect.  Even if compiled in, it's disabled by default because it's very
     95  1.50      yamt  * expensive.  You can enable it on boot by:
     96  1.50      yamt  *
     97  1.50      yamt  * 	boot -d
     98  1.50      yamt  * 	db> w kmem_guard_depth 0t30000
     99  1.50      yamt  * 	db> c
    100   1.1      yamt  *
    101  1.50      yamt  * The default value of kmem_guard_depth is 0, which means disabled.
    102  1.50      yamt  * It can be changed by KMEM_GUARD_DEPTH kernel config option.
    103   1.1      yamt  */
    104   1.1      yamt 
    105   1.1      yamt #include <sys/cdefs.h>
    106  1.54      maxv __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.54 2014/06/24 07:28:23 maxv Exp $");
    107   1.1      yamt 
    108   1.1      yamt #include <sys/param.h>
    109   1.6      yamt #include <sys/callback.h>
    110   1.1      yamt #include <sys/kmem.h>
    111  1.39      para #include <sys/pool.h>
    112  1.13        ad #include <sys/debug.h>
    113  1.17        ad #include <sys/lockdebug.h>
    114  1.23        ad #include <sys/cpu.h>
    115   1.1      yamt 
    116   1.6      yamt #include <uvm/uvm_extern.h>
    117   1.6      yamt #include <uvm/uvm_map.h>
    118  1.27        ad #include <uvm/uvm_kmguard.h>
    119   1.6      yamt 
    120   1.1      yamt #include <lib/libkern/libkern.h>
    121   1.1      yamt 
    122  1.46      para struct kmem_cache_info {
    123  1.40     rmind 	size_t		kc_size;
    124  1.40     rmind 	const char *	kc_name;
    125  1.46      para };
    126  1.46      para 
    127  1.46      para static const struct kmem_cache_info kmem_cache_sizes[] = {
    128  1.39      para 	{  8, "kmem-8" },
    129  1.39      para 	{ 16, "kmem-16" },
    130  1.39      para 	{ 24, "kmem-24" },
    131  1.39      para 	{ 32, "kmem-32" },
    132  1.39      para 	{ 40, "kmem-40" },
    133  1.39      para 	{ 48, "kmem-48" },
    134  1.39      para 	{ 56, "kmem-56" },
    135  1.39      para 	{ 64, "kmem-64" },
    136  1.39      para 	{ 80, "kmem-80" },
    137  1.39      para 	{ 96, "kmem-96" },
    138  1.39      para 	{ 112, "kmem-112" },
    139  1.39      para 	{ 128, "kmem-128" },
    140  1.39      para 	{ 160, "kmem-160" },
    141  1.39      para 	{ 192, "kmem-192" },
    142  1.39      para 	{ 224, "kmem-224" },
    143  1.39      para 	{ 256, "kmem-256" },
    144  1.39      para 	{ 320, "kmem-320" },
    145  1.39      para 	{ 384, "kmem-384" },
    146  1.39      para 	{ 448, "kmem-448" },
    147  1.39      para 	{ 512, "kmem-512" },
    148  1.39      para 	{ 768, "kmem-768" },
    149  1.39      para 	{ 1024, "kmem-1024" },
    150  1.46      para 	{ 0, NULL }
    151  1.46      para };
    152  1.46      para 
    153  1.46      para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    154  1.39      para 	{ 2048, "kmem-2048" },
    155  1.39      para 	{ 4096, "kmem-4096" },
    156  1.46      para 	{ 8192, "kmem-8192" },
    157  1.46      para 	{ 16384, "kmem-16384" },
    158  1.39      para 	{ 0, NULL }
    159  1.39      para };
    160   1.1      yamt 
    161  1.39      para /*
    162  1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    163  1.46      para  * smallest allocateable quantum.
    164  1.46      para  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    165  1.39      para  */
    166  1.40     rmind #define	KMEM_ALIGN		8
    167  1.40     rmind #define	KMEM_SHIFT		3
    168  1.46      para #define	KMEM_MAXSIZE		1024
    169  1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    170   1.1      yamt 
    171  1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    172  1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    173  1.23        ad 
    174  1.46      para #define	KMEM_BIG_ALIGN		2048
    175  1.46      para #define	KMEM_BIG_SHIFT		11
    176  1.46      para #define	KMEM_BIG_MAXSIZE	16384
    177  1.46      para #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    178  1.46      para 
    179  1.46      para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    180  1.46      para static size_t kmem_cache_big_maxidx __read_mostly;
    181  1.46      para 
    182  1.53      maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    183  1.53      maxv #define KMEM_SIZE
    184  1.53      maxv #endif /* defined(DIAGNOSTIC) */
    185  1.53      maxv 
    186  1.45    martin #if defined(DEBUG) && defined(_HARDKERNEL)
    187  1.19      yamt #define	KMEM_POISON
    188  1.19      yamt #define	KMEM_REDZONE
    189  1.27        ad #define	KMEM_GUARD
    190  1.19      yamt #endif /* defined(DEBUG) */
    191  1.19      yamt 
    192  1.19      yamt #if defined(KMEM_POISON)
    193  1.39      para static int kmem_poison_ctor(void *, void *, int);
    194   1.4      yamt static void kmem_poison_fill(void *, size_t);
    195   1.4      yamt static void kmem_poison_check(void *, size_t);
    196  1.19      yamt #else /* defined(KMEM_POISON) */
    197  1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    198  1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    199  1.19      yamt #endif /* defined(KMEM_POISON) */
    200  1.19      yamt 
    201  1.19      yamt #if defined(KMEM_REDZONE)
    202  1.54      maxv #define	REDZONE_SIZE	2
    203  1.54      maxv static void kmem_redzone_fill(void *p, size_t sz);
    204  1.54      maxv static void kmem_redzone_check(void *p, size_t sz);
    205  1.19      yamt #else /* defined(KMEM_REDZONE) */
    206  1.19      yamt #define	REDZONE_SIZE	0
    207  1.54      maxv #define	kmem_redzone_fill(p, sz)		/* nothing */
    208  1.54      maxv #define	kmem_redzone_check(p, sz)	/* nothing */
    209  1.19      yamt #endif /* defined(KMEM_REDZONE) */
    210   1.4      yamt 
    211  1.23        ad #if defined(KMEM_SIZE)
    212  1.40     rmind #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    213  1.23        ad static void kmem_size_set(void *, size_t);
    214  1.39      para static void kmem_size_check(void *, size_t);
    215  1.23        ad #else
    216  1.23        ad #define	SIZE_SIZE	0
    217  1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    218  1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    219  1.23        ad #endif
    220  1.23        ad 
    221  1.52      maxv #if defined(KMEM_GUARD)
    222  1.52      maxv #ifndef KMEM_GUARD_DEPTH
    223  1.52      maxv #define KMEM_GUARD_DEPTH 0
    224  1.52      maxv #endif
    225  1.52      maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
    226  1.52      maxv size_t kmem_guard_size;
    227  1.52      maxv static struct uvm_kmguard kmem_guard;
    228  1.52      maxv static void *kmem_freecheck;
    229  1.52      maxv #endif /* defined(KMEM_GUARD) */
    230  1.52      maxv 
    231  1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    232  1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    233  1.32     skrll 
    234  1.46      para /*
    235  1.46      para  * kmem_intr_alloc: allocate wired memory.
    236  1.46      para  */
    237  1.46      para 
    238  1.39      para void *
    239  1.50      yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    240   1.1      yamt {
    241  1.40     rmind 	size_t allocsz, index;
    242  1.50      yamt 	size_t size;
    243  1.39      para 	pool_cache_t pc;
    244  1.39      para 	uint8_t *p;
    245   1.1      yamt 
    246  1.50      yamt 	KASSERT(requested_size > 0);
    247   1.1      yamt 
    248  1.39      para #ifdef KMEM_GUARD
    249  1.50      yamt 	if (requested_size <= kmem_guard_size) {
    250  1.50      yamt 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
    251  1.39      para 		    (kmflags & KM_SLEEP) != 0);
    252   1.1      yamt 	}
    253  1.39      para #endif
    254  1.50      yamt 	size = kmem_roundup_size(requested_size);
    255  1.54      maxv 	allocsz = size + SIZE_SIZE;
    256  1.54      maxv 
    257  1.54      maxv #ifdef KMEM_REDZONE
    258  1.54      maxv 	if (size - requested_size < REDZONE_SIZE) {
    259  1.54      maxv 		/* If there isn't enough space in the page padding,
    260  1.54      maxv 		 * allocate two more bytes for the red zone. */
    261  1.54      maxv 		allocsz += REDZONE_SIZE;
    262  1.54      maxv 	}
    263  1.54      maxv #endif
    264  1.39      para 
    265  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    266  1.46      para 	    < kmem_cache_maxidx) {
    267  1.46      para 		pc = kmem_cache[index];
    268  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    269  1.46      para             < kmem_cache_big_maxidx) {
    270  1.46      para 		pc = kmem_cache_big[index];
    271  1.48  uebayasi 	} else {
    272  1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    273  1.43      para 		    (vsize_t)round_page(size),
    274  1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    275  1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    276  1.46      para 		if (ret) {
    277  1.46      para 			return NULL;
    278  1.46      para 		}
    279  1.46      para 		FREECHECK_OUT(&kmem_freecheck, p);
    280  1.46      para 		return p;
    281   1.1      yamt 	}
    282   1.1      yamt 
    283  1.39      para 	p = pool_cache_get(pc, kmflags);
    284  1.39      para 
    285  1.39      para 	if (__predict_true(p != NULL)) {
    286  1.46      para 		kmem_poison_check(p, size);
    287  1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    288  1.50      yamt 		kmem_size_set(p, requested_size);
    289  1.54      maxv 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    290  1.47      para 
    291  1.47      para 		return p + SIZE_SIZE;
    292  1.39      para 	}
    293  1.47      para 	return p;
    294   1.1      yamt }
    295   1.1      yamt 
    296  1.46      para /*
    297  1.46      para  * kmem_intr_zalloc: allocate zeroed wired memory.
    298  1.46      para  */
    299  1.46      para 
    300  1.39      para void *
    301  1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    302  1.23        ad {
    303  1.39      para 	void *p;
    304  1.23        ad 
    305  1.39      para 	p = kmem_intr_alloc(size, kmflags);
    306  1.39      para 	if (p != NULL) {
    307  1.39      para 		memset(p, 0, size);
    308  1.39      para 	}
    309  1.39      para 	return p;
    310  1.23        ad }
    311  1.23        ad 
    312  1.46      para /*
    313  1.46      para  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    314  1.46      para  */
    315  1.46      para 
    316  1.39      para void
    317  1.50      yamt kmem_intr_free(void *p, size_t requested_size)
    318  1.23        ad {
    319  1.40     rmind 	size_t allocsz, index;
    320  1.50      yamt 	size_t size;
    321  1.39      para 	pool_cache_t pc;
    322  1.23        ad 
    323  1.39      para 	KASSERT(p != NULL);
    324  1.50      yamt 	KASSERT(requested_size > 0);
    325  1.39      para 
    326  1.39      para #ifdef KMEM_GUARD
    327  1.50      yamt 	if (requested_size <= kmem_guard_size) {
    328  1.50      yamt 		uvm_kmguard_free(&kmem_guard, requested_size, p);
    329  1.39      para 		return;
    330  1.39      para 	}
    331  1.39      para #endif
    332  1.54      maxv 
    333  1.50      yamt 	size = kmem_roundup_size(requested_size);
    334  1.54      maxv 	allocsz = size + SIZE_SIZE;
    335  1.54      maxv 
    336  1.54      maxv #ifdef KMEM_REDZONE
    337  1.54      maxv 	if (size - requested_size < REDZONE_SIZE) {
    338  1.54      maxv 		allocsz += REDZONE_SIZE;
    339  1.54      maxv 	}
    340  1.54      maxv #endif
    341  1.39      para 
    342  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    343  1.46      para 	    < kmem_cache_maxidx) {
    344  1.46      para 		pc = kmem_cache[index];
    345  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    346  1.46      para             < kmem_cache_big_maxidx) {
    347  1.46      para 		pc = kmem_cache_big[index];
    348  1.46      para 	} else {
    349  1.46      para 		FREECHECK_IN(&kmem_freecheck, p);
    350  1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    351  1.43      para 		    round_page(size));
    352  1.39      para 		return;
    353  1.39      para 	}
    354  1.39      para 
    355  1.46      para 	p = (uint8_t *)p - SIZE_SIZE;
    356  1.50      yamt 	kmem_size_check(p, requested_size);
    357  1.54      maxv 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    358  1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    359  1.46      para 	LOCKDEBUG_MEM_CHECK(p, size);
    360  1.39      para 	kmem_poison_fill(p, allocsz);
    361  1.39      para 
    362  1.39      para 	pool_cache_put(pc, p);
    363  1.23        ad }
    364  1.23        ad 
    365   1.1      yamt /* ---- kmem API */
    366   1.1      yamt 
    367   1.1      yamt /*
    368   1.1      yamt  * kmem_alloc: allocate wired memory.
    369   1.1      yamt  * => must not be called from interrupt context.
    370   1.1      yamt  */
    371   1.1      yamt 
    372   1.1      yamt void *
    373   1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    374   1.1      yamt {
    375  1.23        ad 
    376  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    377  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    378  1.39      para 	return kmem_intr_alloc(size, kmflags);
    379   1.1      yamt }
    380   1.1      yamt 
    381   1.1      yamt /*
    382  1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    383   1.2      yamt  * => must not be called from interrupt context.
    384   1.2      yamt  */
    385   1.2      yamt 
    386   1.2      yamt void *
    387   1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    388   1.2      yamt {
    389   1.2      yamt 
    390  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    391  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    392  1.39      para 	return kmem_intr_zalloc(size, kmflags);
    393   1.2      yamt }
    394   1.2      yamt 
    395   1.2      yamt /*
    396   1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    397   1.1      yamt  * => must not be called from interrupt context.
    398   1.1      yamt  */
    399   1.1      yamt 
    400   1.1      yamt void
    401   1.1      yamt kmem_free(void *p, size_t size)
    402   1.1      yamt {
    403  1.23        ad 
    404  1.23        ad 	KASSERT(!cpu_intr_p());
    405  1.27        ad 	KASSERT(!cpu_softintr_p());
    406  1.39      para 	kmem_intr_free(p, size);
    407   1.1      yamt }
    408   1.1      yamt 
    409  1.46      para static size_t
    410  1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    411  1.46      para     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    412   1.1      yamt {
    413  1.46      para 	size_t maxidx = 0;
    414  1.46      para 	size_t table_unit = (1 << shift);
    415  1.39      para 	size_t size = table_unit;
    416  1.23        ad 	int i;
    417   1.1      yamt 
    418  1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    419  1.40     rmind 		const char *name = array[i].kc_name;
    420  1.39      para 		size_t cache_size = array[i].kc_size;
    421  1.46      para 		struct pool_allocator *pa;
    422  1.40     rmind 		int flags = PR_NOALIGN;
    423  1.40     rmind 		pool_cache_t pc;
    424  1.39      para 		size_t align;
    425  1.39      para 
    426  1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    427  1.39      para 			align = CACHE_LINE_SIZE;
    428  1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    429  1.39      para 			align = PAGE_SIZE;
    430  1.39      para 		else
    431  1.39      para 			align = KMEM_ALIGN;
    432  1.39      para 
    433  1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    434  1.39      para 			flags |= PR_NOTOUCH;
    435  1.27        ad 
    436  1.39      para 		/* check if we reached the requested size */
    437  1.46      para 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    438  1.23        ad 			break;
    439  1.40     rmind 		}
    440  1.46      para 		if ((cache_size >> shift) > maxidx) {
    441  1.46      para 			maxidx = cache_size >> shift;
    442  1.46      para 		}
    443  1.46      para 
    444  1.46      para 		if ((cache_size >> shift) > maxidx) {
    445  1.46      para 			maxidx = cache_size >> shift;
    446  1.40     rmind 		}
    447   1.1      yamt 
    448  1.46      para 		pa = &pool_allocator_kmem;
    449  1.39      para #if defined(KMEM_POISON)
    450  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    451  1.49      yamt 		    name, pa, ipl, kmem_poison_ctor,
    452  1.39      para 		    NULL, (void *)cache_size);
    453  1.39      para #else /* defined(KMEM_POISON) */
    454  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    455  1.46      para 		    name, pa, ipl, NULL, NULL, NULL);
    456  1.39      para #endif /* defined(KMEM_POISON) */
    457   1.1      yamt 
    458  1.39      para 		while (size <= cache_size) {
    459  1.46      para 			alloc_table[(size - 1) >> shift] = pc;
    460  1.39      para 			size += table_unit;
    461  1.39      para 		}
    462   1.1      yamt 	}
    463  1.46      para 	return maxidx;
    464   1.1      yamt }
    465   1.1      yamt 
    466  1.39      para void
    467  1.39      para kmem_init(void)
    468   1.1      yamt {
    469   1.1      yamt 
    470  1.39      para #ifdef KMEM_GUARD
    471  1.39      para 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    472  1.42     rmind 	    kmem_va_arena);
    473  1.39      para #endif
    474  1.46      para 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    475  1.46      para 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    476  1.46      para        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    477  1.46      para 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    478   1.1      yamt }
    479   1.4      yamt 
    480  1.39      para size_t
    481  1.39      para kmem_roundup_size(size_t size)
    482   1.7      yamt {
    483   1.7      yamt 
    484  1.39      para 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    485   1.7      yamt }
    486   1.7      yamt 
    487  1.54      maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    488   1.4      yamt 
    489  1.54      maxv #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    490   1.4      yamt #if defined(_LP64)
    491  1.39      para #define PRIME 0x9e37fffffffc0000UL
    492   1.4      yamt #else /* defined(_LP64) */
    493  1.39      para #define PRIME 0x9e3779b1
    494   1.4      yamt #endif /* defined(_LP64) */
    495  1.54      maxv #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    496   1.4      yamt 
    497  1.54      maxv #if defined(KMEM_POISON)
    498   1.4      yamt static inline uint8_t
    499   1.4      yamt kmem_poison_pattern(const void *p)
    500   1.4      yamt {
    501  1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    502  1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    503  1.39      para }
    504  1.39      para 
    505  1.39      para static int
    506  1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    507  1.39      para {
    508  1.39      para 	size_t sz = (size_t)arg;
    509  1.39      para 
    510  1.39      para 	kmem_poison_fill(obj, sz);
    511  1.39      para 
    512  1.39      para 	return 0;
    513   1.4      yamt }
    514   1.4      yamt 
    515   1.4      yamt static void
    516   1.4      yamt kmem_poison_fill(void *p, size_t sz)
    517   1.4      yamt {
    518   1.4      yamt 	uint8_t *cp;
    519   1.4      yamt 	const uint8_t *ep;
    520   1.4      yamt 
    521   1.4      yamt 	cp = p;
    522   1.4      yamt 	ep = cp + sz;
    523   1.4      yamt 	while (cp < ep) {
    524   1.4      yamt 		*cp = kmem_poison_pattern(cp);
    525   1.4      yamt 		cp++;
    526   1.4      yamt 	}
    527   1.4      yamt }
    528   1.4      yamt 
    529   1.4      yamt static void
    530   1.4      yamt kmem_poison_check(void *p, size_t sz)
    531   1.4      yamt {
    532   1.4      yamt 	uint8_t *cp;
    533   1.4      yamt 	const uint8_t *ep;
    534   1.4      yamt 
    535   1.4      yamt 	cp = p;
    536   1.4      yamt 	ep = cp + sz;
    537   1.4      yamt 	while (cp < ep) {
    538   1.4      yamt 		const uint8_t expected = kmem_poison_pattern(cp);
    539   1.4      yamt 
    540   1.4      yamt 		if (*cp != expected) {
    541   1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    542  1.39      para 			   __func__, cp, *cp, expected);
    543   1.4      yamt 		}
    544   1.4      yamt 		cp++;
    545   1.4      yamt 	}
    546   1.4      yamt }
    547  1.19      yamt #endif /* defined(KMEM_POISON) */
    548  1.23        ad 
    549  1.23        ad #if defined(KMEM_SIZE)
    550  1.23        ad static void
    551  1.23        ad kmem_size_set(void *p, size_t sz)
    552  1.23        ad {
    553  1.46      para 	memcpy(p, &sz, sizeof(sz));
    554  1.23        ad }
    555  1.23        ad 
    556  1.23        ad static void
    557  1.39      para kmem_size_check(void *p, size_t sz)
    558  1.23        ad {
    559  1.23        ad 	size_t psz;
    560  1.23        ad 
    561  1.46      para 	memcpy(&psz, p, sizeof(psz));
    562  1.23        ad 	if (psz != sz) {
    563  1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    564  1.46      para 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    565  1.23        ad 	}
    566  1.23        ad }
    567  1.54      maxv #endif /* defined(KMEM_SIZE) */
    568  1.54      maxv 
    569  1.54      maxv #if defined(KMEM_REDZONE)
    570  1.54      maxv static inline uint8_t
    571  1.54      maxv kmem_redzone_pattern(const void *p)
    572  1.54      maxv {
    573  1.54      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
    574  1.54      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    575  1.54      maxv }
    576  1.54      maxv 
    577  1.54      maxv static void
    578  1.54      maxv kmem_redzone_fill(void *p, size_t sz)
    579  1.54      maxv {
    580  1.54      maxv 	uint8_t *cp;
    581  1.54      maxv 	const uint8_t *ep;
    582  1.54      maxv 
    583  1.54      maxv 	cp = (uint8_t *)p + sz;
    584  1.54      maxv 	ep = cp + REDZONE_SIZE;
    585  1.54      maxv 	while (cp < ep) {
    586  1.54      maxv 		*cp = kmem_redzone_pattern(cp);
    587  1.54      maxv 		cp++;
    588  1.54      maxv 	}
    589  1.54      maxv }
    590  1.54      maxv 
    591  1.54      maxv static void
    592  1.54      maxv kmem_redzone_check(void *p, size_t sz)
    593  1.54      maxv {
    594  1.54      maxv 	uint8_t *cp;
    595  1.54      maxv 	const uint8_t *ep;
    596  1.54      maxv 
    597  1.54      maxv 	cp = (uint8_t *)p + sz;
    598  1.54      maxv 	ep = (uint8_t *)p + sz + REDZONE_SIZE;
    599  1.54      maxv 	while (cp < ep) {
    600  1.54      maxv 		const uint8_t expected = kmem_redzone_pattern(cp);
    601  1.54      maxv 
    602  1.54      maxv 		if (*cp != expected) {
    603  1.54      maxv 			panic("%s: %p: 0x%02x != 0x%02x\n",
    604  1.54      maxv 			   __func__, cp, *cp, expected);
    605  1.54      maxv 		}
    606  1.54      maxv 		cp++;
    607  1.54      maxv 	}
    608  1.54      maxv }
    609  1.54      maxv #endif /* defined(KMEM_REDZONE) */
    610  1.54      maxv 
    611  1.33      haad 
    612  1.33      haad /*
    613  1.33      haad  * Used to dynamically allocate string with kmem accordingly to format.
    614  1.33      haad  */
    615  1.33      haad char *
    616  1.33      haad kmem_asprintf(const char *fmt, ...)
    617  1.33      haad {
    618  1.51    martin 	int size __diagused, len;
    619  1.38  christos 	va_list va;
    620  1.33      haad 	char *str;
    621  1.48  uebayasi 
    622  1.33      haad 	va_start(va, fmt);
    623  1.38  christos 	len = vsnprintf(NULL, 0, fmt, va);
    624  1.33      haad 	va_end(va);
    625  1.33      haad 
    626  1.38  christos 	str = kmem_alloc(len + 1, KM_SLEEP);
    627  1.33      haad 
    628  1.38  christos 	va_start(va, fmt);
    629  1.38  christos 	size = vsnprintf(str, len + 1, fmt, va);
    630  1.38  christos 	va_end(va);
    631  1.38  christos 
    632  1.38  christos 	KASSERT(size == len);
    633  1.33      haad 
    634  1.33      haad 	return str;
    635  1.33      haad }
    636