subr_kmem.c revision 1.57 1 1.57 maxv /* $NetBSD: subr_kmem.c,v 1.57 2014/07/01 12:08:33 maxv Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.23 ad * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.23 ad * by Andrew Doran.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.55 maxv * Allocator of kernel wired memory. This allocator has some debug features
60 1.55 maxv * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 1.50 yamt */
62 1.50 yamt
63 1.50 yamt /*
64 1.55 maxv * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 1.57 maxv * Prefix each allocations with a fixed-sized, aligned header and record
66 1.57 maxv * the exact user-requested allocation size in it. When freeing, compare
67 1.57 maxv * it with kmem_free's "size" argument.
68 1.55 maxv */
69 1.55 maxv
70 1.55 maxv /*
71 1.55 maxv * KMEM_REDZONE: detect overrun bugs.
72 1.57 maxv * Add a 2-byte pattern (allocate one more memory chunk if needed) at the
73 1.57 maxv * end of each allocated buffer. Check this pattern on kmem_free.
74 1.50 yamt *
75 1.55 maxv * KMEM_POISON: detect modify-after-free bugs.
76 1.50 yamt * Fill freed (in the sense of kmem_free) memory with a garbage pattern.
77 1.50 yamt * Check the pattern on allocation.
78 1.50 yamt *
79 1.50 yamt * KMEM_GUARD
80 1.55 maxv * A kernel with "option DEBUG" has "kmguard" debugging feature compiled
81 1.55 maxv * in. See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries
82 1.55 maxv * to detect. Even if compiled in, it's disabled by default because it's
83 1.55 maxv * very expensive. You can enable it on boot by:
84 1.55 maxv * boot -d
85 1.55 maxv * db> w kmem_guard_depth 0t30000
86 1.55 maxv * db> c
87 1.1 yamt *
88 1.55 maxv * The default value of kmem_guard_depth is 0, which means disabled.
89 1.55 maxv * It can be changed by KMEM_GUARD_DEPTH kernel config option.
90 1.1 yamt */
91 1.1 yamt
92 1.1 yamt #include <sys/cdefs.h>
93 1.57 maxv __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.57 2014/07/01 12:08:33 maxv Exp $");
94 1.1 yamt
95 1.1 yamt #include <sys/param.h>
96 1.6 yamt #include <sys/callback.h>
97 1.1 yamt #include <sys/kmem.h>
98 1.39 para #include <sys/pool.h>
99 1.13 ad #include <sys/debug.h>
100 1.17 ad #include <sys/lockdebug.h>
101 1.23 ad #include <sys/cpu.h>
102 1.1 yamt
103 1.6 yamt #include <uvm/uvm_extern.h>
104 1.6 yamt #include <uvm/uvm_map.h>
105 1.27 ad #include <uvm/uvm_kmguard.h>
106 1.6 yamt
107 1.1 yamt #include <lib/libkern/libkern.h>
108 1.1 yamt
109 1.46 para struct kmem_cache_info {
110 1.40 rmind size_t kc_size;
111 1.40 rmind const char * kc_name;
112 1.46 para };
113 1.46 para
114 1.46 para static const struct kmem_cache_info kmem_cache_sizes[] = {
115 1.39 para { 8, "kmem-8" },
116 1.39 para { 16, "kmem-16" },
117 1.39 para { 24, "kmem-24" },
118 1.39 para { 32, "kmem-32" },
119 1.39 para { 40, "kmem-40" },
120 1.39 para { 48, "kmem-48" },
121 1.39 para { 56, "kmem-56" },
122 1.39 para { 64, "kmem-64" },
123 1.39 para { 80, "kmem-80" },
124 1.39 para { 96, "kmem-96" },
125 1.39 para { 112, "kmem-112" },
126 1.39 para { 128, "kmem-128" },
127 1.39 para { 160, "kmem-160" },
128 1.39 para { 192, "kmem-192" },
129 1.39 para { 224, "kmem-224" },
130 1.39 para { 256, "kmem-256" },
131 1.39 para { 320, "kmem-320" },
132 1.39 para { 384, "kmem-384" },
133 1.39 para { 448, "kmem-448" },
134 1.39 para { 512, "kmem-512" },
135 1.39 para { 768, "kmem-768" },
136 1.39 para { 1024, "kmem-1024" },
137 1.46 para { 0, NULL }
138 1.46 para };
139 1.46 para
140 1.46 para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
141 1.39 para { 2048, "kmem-2048" },
142 1.39 para { 4096, "kmem-4096" },
143 1.46 para { 8192, "kmem-8192" },
144 1.46 para { 16384, "kmem-16384" },
145 1.39 para { 0, NULL }
146 1.39 para };
147 1.1 yamt
148 1.39 para /*
149 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
150 1.46 para * smallest allocateable quantum.
151 1.46 para * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
152 1.39 para */
153 1.40 rmind #define KMEM_ALIGN 8
154 1.40 rmind #define KMEM_SHIFT 3
155 1.46 para #define KMEM_MAXSIZE 1024
156 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
157 1.1 yamt
158 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
159 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
160 1.23 ad
161 1.46 para #define KMEM_BIG_ALIGN 2048
162 1.46 para #define KMEM_BIG_SHIFT 11
163 1.46 para #define KMEM_BIG_MAXSIZE 16384
164 1.46 para #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
165 1.46 para
166 1.46 para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
167 1.46 para static size_t kmem_cache_big_maxidx __read_mostly;
168 1.46 para
169 1.53 maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
170 1.57 maxv #define KMEM_SIZE
171 1.53 maxv #endif /* defined(DIAGNOSTIC) */
172 1.53 maxv
173 1.45 martin #if defined(DEBUG) && defined(_HARDKERNEL)
174 1.19 yamt #define KMEM_POISON
175 1.19 yamt #define KMEM_REDZONE
176 1.27 ad #define KMEM_GUARD
177 1.19 yamt #endif /* defined(DEBUG) */
178 1.19 yamt
179 1.19 yamt #if defined(KMEM_POISON)
180 1.39 para static int kmem_poison_ctor(void *, void *, int);
181 1.4 yamt static void kmem_poison_fill(void *, size_t);
182 1.4 yamt static void kmem_poison_check(void *, size_t);
183 1.19 yamt #else /* defined(KMEM_POISON) */
184 1.40 rmind #define kmem_poison_fill(p, sz) /* nothing */
185 1.40 rmind #define kmem_poison_check(p, sz) /* nothing */
186 1.19 yamt #endif /* defined(KMEM_POISON) */
187 1.19 yamt
188 1.19 yamt #if defined(KMEM_REDZONE)
189 1.54 maxv #define REDZONE_SIZE 2
190 1.57 maxv static void kmem_redzone_fill(void *, size_t);
191 1.57 maxv static void kmem_redzone_check(void *, size_t);
192 1.19 yamt #else /* defined(KMEM_REDZONE) */
193 1.19 yamt #define REDZONE_SIZE 0
194 1.54 maxv #define kmem_redzone_fill(p, sz) /* nothing */
195 1.54 maxv #define kmem_redzone_check(p, sz) /* nothing */
196 1.19 yamt #endif /* defined(KMEM_REDZONE) */
197 1.4 yamt
198 1.23 ad #if defined(KMEM_SIZE)
199 1.57 maxv struct kmem_header {
200 1.57 maxv size_t size;
201 1.57 maxv } __aligned(KMEM_ALIGN);
202 1.57 maxv #define SIZE_SIZE sizeof(struct kmem_header)
203 1.23 ad static void kmem_size_set(void *, size_t);
204 1.39 para static void kmem_size_check(void *, size_t);
205 1.23 ad #else
206 1.23 ad #define SIZE_SIZE 0
207 1.23 ad #define kmem_size_set(p, sz) /* nothing */
208 1.23 ad #define kmem_size_check(p, sz) /* nothing */
209 1.23 ad #endif
210 1.23 ad
211 1.52 maxv #if defined(KMEM_GUARD)
212 1.52 maxv #ifndef KMEM_GUARD_DEPTH
213 1.52 maxv #define KMEM_GUARD_DEPTH 0
214 1.52 maxv #endif
215 1.52 maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
216 1.52 maxv size_t kmem_guard_size;
217 1.52 maxv static struct uvm_kmguard kmem_guard;
218 1.52 maxv static void *kmem_freecheck;
219 1.52 maxv #endif /* defined(KMEM_GUARD) */
220 1.52 maxv
221 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
222 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
223 1.32 skrll
224 1.46 para /*
225 1.46 para * kmem_intr_alloc: allocate wired memory.
226 1.46 para */
227 1.46 para
228 1.39 para void *
229 1.50 yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
230 1.1 yamt {
231 1.40 rmind size_t allocsz, index;
232 1.50 yamt size_t size;
233 1.39 para pool_cache_t pc;
234 1.39 para uint8_t *p;
235 1.1 yamt
236 1.50 yamt KASSERT(requested_size > 0);
237 1.1 yamt
238 1.39 para #ifdef KMEM_GUARD
239 1.50 yamt if (requested_size <= kmem_guard_size) {
240 1.50 yamt return uvm_kmguard_alloc(&kmem_guard, requested_size,
241 1.39 para (kmflags & KM_SLEEP) != 0);
242 1.1 yamt }
243 1.39 para #endif
244 1.50 yamt size = kmem_roundup_size(requested_size);
245 1.54 maxv allocsz = size + SIZE_SIZE;
246 1.54 maxv
247 1.54 maxv #ifdef KMEM_REDZONE
248 1.54 maxv if (size - requested_size < REDZONE_SIZE) {
249 1.57 maxv /* If there isn't enough space in the padding, allocate
250 1.57 maxv * one more memory chunk for the red zone. */
251 1.56 maxv allocsz += kmem_roundup_size(REDZONE_SIZE);
252 1.54 maxv }
253 1.54 maxv #endif
254 1.39 para
255 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
256 1.46 para < kmem_cache_maxidx) {
257 1.46 para pc = kmem_cache[index];
258 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
259 1.55 maxv < kmem_cache_big_maxidx) {
260 1.46 para pc = kmem_cache_big[index];
261 1.48 uebayasi } else {
262 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
263 1.43 para (vsize_t)round_page(size),
264 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
265 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
266 1.46 para if (ret) {
267 1.46 para return NULL;
268 1.46 para }
269 1.46 para FREECHECK_OUT(&kmem_freecheck, p);
270 1.46 para return p;
271 1.1 yamt }
272 1.1 yamt
273 1.39 para p = pool_cache_get(pc, kmflags);
274 1.39 para
275 1.39 para if (__predict_true(p != NULL)) {
276 1.46 para kmem_poison_check(p, size);
277 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
278 1.50 yamt kmem_size_set(p, requested_size);
279 1.54 maxv kmem_redzone_fill(p, requested_size + SIZE_SIZE);
280 1.47 para
281 1.47 para return p + SIZE_SIZE;
282 1.39 para }
283 1.47 para return p;
284 1.1 yamt }
285 1.1 yamt
286 1.46 para /*
287 1.46 para * kmem_intr_zalloc: allocate zeroed wired memory.
288 1.46 para */
289 1.46 para
290 1.39 para void *
291 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
292 1.23 ad {
293 1.39 para void *p;
294 1.23 ad
295 1.39 para p = kmem_intr_alloc(size, kmflags);
296 1.39 para if (p != NULL) {
297 1.39 para memset(p, 0, size);
298 1.39 para }
299 1.39 para return p;
300 1.23 ad }
301 1.23 ad
302 1.46 para /*
303 1.46 para * kmem_intr_free: free wired memory allocated by kmem_alloc.
304 1.46 para */
305 1.46 para
306 1.39 para void
307 1.50 yamt kmem_intr_free(void *p, size_t requested_size)
308 1.23 ad {
309 1.40 rmind size_t allocsz, index;
310 1.50 yamt size_t size;
311 1.39 para pool_cache_t pc;
312 1.23 ad
313 1.39 para KASSERT(p != NULL);
314 1.50 yamt KASSERT(requested_size > 0);
315 1.39 para
316 1.39 para #ifdef KMEM_GUARD
317 1.50 yamt if (requested_size <= kmem_guard_size) {
318 1.50 yamt uvm_kmguard_free(&kmem_guard, requested_size, p);
319 1.39 para return;
320 1.39 para }
321 1.39 para #endif
322 1.54 maxv
323 1.50 yamt size = kmem_roundup_size(requested_size);
324 1.54 maxv allocsz = size + SIZE_SIZE;
325 1.54 maxv
326 1.54 maxv #ifdef KMEM_REDZONE
327 1.54 maxv if (size - requested_size < REDZONE_SIZE) {
328 1.56 maxv allocsz += kmem_roundup_size(REDZONE_SIZE);
329 1.54 maxv }
330 1.54 maxv #endif
331 1.39 para
332 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
333 1.46 para < kmem_cache_maxidx) {
334 1.46 para pc = kmem_cache[index];
335 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
336 1.55 maxv < kmem_cache_big_maxidx) {
337 1.46 para pc = kmem_cache_big[index];
338 1.46 para } else {
339 1.46 para FREECHECK_IN(&kmem_freecheck, p);
340 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
341 1.43 para round_page(size));
342 1.39 para return;
343 1.39 para }
344 1.39 para
345 1.46 para p = (uint8_t *)p - SIZE_SIZE;
346 1.50 yamt kmem_size_check(p, requested_size);
347 1.54 maxv kmem_redzone_check(p, requested_size + SIZE_SIZE);
348 1.39 para FREECHECK_IN(&kmem_freecheck, p);
349 1.46 para LOCKDEBUG_MEM_CHECK(p, size);
350 1.39 para kmem_poison_fill(p, allocsz);
351 1.39 para
352 1.39 para pool_cache_put(pc, p);
353 1.23 ad }
354 1.23 ad
355 1.1 yamt /* ---- kmem API */
356 1.1 yamt
357 1.1 yamt /*
358 1.1 yamt * kmem_alloc: allocate wired memory.
359 1.1 yamt * => must not be called from interrupt context.
360 1.1 yamt */
361 1.1 yamt
362 1.1 yamt void *
363 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
364 1.1 yamt {
365 1.23 ad
366 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
367 1.40 rmind "kmem(9) should not be used from the interrupt context");
368 1.39 para return kmem_intr_alloc(size, kmflags);
369 1.1 yamt }
370 1.1 yamt
371 1.1 yamt /*
372 1.39 para * kmem_zalloc: allocate zeroed wired memory.
373 1.2 yamt * => must not be called from interrupt context.
374 1.2 yamt */
375 1.2 yamt
376 1.2 yamt void *
377 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
378 1.2 yamt {
379 1.2 yamt
380 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
381 1.40 rmind "kmem(9) should not be used from the interrupt context");
382 1.39 para return kmem_intr_zalloc(size, kmflags);
383 1.2 yamt }
384 1.2 yamt
385 1.2 yamt /*
386 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
387 1.1 yamt * => must not be called from interrupt context.
388 1.1 yamt */
389 1.1 yamt
390 1.1 yamt void
391 1.1 yamt kmem_free(void *p, size_t size)
392 1.1 yamt {
393 1.23 ad
394 1.23 ad KASSERT(!cpu_intr_p());
395 1.27 ad KASSERT(!cpu_softintr_p());
396 1.39 para kmem_intr_free(p, size);
397 1.1 yamt }
398 1.1 yamt
399 1.46 para static size_t
400 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
401 1.46 para pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
402 1.1 yamt {
403 1.46 para size_t maxidx = 0;
404 1.46 para size_t table_unit = (1 << shift);
405 1.39 para size_t size = table_unit;
406 1.23 ad int i;
407 1.1 yamt
408 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
409 1.40 rmind const char *name = array[i].kc_name;
410 1.39 para size_t cache_size = array[i].kc_size;
411 1.46 para struct pool_allocator *pa;
412 1.40 rmind int flags = PR_NOALIGN;
413 1.40 rmind pool_cache_t pc;
414 1.39 para size_t align;
415 1.39 para
416 1.39 para if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
417 1.39 para align = CACHE_LINE_SIZE;
418 1.39 para else if ((cache_size & (PAGE_SIZE - 1)) == 0)
419 1.39 para align = PAGE_SIZE;
420 1.39 para else
421 1.39 para align = KMEM_ALIGN;
422 1.39 para
423 1.39 para if (cache_size < CACHE_LINE_SIZE)
424 1.39 para flags |= PR_NOTOUCH;
425 1.27 ad
426 1.39 para /* check if we reached the requested size */
427 1.46 para if (cache_size > maxsize || cache_size > PAGE_SIZE) {
428 1.23 ad break;
429 1.40 rmind }
430 1.46 para if ((cache_size >> shift) > maxidx) {
431 1.46 para maxidx = cache_size >> shift;
432 1.46 para }
433 1.46 para
434 1.46 para if ((cache_size >> shift) > maxidx) {
435 1.46 para maxidx = cache_size >> shift;
436 1.40 rmind }
437 1.1 yamt
438 1.46 para pa = &pool_allocator_kmem;
439 1.39 para #if defined(KMEM_POISON)
440 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
441 1.49 yamt name, pa, ipl, kmem_poison_ctor,
442 1.39 para NULL, (void *)cache_size);
443 1.39 para #else /* defined(KMEM_POISON) */
444 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
445 1.46 para name, pa, ipl, NULL, NULL, NULL);
446 1.39 para #endif /* defined(KMEM_POISON) */
447 1.1 yamt
448 1.39 para while (size <= cache_size) {
449 1.46 para alloc_table[(size - 1) >> shift] = pc;
450 1.39 para size += table_unit;
451 1.39 para }
452 1.1 yamt }
453 1.46 para return maxidx;
454 1.1 yamt }
455 1.1 yamt
456 1.39 para void
457 1.39 para kmem_init(void)
458 1.1 yamt {
459 1.1 yamt
460 1.39 para #ifdef KMEM_GUARD
461 1.39 para uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
462 1.42 rmind kmem_va_arena);
463 1.39 para #endif
464 1.46 para kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
465 1.46 para kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
466 1.55 maxv kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
467 1.46 para kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
468 1.1 yamt }
469 1.4 yamt
470 1.39 para size_t
471 1.39 para kmem_roundup_size(size_t size)
472 1.7 yamt {
473 1.7 yamt
474 1.39 para return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
475 1.7 yamt }
476 1.7 yamt
477 1.54 maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
478 1.4 yamt
479 1.54 maxv #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
480 1.4 yamt #if defined(_LP64)
481 1.39 para #define PRIME 0x9e37fffffffc0000UL
482 1.4 yamt #else /* defined(_LP64) */
483 1.39 para #define PRIME 0x9e3779b1
484 1.4 yamt #endif /* defined(_LP64) */
485 1.54 maxv #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
486 1.4 yamt
487 1.54 maxv #if defined(KMEM_POISON)
488 1.4 yamt static inline uint8_t
489 1.4 yamt kmem_poison_pattern(const void *p)
490 1.4 yamt {
491 1.39 para return (uint8_t)(((uintptr_t)p) * PRIME
492 1.39 para >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
493 1.39 para }
494 1.39 para
495 1.39 para static int
496 1.39 para kmem_poison_ctor(void *arg, void *obj, int flag)
497 1.39 para {
498 1.39 para size_t sz = (size_t)arg;
499 1.39 para
500 1.39 para kmem_poison_fill(obj, sz);
501 1.39 para
502 1.39 para return 0;
503 1.4 yamt }
504 1.4 yamt
505 1.4 yamt static void
506 1.4 yamt kmem_poison_fill(void *p, size_t sz)
507 1.4 yamt {
508 1.4 yamt uint8_t *cp;
509 1.4 yamt const uint8_t *ep;
510 1.4 yamt
511 1.4 yamt cp = p;
512 1.4 yamt ep = cp + sz;
513 1.4 yamt while (cp < ep) {
514 1.4 yamt *cp = kmem_poison_pattern(cp);
515 1.4 yamt cp++;
516 1.4 yamt }
517 1.4 yamt }
518 1.4 yamt
519 1.4 yamt static void
520 1.4 yamt kmem_poison_check(void *p, size_t sz)
521 1.4 yamt {
522 1.4 yamt uint8_t *cp;
523 1.4 yamt const uint8_t *ep;
524 1.4 yamt
525 1.4 yamt cp = p;
526 1.4 yamt ep = cp + sz;
527 1.4 yamt while (cp < ep) {
528 1.4 yamt const uint8_t expected = kmem_poison_pattern(cp);
529 1.4 yamt
530 1.4 yamt if (*cp != expected) {
531 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
532 1.39 para __func__, cp, *cp, expected);
533 1.4 yamt }
534 1.4 yamt cp++;
535 1.4 yamt }
536 1.4 yamt }
537 1.19 yamt #endif /* defined(KMEM_POISON) */
538 1.23 ad
539 1.23 ad #if defined(KMEM_SIZE)
540 1.23 ad static void
541 1.23 ad kmem_size_set(void *p, size_t sz)
542 1.23 ad {
543 1.57 maxv struct kmem_header *hd;
544 1.57 maxv hd = (struct kmem_header *)p;
545 1.57 maxv hd->size = sz;
546 1.23 ad }
547 1.23 ad
548 1.23 ad static void
549 1.39 para kmem_size_check(void *p, size_t sz)
550 1.23 ad {
551 1.57 maxv struct kmem_header *hd;
552 1.57 maxv size_t hsz;
553 1.23 ad
554 1.57 maxv hd = (struct kmem_header *)p;
555 1.57 maxv hsz = hd->size;
556 1.57 maxv
557 1.57 maxv if (hsz != sz) {
558 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
559 1.57 maxv (const uint8_t *)p + SIZE_SIZE, sz, hsz);
560 1.23 ad }
561 1.23 ad }
562 1.54 maxv #endif /* defined(KMEM_SIZE) */
563 1.54 maxv
564 1.54 maxv #if defined(KMEM_REDZONE)
565 1.54 maxv static inline uint8_t
566 1.54 maxv kmem_redzone_pattern(const void *p)
567 1.54 maxv {
568 1.54 maxv return (uint8_t)(((uintptr_t)p) * PRIME
569 1.54 maxv >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
570 1.54 maxv }
571 1.54 maxv
572 1.54 maxv static void
573 1.54 maxv kmem_redzone_fill(void *p, size_t sz)
574 1.54 maxv {
575 1.54 maxv uint8_t *cp;
576 1.54 maxv const uint8_t *ep;
577 1.54 maxv
578 1.54 maxv cp = (uint8_t *)p + sz;
579 1.54 maxv ep = cp + REDZONE_SIZE;
580 1.54 maxv while (cp < ep) {
581 1.54 maxv *cp = kmem_redzone_pattern(cp);
582 1.54 maxv cp++;
583 1.54 maxv }
584 1.54 maxv }
585 1.54 maxv
586 1.54 maxv static void
587 1.54 maxv kmem_redzone_check(void *p, size_t sz)
588 1.54 maxv {
589 1.54 maxv uint8_t *cp;
590 1.54 maxv const uint8_t *ep;
591 1.54 maxv
592 1.54 maxv cp = (uint8_t *)p + sz;
593 1.57 maxv ep = cp + REDZONE_SIZE;
594 1.54 maxv while (cp < ep) {
595 1.54 maxv const uint8_t expected = kmem_redzone_pattern(cp);
596 1.54 maxv
597 1.54 maxv if (*cp != expected) {
598 1.54 maxv panic("%s: %p: 0x%02x != 0x%02x\n",
599 1.54 maxv __func__, cp, *cp, expected);
600 1.54 maxv }
601 1.54 maxv cp++;
602 1.54 maxv }
603 1.54 maxv }
604 1.54 maxv #endif /* defined(KMEM_REDZONE) */
605 1.54 maxv
606 1.33 haad
607 1.33 haad /*
608 1.33 haad * Used to dynamically allocate string with kmem accordingly to format.
609 1.33 haad */
610 1.33 haad char *
611 1.33 haad kmem_asprintf(const char *fmt, ...)
612 1.33 haad {
613 1.51 martin int size __diagused, len;
614 1.38 christos va_list va;
615 1.33 haad char *str;
616 1.48 uebayasi
617 1.33 haad va_start(va, fmt);
618 1.38 christos len = vsnprintf(NULL, 0, fmt, va);
619 1.33 haad va_end(va);
620 1.33 haad
621 1.38 christos str = kmem_alloc(len + 1, KM_SLEEP);
622 1.33 haad
623 1.38 christos va_start(va, fmt);
624 1.38 christos size = vsnprintf(str, len + 1, fmt, va);
625 1.38 christos va_end(va);
626 1.38 christos
627 1.38 christos KASSERT(size == len);
628 1.33 haad
629 1.33 haad return str;
630 1.33 haad }
631