subr_kmem.c revision 1.54 1 1.54 maxv /* $NetBSD: subr_kmem.c,v 1.54 2014/06/24 07:28:23 maxv Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.23 ad * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 ad * by Andrew Doran.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.52 maxv * Allocator of kernel wired memory.
60 1.50 yamt */
61 1.50 yamt
62 1.50 yamt /*
63 1.53 maxv * This allocator has some debug features enabled with "option DEBUG" and
64 1.53 maxv * "option DIAGNOSTIC".
65 1.50 yamt *
66 1.50 yamt * KMEM_POISON
67 1.50 yamt * Try to detect modify-after-free bugs.
68 1.50 yamt *
69 1.50 yamt * Fill freed (in the sense of kmem_free) memory with a garbage pattern.
70 1.50 yamt * Check the pattern on allocation.
71 1.50 yamt *
72 1.50 yamt * KMEM_REDZONE
73 1.50 yamt * Try to detect overrun bugs.
74 1.50 yamt *
75 1.54 maxv * Add a 2-byte pattern (allocate some more bytes if needed) at the end
76 1.54 maxv * of each allocated buffer. Check this pattern on kmem_free.
77 1.50 yamt *
78 1.50 yamt * KMEM_SIZE
79 1.50 yamt * Try to detect alloc/free size mismatch bugs.
80 1.50 yamt *
81 1.50 yamt * Prefix each allocations with a fixed-sized header and record
82 1.50 yamt * the exact user-requested allocation size in it.
83 1.50 yamt * When freeing, compare it with kmem_free's "size" argument.
84 1.50 yamt *
85 1.50 yamt * KMEM_GUARD
86 1.50 yamt * See the below "kmguard" section.
87 1.50 yamt */
88 1.50 yamt
89 1.50 yamt /*
90 1.50 yamt * kmguard
91 1.50 yamt *
92 1.50 yamt * A kernel with "option DEBUG" has "kmguard" debugging feature compiled in.
93 1.50 yamt * See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries to
94 1.50 yamt * detect. Even if compiled in, it's disabled by default because it's very
95 1.50 yamt * expensive. You can enable it on boot by:
96 1.50 yamt *
97 1.50 yamt * boot -d
98 1.50 yamt * db> w kmem_guard_depth 0t30000
99 1.50 yamt * db> c
100 1.1 yamt *
101 1.50 yamt * The default value of kmem_guard_depth is 0, which means disabled.
102 1.50 yamt * It can be changed by KMEM_GUARD_DEPTH kernel config option.
103 1.1 yamt */
104 1.1 yamt
105 1.1 yamt #include <sys/cdefs.h>
106 1.54 maxv __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.54 2014/06/24 07:28:23 maxv Exp $");
107 1.1 yamt
108 1.1 yamt #include <sys/param.h>
109 1.6 yamt #include <sys/callback.h>
110 1.1 yamt #include <sys/kmem.h>
111 1.39 para #include <sys/pool.h>
112 1.13 ad #include <sys/debug.h>
113 1.17 ad #include <sys/lockdebug.h>
114 1.23 ad #include <sys/cpu.h>
115 1.1 yamt
116 1.6 yamt #include <uvm/uvm_extern.h>
117 1.6 yamt #include <uvm/uvm_map.h>
118 1.27 ad #include <uvm/uvm_kmguard.h>
119 1.6 yamt
120 1.1 yamt #include <lib/libkern/libkern.h>
121 1.1 yamt
122 1.46 para struct kmem_cache_info {
123 1.40 rmind size_t kc_size;
124 1.40 rmind const char * kc_name;
125 1.46 para };
126 1.46 para
127 1.46 para static const struct kmem_cache_info kmem_cache_sizes[] = {
128 1.39 para { 8, "kmem-8" },
129 1.39 para { 16, "kmem-16" },
130 1.39 para { 24, "kmem-24" },
131 1.39 para { 32, "kmem-32" },
132 1.39 para { 40, "kmem-40" },
133 1.39 para { 48, "kmem-48" },
134 1.39 para { 56, "kmem-56" },
135 1.39 para { 64, "kmem-64" },
136 1.39 para { 80, "kmem-80" },
137 1.39 para { 96, "kmem-96" },
138 1.39 para { 112, "kmem-112" },
139 1.39 para { 128, "kmem-128" },
140 1.39 para { 160, "kmem-160" },
141 1.39 para { 192, "kmem-192" },
142 1.39 para { 224, "kmem-224" },
143 1.39 para { 256, "kmem-256" },
144 1.39 para { 320, "kmem-320" },
145 1.39 para { 384, "kmem-384" },
146 1.39 para { 448, "kmem-448" },
147 1.39 para { 512, "kmem-512" },
148 1.39 para { 768, "kmem-768" },
149 1.39 para { 1024, "kmem-1024" },
150 1.46 para { 0, NULL }
151 1.46 para };
152 1.46 para
153 1.46 para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
154 1.39 para { 2048, "kmem-2048" },
155 1.39 para { 4096, "kmem-4096" },
156 1.46 para { 8192, "kmem-8192" },
157 1.46 para { 16384, "kmem-16384" },
158 1.39 para { 0, NULL }
159 1.39 para };
160 1.1 yamt
161 1.39 para /*
162 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
163 1.46 para * smallest allocateable quantum.
164 1.46 para * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
165 1.39 para */
166 1.40 rmind #define KMEM_ALIGN 8
167 1.40 rmind #define KMEM_SHIFT 3
168 1.46 para #define KMEM_MAXSIZE 1024
169 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
170 1.1 yamt
171 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
172 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
173 1.23 ad
174 1.46 para #define KMEM_BIG_ALIGN 2048
175 1.46 para #define KMEM_BIG_SHIFT 11
176 1.46 para #define KMEM_BIG_MAXSIZE 16384
177 1.46 para #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
178 1.46 para
179 1.46 para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
180 1.46 para static size_t kmem_cache_big_maxidx __read_mostly;
181 1.46 para
182 1.53 maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
183 1.53 maxv #define KMEM_SIZE
184 1.53 maxv #endif /* defined(DIAGNOSTIC) */
185 1.53 maxv
186 1.45 martin #if defined(DEBUG) && defined(_HARDKERNEL)
187 1.19 yamt #define KMEM_POISON
188 1.19 yamt #define KMEM_REDZONE
189 1.27 ad #define KMEM_GUARD
190 1.19 yamt #endif /* defined(DEBUG) */
191 1.19 yamt
192 1.19 yamt #if defined(KMEM_POISON)
193 1.39 para static int kmem_poison_ctor(void *, void *, int);
194 1.4 yamt static void kmem_poison_fill(void *, size_t);
195 1.4 yamt static void kmem_poison_check(void *, size_t);
196 1.19 yamt #else /* defined(KMEM_POISON) */
197 1.40 rmind #define kmem_poison_fill(p, sz) /* nothing */
198 1.40 rmind #define kmem_poison_check(p, sz) /* nothing */
199 1.19 yamt #endif /* defined(KMEM_POISON) */
200 1.19 yamt
201 1.19 yamt #if defined(KMEM_REDZONE)
202 1.54 maxv #define REDZONE_SIZE 2
203 1.54 maxv static void kmem_redzone_fill(void *p, size_t sz);
204 1.54 maxv static void kmem_redzone_check(void *p, size_t sz);
205 1.19 yamt #else /* defined(KMEM_REDZONE) */
206 1.19 yamt #define REDZONE_SIZE 0
207 1.54 maxv #define kmem_redzone_fill(p, sz) /* nothing */
208 1.54 maxv #define kmem_redzone_check(p, sz) /* nothing */
209 1.19 yamt #endif /* defined(KMEM_REDZONE) */
210 1.4 yamt
211 1.23 ad #if defined(KMEM_SIZE)
212 1.40 rmind #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
213 1.23 ad static void kmem_size_set(void *, size_t);
214 1.39 para static void kmem_size_check(void *, size_t);
215 1.23 ad #else
216 1.23 ad #define SIZE_SIZE 0
217 1.23 ad #define kmem_size_set(p, sz) /* nothing */
218 1.23 ad #define kmem_size_check(p, sz) /* nothing */
219 1.23 ad #endif
220 1.23 ad
221 1.52 maxv #if defined(KMEM_GUARD)
222 1.52 maxv #ifndef KMEM_GUARD_DEPTH
223 1.52 maxv #define KMEM_GUARD_DEPTH 0
224 1.52 maxv #endif
225 1.52 maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
226 1.52 maxv size_t kmem_guard_size;
227 1.52 maxv static struct uvm_kmguard kmem_guard;
228 1.52 maxv static void *kmem_freecheck;
229 1.52 maxv #endif /* defined(KMEM_GUARD) */
230 1.52 maxv
231 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
232 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
233 1.32 skrll
234 1.46 para /*
235 1.46 para * kmem_intr_alloc: allocate wired memory.
236 1.46 para */
237 1.46 para
238 1.39 para void *
239 1.50 yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
240 1.1 yamt {
241 1.40 rmind size_t allocsz, index;
242 1.50 yamt size_t size;
243 1.39 para pool_cache_t pc;
244 1.39 para uint8_t *p;
245 1.1 yamt
246 1.50 yamt KASSERT(requested_size > 0);
247 1.1 yamt
248 1.39 para #ifdef KMEM_GUARD
249 1.50 yamt if (requested_size <= kmem_guard_size) {
250 1.50 yamt return uvm_kmguard_alloc(&kmem_guard, requested_size,
251 1.39 para (kmflags & KM_SLEEP) != 0);
252 1.1 yamt }
253 1.39 para #endif
254 1.50 yamt size = kmem_roundup_size(requested_size);
255 1.54 maxv allocsz = size + SIZE_SIZE;
256 1.54 maxv
257 1.54 maxv #ifdef KMEM_REDZONE
258 1.54 maxv if (size - requested_size < REDZONE_SIZE) {
259 1.54 maxv /* If there isn't enough space in the page padding,
260 1.54 maxv * allocate two more bytes for the red zone. */
261 1.54 maxv allocsz += REDZONE_SIZE;
262 1.54 maxv }
263 1.54 maxv #endif
264 1.39 para
265 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
266 1.46 para < kmem_cache_maxidx) {
267 1.46 para pc = kmem_cache[index];
268 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
269 1.46 para < kmem_cache_big_maxidx) {
270 1.46 para pc = kmem_cache_big[index];
271 1.48 uebayasi } else {
272 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
273 1.43 para (vsize_t)round_page(size),
274 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
275 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
276 1.46 para if (ret) {
277 1.46 para return NULL;
278 1.46 para }
279 1.46 para FREECHECK_OUT(&kmem_freecheck, p);
280 1.46 para return p;
281 1.1 yamt }
282 1.1 yamt
283 1.39 para p = pool_cache_get(pc, kmflags);
284 1.39 para
285 1.39 para if (__predict_true(p != NULL)) {
286 1.46 para kmem_poison_check(p, size);
287 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
288 1.50 yamt kmem_size_set(p, requested_size);
289 1.54 maxv kmem_redzone_fill(p, requested_size + SIZE_SIZE);
290 1.47 para
291 1.47 para return p + SIZE_SIZE;
292 1.39 para }
293 1.47 para return p;
294 1.1 yamt }
295 1.1 yamt
296 1.46 para /*
297 1.46 para * kmem_intr_zalloc: allocate zeroed wired memory.
298 1.46 para */
299 1.46 para
300 1.39 para void *
301 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
302 1.23 ad {
303 1.39 para void *p;
304 1.23 ad
305 1.39 para p = kmem_intr_alloc(size, kmflags);
306 1.39 para if (p != NULL) {
307 1.39 para memset(p, 0, size);
308 1.39 para }
309 1.39 para return p;
310 1.23 ad }
311 1.23 ad
312 1.46 para /*
313 1.46 para * kmem_intr_free: free wired memory allocated by kmem_alloc.
314 1.46 para */
315 1.46 para
316 1.39 para void
317 1.50 yamt kmem_intr_free(void *p, size_t requested_size)
318 1.23 ad {
319 1.40 rmind size_t allocsz, index;
320 1.50 yamt size_t size;
321 1.39 para pool_cache_t pc;
322 1.23 ad
323 1.39 para KASSERT(p != NULL);
324 1.50 yamt KASSERT(requested_size > 0);
325 1.39 para
326 1.39 para #ifdef KMEM_GUARD
327 1.50 yamt if (requested_size <= kmem_guard_size) {
328 1.50 yamt uvm_kmguard_free(&kmem_guard, requested_size, p);
329 1.39 para return;
330 1.39 para }
331 1.39 para #endif
332 1.54 maxv
333 1.50 yamt size = kmem_roundup_size(requested_size);
334 1.54 maxv allocsz = size + SIZE_SIZE;
335 1.54 maxv
336 1.54 maxv #ifdef KMEM_REDZONE
337 1.54 maxv if (size - requested_size < REDZONE_SIZE) {
338 1.54 maxv allocsz += REDZONE_SIZE;
339 1.54 maxv }
340 1.54 maxv #endif
341 1.39 para
342 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
343 1.46 para < kmem_cache_maxidx) {
344 1.46 para pc = kmem_cache[index];
345 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
346 1.46 para < kmem_cache_big_maxidx) {
347 1.46 para pc = kmem_cache_big[index];
348 1.46 para } else {
349 1.46 para FREECHECK_IN(&kmem_freecheck, p);
350 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
351 1.43 para round_page(size));
352 1.39 para return;
353 1.39 para }
354 1.39 para
355 1.46 para p = (uint8_t *)p - SIZE_SIZE;
356 1.50 yamt kmem_size_check(p, requested_size);
357 1.54 maxv kmem_redzone_check(p, requested_size + SIZE_SIZE);
358 1.39 para FREECHECK_IN(&kmem_freecheck, p);
359 1.46 para LOCKDEBUG_MEM_CHECK(p, size);
360 1.39 para kmem_poison_fill(p, allocsz);
361 1.39 para
362 1.39 para pool_cache_put(pc, p);
363 1.23 ad }
364 1.23 ad
365 1.1 yamt /* ---- kmem API */
366 1.1 yamt
367 1.1 yamt /*
368 1.1 yamt * kmem_alloc: allocate wired memory.
369 1.1 yamt * => must not be called from interrupt context.
370 1.1 yamt */
371 1.1 yamt
372 1.1 yamt void *
373 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
374 1.1 yamt {
375 1.23 ad
376 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
377 1.40 rmind "kmem(9) should not be used from the interrupt context");
378 1.39 para return kmem_intr_alloc(size, kmflags);
379 1.1 yamt }
380 1.1 yamt
381 1.1 yamt /*
382 1.39 para * kmem_zalloc: allocate zeroed wired memory.
383 1.2 yamt * => must not be called from interrupt context.
384 1.2 yamt */
385 1.2 yamt
386 1.2 yamt void *
387 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
388 1.2 yamt {
389 1.2 yamt
390 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
391 1.40 rmind "kmem(9) should not be used from the interrupt context");
392 1.39 para return kmem_intr_zalloc(size, kmflags);
393 1.2 yamt }
394 1.2 yamt
395 1.2 yamt /*
396 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
397 1.1 yamt * => must not be called from interrupt context.
398 1.1 yamt */
399 1.1 yamt
400 1.1 yamt void
401 1.1 yamt kmem_free(void *p, size_t size)
402 1.1 yamt {
403 1.23 ad
404 1.23 ad KASSERT(!cpu_intr_p());
405 1.27 ad KASSERT(!cpu_softintr_p());
406 1.39 para kmem_intr_free(p, size);
407 1.1 yamt }
408 1.1 yamt
409 1.46 para static size_t
410 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
411 1.46 para pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
412 1.1 yamt {
413 1.46 para size_t maxidx = 0;
414 1.46 para size_t table_unit = (1 << shift);
415 1.39 para size_t size = table_unit;
416 1.23 ad int i;
417 1.1 yamt
418 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
419 1.40 rmind const char *name = array[i].kc_name;
420 1.39 para size_t cache_size = array[i].kc_size;
421 1.46 para struct pool_allocator *pa;
422 1.40 rmind int flags = PR_NOALIGN;
423 1.40 rmind pool_cache_t pc;
424 1.39 para size_t align;
425 1.39 para
426 1.39 para if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
427 1.39 para align = CACHE_LINE_SIZE;
428 1.39 para else if ((cache_size & (PAGE_SIZE - 1)) == 0)
429 1.39 para align = PAGE_SIZE;
430 1.39 para else
431 1.39 para align = KMEM_ALIGN;
432 1.39 para
433 1.39 para if (cache_size < CACHE_LINE_SIZE)
434 1.39 para flags |= PR_NOTOUCH;
435 1.27 ad
436 1.39 para /* check if we reached the requested size */
437 1.46 para if (cache_size > maxsize || cache_size > PAGE_SIZE) {
438 1.23 ad break;
439 1.40 rmind }
440 1.46 para if ((cache_size >> shift) > maxidx) {
441 1.46 para maxidx = cache_size >> shift;
442 1.46 para }
443 1.46 para
444 1.46 para if ((cache_size >> shift) > maxidx) {
445 1.46 para maxidx = cache_size >> shift;
446 1.40 rmind }
447 1.1 yamt
448 1.46 para pa = &pool_allocator_kmem;
449 1.39 para #if defined(KMEM_POISON)
450 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
451 1.49 yamt name, pa, ipl, kmem_poison_ctor,
452 1.39 para NULL, (void *)cache_size);
453 1.39 para #else /* defined(KMEM_POISON) */
454 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
455 1.46 para name, pa, ipl, NULL, NULL, NULL);
456 1.39 para #endif /* defined(KMEM_POISON) */
457 1.1 yamt
458 1.39 para while (size <= cache_size) {
459 1.46 para alloc_table[(size - 1) >> shift] = pc;
460 1.39 para size += table_unit;
461 1.39 para }
462 1.1 yamt }
463 1.46 para return maxidx;
464 1.1 yamt }
465 1.1 yamt
466 1.39 para void
467 1.39 para kmem_init(void)
468 1.1 yamt {
469 1.1 yamt
470 1.39 para #ifdef KMEM_GUARD
471 1.39 para uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
472 1.42 rmind kmem_va_arena);
473 1.39 para #endif
474 1.46 para kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
475 1.46 para kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
476 1.46 para kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
477 1.46 para kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
478 1.1 yamt }
479 1.4 yamt
480 1.39 para size_t
481 1.39 para kmem_roundup_size(size_t size)
482 1.7 yamt {
483 1.7 yamt
484 1.39 para return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
485 1.7 yamt }
486 1.7 yamt
487 1.54 maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
488 1.4 yamt
489 1.54 maxv #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
490 1.4 yamt #if defined(_LP64)
491 1.39 para #define PRIME 0x9e37fffffffc0000UL
492 1.4 yamt #else /* defined(_LP64) */
493 1.39 para #define PRIME 0x9e3779b1
494 1.4 yamt #endif /* defined(_LP64) */
495 1.54 maxv #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
496 1.4 yamt
497 1.54 maxv #if defined(KMEM_POISON)
498 1.4 yamt static inline uint8_t
499 1.4 yamt kmem_poison_pattern(const void *p)
500 1.4 yamt {
501 1.39 para return (uint8_t)(((uintptr_t)p) * PRIME
502 1.39 para >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
503 1.39 para }
504 1.39 para
505 1.39 para static int
506 1.39 para kmem_poison_ctor(void *arg, void *obj, int flag)
507 1.39 para {
508 1.39 para size_t sz = (size_t)arg;
509 1.39 para
510 1.39 para kmem_poison_fill(obj, sz);
511 1.39 para
512 1.39 para return 0;
513 1.4 yamt }
514 1.4 yamt
515 1.4 yamt static void
516 1.4 yamt kmem_poison_fill(void *p, size_t sz)
517 1.4 yamt {
518 1.4 yamt uint8_t *cp;
519 1.4 yamt const uint8_t *ep;
520 1.4 yamt
521 1.4 yamt cp = p;
522 1.4 yamt ep = cp + sz;
523 1.4 yamt while (cp < ep) {
524 1.4 yamt *cp = kmem_poison_pattern(cp);
525 1.4 yamt cp++;
526 1.4 yamt }
527 1.4 yamt }
528 1.4 yamt
529 1.4 yamt static void
530 1.4 yamt kmem_poison_check(void *p, size_t sz)
531 1.4 yamt {
532 1.4 yamt uint8_t *cp;
533 1.4 yamt const uint8_t *ep;
534 1.4 yamt
535 1.4 yamt cp = p;
536 1.4 yamt ep = cp + sz;
537 1.4 yamt while (cp < ep) {
538 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
539 1.4 yamt
540 1.4 yamt if (*cp != expected) {
541 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
542 1.39 para __func__, cp, *cp, expected);
543 1.4 yamt }
544 1.4 yamt cp++;
545 1.4 yamt }
546 1.4 yamt }
547 1.19 yamt #endif /* defined(KMEM_POISON) */
548 1.23 ad
549 1.23 ad #if defined(KMEM_SIZE)
550 1.23 ad static void
551 1.23 ad kmem_size_set(void *p, size_t sz)
552 1.23 ad {
553 1.46 para memcpy(p, &sz, sizeof(sz));
554 1.23 ad }
555 1.23 ad
556 1.23 ad static void
557 1.39 para kmem_size_check(void *p, size_t sz)
558 1.23 ad {
559 1.23 ad size_t psz;
560 1.23 ad
561 1.46 para memcpy(&psz, p, sizeof(psz));
562 1.23 ad if (psz != sz) {
563 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
564 1.46 para (const uint8_t *)p + SIZE_SIZE, sz, psz);
565 1.23 ad }
566 1.23 ad }
567 1.54 maxv #endif /* defined(KMEM_SIZE) */
568 1.54 maxv
569 1.54 maxv #if defined(KMEM_REDZONE)
570 1.54 maxv static inline uint8_t
571 1.54 maxv kmem_redzone_pattern(const void *p)
572 1.54 maxv {
573 1.54 maxv return (uint8_t)(((uintptr_t)p) * PRIME
574 1.54 maxv >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
575 1.54 maxv }
576 1.54 maxv
577 1.54 maxv static void
578 1.54 maxv kmem_redzone_fill(void *p, size_t sz)
579 1.54 maxv {
580 1.54 maxv uint8_t *cp;
581 1.54 maxv const uint8_t *ep;
582 1.54 maxv
583 1.54 maxv cp = (uint8_t *)p + sz;
584 1.54 maxv ep = cp + REDZONE_SIZE;
585 1.54 maxv while (cp < ep) {
586 1.54 maxv *cp = kmem_redzone_pattern(cp);
587 1.54 maxv cp++;
588 1.54 maxv }
589 1.54 maxv }
590 1.54 maxv
591 1.54 maxv static void
592 1.54 maxv kmem_redzone_check(void *p, size_t sz)
593 1.54 maxv {
594 1.54 maxv uint8_t *cp;
595 1.54 maxv const uint8_t *ep;
596 1.54 maxv
597 1.54 maxv cp = (uint8_t *)p + sz;
598 1.54 maxv ep = (uint8_t *)p + sz + REDZONE_SIZE;
599 1.54 maxv while (cp < ep) {
600 1.54 maxv const uint8_t expected = kmem_redzone_pattern(cp);
601 1.54 maxv
602 1.54 maxv if (*cp != expected) {
603 1.54 maxv panic("%s: %p: 0x%02x != 0x%02x\n",
604 1.54 maxv __func__, cp, *cp, expected);
605 1.54 maxv }
606 1.54 maxv cp++;
607 1.54 maxv }
608 1.54 maxv }
609 1.54 maxv #endif /* defined(KMEM_REDZONE) */
610 1.54 maxv
611 1.33 haad
612 1.33 haad /*
613 1.33 haad * Used to dynamically allocate string with kmem accordingly to format.
614 1.33 haad */
615 1.33 haad char *
616 1.33 haad kmem_asprintf(const char *fmt, ...)
617 1.33 haad {
618 1.51 martin int size __diagused, len;
619 1.38 christos va_list va;
620 1.33 haad char *str;
621 1.48 uebayasi
622 1.33 haad va_start(va, fmt);
623 1.38 christos len = vsnprintf(NULL, 0, fmt, va);
624 1.33 haad va_end(va);
625 1.33 haad
626 1.38 christos str = kmem_alloc(len + 1, KM_SLEEP);
627 1.33 haad
628 1.38 christos va_start(va, fmt);
629 1.38 christos size = vsnprintf(str, len + 1, fmt, va);
630 1.38 christos va_end(va);
631 1.38 christos
632 1.38 christos KASSERT(size == len);
633 1.33 haad
634 1.33 haad return str;
635 1.33 haad }
636