Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.60.4.1
      1  1.60.4.1     skrll /*	$NetBSD: subr_kmem.c,v 1.60.4.1 2015/09/22 12:06:07 skrll Exp $	*/
      2       1.1      yamt 
      3       1.1      yamt /*-
      4  1.60.4.1     skrll  * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
      5      1.23        ad  * All rights reserved.
      6      1.23        ad  *
      7      1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.60.4.1     skrll  * by Andrew Doran and Maxime Villard.
      9      1.23        ad  *
     10      1.23        ad  * Redistribution and use in source and binary forms, with or without
     11      1.23        ad  * modification, are permitted provided that the following conditions
     12      1.23        ad  * are met:
     13      1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14      1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15      1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.23        ad  *    documentation and/or other materials provided with the distribution.
     18      1.23        ad  *
     19      1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.23        ad  */
     31      1.23        ad 
     32      1.23        ad /*-
     33       1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34       1.1      yamt  * All rights reserved.
     35       1.1      yamt  *
     36       1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37       1.1      yamt  * modification, are permitted provided that the following conditions
     38       1.1      yamt  * are met:
     39       1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40       1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41       1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44       1.1      yamt  *
     45       1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46       1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47       1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48       1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49       1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50       1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51       1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52       1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53       1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54       1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55       1.1      yamt  * SUCH DAMAGE.
     56       1.1      yamt  */
     57       1.1      yamt 
     58       1.1      yamt /*
     59      1.55      maxv  * Allocator of kernel wired memory. This allocator has some debug features
     60      1.55      maxv  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61      1.50      yamt  */
     62      1.50      yamt 
     63      1.50      yamt /*
     64      1.55      maxv  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65      1.57      maxv  *	Prefix each allocations with a fixed-sized, aligned header and record
     66      1.57      maxv  *	the exact user-requested allocation size in it. When freeing, compare
     67      1.57      maxv  *	it with kmem_free's "size" argument.
     68      1.60      maxv  *
     69      1.55      maxv  * KMEM_REDZONE: detect overrun bugs.
     70      1.57      maxv  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
     71      1.57      maxv  *	end of each allocated buffer. Check this pattern on kmem_free.
     72      1.50      yamt  *
     73      1.60      maxv  * These options are enabled on DIAGNOSTIC.
     74      1.60      maxv  *
     75      1.60      maxv  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
     76      1.60      maxv  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     77      1.60      maxv  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     78      1.60      maxv  *  |/HSZ/|     |     |     |     |     |     |     |     |   |*|**|UU|
     79      1.60      maxv  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     80      1.60      maxv  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     81      1.60      maxv  *  |Size |    Buffer usable by the caller (requested size)   |RedZ|Unused\
     82      1.60      maxv  */
     83      1.60      maxv 
     84      1.60      maxv /*
     85      1.55      maxv  * KMEM_POISON: detect modify-after-free bugs.
     86      1.50      yamt  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     87      1.50      yamt  *	Check the pattern on allocation.
     88      1.50      yamt  *
     89      1.50      yamt  * KMEM_GUARD
     90  1.60.4.1     skrll  *	A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
     91  1.60.4.1     skrll  *	in. See the comment below for what kind of bugs it tries to detect. Even
     92  1.60.4.1     skrll  *	if compiled in, it's disabled by default because it's very expensive.
     93  1.60.4.1     skrll  *	You can enable it on boot by:
     94      1.55      maxv  *		boot -d
     95      1.55      maxv  *		db> w kmem_guard_depth 0t30000
     96      1.55      maxv  *		db> c
     97       1.1      yamt  *
     98      1.55      maxv  *	The default value of kmem_guard_depth is 0, which means disabled.
     99      1.55      maxv  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
    100       1.1      yamt  */
    101       1.1      yamt 
    102       1.1      yamt #include <sys/cdefs.h>
    103  1.60.4.1     skrll __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.60.4.1 2015/09/22 12:06:07 skrll Exp $");
    104       1.1      yamt 
    105       1.1      yamt #include <sys/param.h>
    106       1.6      yamt #include <sys/callback.h>
    107       1.1      yamt #include <sys/kmem.h>
    108      1.39      para #include <sys/pool.h>
    109      1.13        ad #include <sys/debug.h>
    110      1.17        ad #include <sys/lockdebug.h>
    111      1.23        ad #include <sys/cpu.h>
    112       1.1      yamt 
    113       1.6      yamt #include <uvm/uvm_extern.h>
    114       1.6      yamt #include <uvm/uvm_map.h>
    115       1.6      yamt 
    116       1.1      yamt #include <lib/libkern/libkern.h>
    117       1.1      yamt 
    118      1.46      para struct kmem_cache_info {
    119      1.40     rmind 	size_t		kc_size;
    120      1.40     rmind 	const char *	kc_name;
    121      1.46      para };
    122      1.46      para 
    123      1.46      para static const struct kmem_cache_info kmem_cache_sizes[] = {
    124      1.39      para 	{  8, "kmem-8" },
    125      1.39      para 	{ 16, "kmem-16" },
    126      1.39      para 	{ 24, "kmem-24" },
    127      1.39      para 	{ 32, "kmem-32" },
    128      1.39      para 	{ 40, "kmem-40" },
    129      1.39      para 	{ 48, "kmem-48" },
    130      1.39      para 	{ 56, "kmem-56" },
    131      1.39      para 	{ 64, "kmem-64" },
    132      1.39      para 	{ 80, "kmem-80" },
    133      1.39      para 	{ 96, "kmem-96" },
    134      1.39      para 	{ 112, "kmem-112" },
    135      1.39      para 	{ 128, "kmem-128" },
    136      1.39      para 	{ 160, "kmem-160" },
    137      1.39      para 	{ 192, "kmem-192" },
    138      1.39      para 	{ 224, "kmem-224" },
    139      1.39      para 	{ 256, "kmem-256" },
    140      1.39      para 	{ 320, "kmem-320" },
    141      1.39      para 	{ 384, "kmem-384" },
    142      1.39      para 	{ 448, "kmem-448" },
    143      1.39      para 	{ 512, "kmem-512" },
    144      1.39      para 	{ 768, "kmem-768" },
    145      1.39      para 	{ 1024, "kmem-1024" },
    146      1.46      para 	{ 0, NULL }
    147      1.46      para };
    148      1.46      para 
    149      1.46      para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    150      1.39      para 	{ 2048, "kmem-2048" },
    151      1.39      para 	{ 4096, "kmem-4096" },
    152      1.46      para 	{ 8192, "kmem-8192" },
    153      1.46      para 	{ 16384, "kmem-16384" },
    154      1.39      para 	{ 0, NULL }
    155      1.39      para };
    156       1.1      yamt 
    157      1.39      para /*
    158      1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    159      1.46      para  * smallest allocateable quantum.
    160      1.46      para  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    161      1.39      para  */
    162      1.40     rmind #define	KMEM_ALIGN		8
    163      1.40     rmind #define	KMEM_SHIFT		3
    164      1.46      para #define	KMEM_MAXSIZE		1024
    165      1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    166       1.1      yamt 
    167      1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    168      1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    169      1.23        ad 
    170      1.46      para #define	KMEM_BIG_ALIGN		2048
    171      1.46      para #define	KMEM_BIG_SHIFT		11
    172      1.46      para #define	KMEM_BIG_MAXSIZE	16384
    173      1.46      para #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    174      1.46      para 
    175      1.46      para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    176      1.46      para static size_t kmem_cache_big_maxidx __read_mostly;
    177      1.46      para 
    178      1.53      maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    179      1.57      maxv #define	KMEM_SIZE
    180      1.60      maxv #define	KMEM_REDZONE
    181      1.53      maxv #endif /* defined(DIAGNOSTIC) */
    182      1.53      maxv 
    183      1.45    martin #if defined(DEBUG) && defined(_HARDKERNEL)
    184  1.60.4.1     skrll #define	KMEM_SIZE
    185      1.19      yamt #define	KMEM_POISON
    186      1.27        ad #define	KMEM_GUARD
    187  1.60.4.1     skrll static void *kmem_freecheck;
    188      1.19      yamt #endif /* defined(DEBUG) */
    189      1.19      yamt 
    190      1.19      yamt #if defined(KMEM_POISON)
    191      1.39      para static int kmem_poison_ctor(void *, void *, int);
    192       1.4      yamt static void kmem_poison_fill(void *, size_t);
    193       1.4      yamt static void kmem_poison_check(void *, size_t);
    194      1.19      yamt #else /* defined(KMEM_POISON) */
    195      1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    196      1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    197      1.19      yamt #endif /* defined(KMEM_POISON) */
    198      1.19      yamt 
    199      1.19      yamt #if defined(KMEM_REDZONE)
    200      1.54      maxv #define	REDZONE_SIZE	2
    201      1.57      maxv static void kmem_redzone_fill(void *, size_t);
    202      1.57      maxv static void kmem_redzone_check(void *, size_t);
    203      1.19      yamt #else /* defined(KMEM_REDZONE) */
    204      1.19      yamt #define	REDZONE_SIZE	0
    205      1.54      maxv #define	kmem_redzone_fill(p, sz)		/* nothing */
    206      1.54      maxv #define	kmem_redzone_check(p, sz)	/* nothing */
    207      1.19      yamt #endif /* defined(KMEM_REDZONE) */
    208       1.4      yamt 
    209      1.23        ad #if defined(KMEM_SIZE)
    210      1.57      maxv struct kmem_header {
    211      1.57      maxv 	size_t		size;
    212      1.57      maxv } __aligned(KMEM_ALIGN);
    213      1.57      maxv #define	SIZE_SIZE	sizeof(struct kmem_header)
    214      1.23        ad static void kmem_size_set(void *, size_t);
    215      1.39      para static void kmem_size_check(void *, size_t);
    216      1.23        ad #else
    217      1.23        ad #define	SIZE_SIZE	0
    218      1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    219      1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    220      1.23        ad #endif
    221      1.23        ad 
    222      1.52      maxv #if defined(KMEM_GUARD)
    223      1.52      maxv #ifndef KMEM_GUARD_DEPTH
    224      1.52      maxv #define KMEM_GUARD_DEPTH 0
    225      1.52      maxv #endif
    226  1.60.4.1     skrll struct kmem_guard {
    227  1.60.4.1     skrll 	u_int		kg_depth;
    228  1.60.4.1     skrll 	intptr_t *	kg_fifo;
    229  1.60.4.1     skrll 	u_int		kg_rotor;
    230  1.60.4.1     skrll 	vmem_t *	kg_vmem;
    231  1.60.4.1     skrll };
    232  1.60.4.1     skrll 
    233  1.60.4.1     skrll static bool	kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
    234  1.60.4.1     skrll static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
    235  1.60.4.1     skrll static void kmem_guard_free(struct kmem_guard *, size_t, void *);
    236  1.60.4.1     skrll 
    237      1.52      maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
    238  1.60.4.1     skrll static bool kmem_guard_enabled;
    239  1.60.4.1     skrll static struct kmem_guard kmem_guard;
    240      1.52      maxv #endif /* defined(KMEM_GUARD) */
    241      1.52      maxv 
    242      1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    243      1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    244      1.32     skrll 
    245      1.46      para /*
    246      1.46      para  * kmem_intr_alloc: allocate wired memory.
    247      1.46      para  */
    248      1.46      para 
    249      1.39      para void *
    250      1.50      yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    251       1.1      yamt {
    252      1.40     rmind 	size_t allocsz, index;
    253      1.50      yamt 	size_t size;
    254      1.39      para 	pool_cache_t pc;
    255      1.39      para 	uint8_t *p;
    256       1.1      yamt 
    257      1.50      yamt 	KASSERT(requested_size > 0);
    258       1.1      yamt 
    259      1.39      para #ifdef KMEM_GUARD
    260  1.60.4.1     skrll 	if (kmem_guard_enabled) {
    261  1.60.4.1     skrll 		return kmem_guard_alloc(&kmem_guard, requested_size,
    262      1.39      para 		    (kmflags & KM_SLEEP) != 0);
    263       1.1      yamt 	}
    264      1.39      para #endif
    265      1.50      yamt 	size = kmem_roundup_size(requested_size);
    266      1.54      maxv 	allocsz = size + SIZE_SIZE;
    267      1.54      maxv 
    268      1.54      maxv #ifdef KMEM_REDZONE
    269      1.54      maxv 	if (size - requested_size < REDZONE_SIZE) {
    270      1.57      maxv 		/* If there isn't enough space in the padding, allocate
    271      1.57      maxv 		 * one more memory chunk for the red zone. */
    272      1.56      maxv 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    273      1.54      maxv 	}
    274      1.54      maxv #endif
    275      1.39      para 
    276      1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    277      1.46      para 	    < kmem_cache_maxidx) {
    278      1.46      para 		pc = kmem_cache[index];
    279      1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    280      1.55      maxv 	    < kmem_cache_big_maxidx) {
    281      1.46      para 		pc = kmem_cache_big[index];
    282      1.48  uebayasi 	} else {
    283      1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    284      1.43      para 		    (vsize_t)round_page(size),
    285      1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    286      1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    287      1.46      para 		if (ret) {
    288      1.46      para 			return NULL;
    289      1.46      para 		}
    290      1.46      para 		FREECHECK_OUT(&kmem_freecheck, p);
    291      1.46      para 		return p;
    292       1.1      yamt 	}
    293       1.1      yamt 
    294      1.39      para 	p = pool_cache_get(pc, kmflags);
    295      1.39      para 
    296      1.39      para 	if (__predict_true(p != NULL)) {
    297      1.58      maxv 		kmem_poison_check(p, allocsz);
    298      1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    299      1.50      yamt 		kmem_size_set(p, requested_size);
    300      1.54      maxv 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    301      1.47      para 
    302      1.47      para 		return p + SIZE_SIZE;
    303      1.39      para 	}
    304      1.47      para 	return p;
    305       1.1      yamt }
    306       1.1      yamt 
    307      1.46      para /*
    308      1.46      para  * kmem_intr_zalloc: allocate zeroed wired memory.
    309      1.46      para  */
    310      1.46      para 
    311      1.39      para void *
    312      1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    313      1.23        ad {
    314      1.39      para 	void *p;
    315      1.23        ad 
    316      1.39      para 	p = kmem_intr_alloc(size, kmflags);
    317      1.39      para 	if (p != NULL) {
    318      1.39      para 		memset(p, 0, size);
    319      1.39      para 	}
    320      1.39      para 	return p;
    321      1.23        ad }
    322      1.23        ad 
    323      1.46      para /*
    324      1.46      para  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    325      1.46      para  */
    326      1.46      para 
    327      1.39      para void
    328      1.50      yamt kmem_intr_free(void *p, size_t requested_size)
    329      1.23        ad {
    330      1.40     rmind 	size_t allocsz, index;
    331      1.50      yamt 	size_t size;
    332      1.39      para 	pool_cache_t pc;
    333      1.23        ad 
    334      1.39      para 	KASSERT(p != NULL);
    335      1.50      yamt 	KASSERT(requested_size > 0);
    336      1.39      para 
    337      1.39      para #ifdef KMEM_GUARD
    338  1.60.4.1     skrll 	if (kmem_guard_enabled) {
    339  1.60.4.1     skrll 		kmem_guard_free(&kmem_guard, requested_size, p);
    340      1.39      para 		return;
    341      1.39      para 	}
    342      1.39      para #endif
    343      1.54      maxv 
    344      1.50      yamt 	size = kmem_roundup_size(requested_size);
    345      1.54      maxv 	allocsz = size + SIZE_SIZE;
    346      1.54      maxv 
    347      1.54      maxv #ifdef KMEM_REDZONE
    348      1.54      maxv 	if (size - requested_size < REDZONE_SIZE) {
    349      1.56      maxv 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    350      1.54      maxv 	}
    351      1.54      maxv #endif
    352      1.39      para 
    353      1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    354      1.46      para 	    < kmem_cache_maxidx) {
    355      1.46      para 		pc = kmem_cache[index];
    356      1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    357      1.55      maxv 	    < kmem_cache_big_maxidx) {
    358      1.46      para 		pc = kmem_cache_big[index];
    359      1.46      para 	} else {
    360      1.46      para 		FREECHECK_IN(&kmem_freecheck, p);
    361      1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    362      1.43      para 		    round_page(size));
    363      1.39      para 		return;
    364      1.39      para 	}
    365      1.39      para 
    366      1.46      para 	p = (uint8_t *)p - SIZE_SIZE;
    367      1.50      yamt 	kmem_size_check(p, requested_size);
    368      1.54      maxv 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    369      1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    370      1.46      para 	LOCKDEBUG_MEM_CHECK(p, size);
    371      1.39      para 	kmem_poison_fill(p, allocsz);
    372      1.39      para 
    373      1.39      para 	pool_cache_put(pc, p);
    374      1.23        ad }
    375      1.23        ad 
    376       1.1      yamt /* ---- kmem API */
    377       1.1      yamt 
    378       1.1      yamt /*
    379       1.1      yamt  * kmem_alloc: allocate wired memory.
    380       1.1      yamt  * => must not be called from interrupt context.
    381       1.1      yamt  */
    382       1.1      yamt 
    383       1.1      yamt void *
    384       1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    385       1.1      yamt {
    386      1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    387      1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    388      1.39      para 	return kmem_intr_alloc(size, kmflags);
    389       1.1      yamt }
    390       1.1      yamt 
    391       1.1      yamt /*
    392      1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    393       1.2      yamt  * => must not be called from interrupt context.
    394       1.2      yamt  */
    395       1.2      yamt 
    396       1.2      yamt void *
    397       1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    398       1.2      yamt {
    399      1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    400      1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    401      1.39      para 	return kmem_intr_zalloc(size, kmflags);
    402       1.2      yamt }
    403       1.2      yamt 
    404       1.2      yamt /*
    405       1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    406       1.1      yamt  * => must not be called from interrupt context.
    407       1.1      yamt  */
    408       1.1      yamt 
    409       1.1      yamt void
    410       1.1      yamt kmem_free(void *p, size_t size)
    411       1.1      yamt {
    412      1.23        ad 	KASSERT(!cpu_intr_p());
    413      1.27        ad 	KASSERT(!cpu_softintr_p());
    414      1.39      para 	kmem_intr_free(p, size);
    415       1.1      yamt }
    416       1.1      yamt 
    417      1.46      para static size_t
    418      1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    419      1.46      para     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    420       1.1      yamt {
    421      1.46      para 	size_t maxidx = 0;
    422      1.46      para 	size_t table_unit = (1 << shift);
    423      1.39      para 	size_t size = table_unit;
    424      1.23        ad 	int i;
    425       1.1      yamt 
    426      1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    427      1.40     rmind 		const char *name = array[i].kc_name;
    428      1.39      para 		size_t cache_size = array[i].kc_size;
    429      1.46      para 		struct pool_allocator *pa;
    430      1.40     rmind 		int flags = PR_NOALIGN;
    431      1.40     rmind 		pool_cache_t pc;
    432      1.39      para 		size_t align;
    433      1.39      para 
    434      1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    435      1.39      para 			align = CACHE_LINE_SIZE;
    436      1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    437      1.39      para 			align = PAGE_SIZE;
    438      1.39      para 		else
    439      1.39      para 			align = KMEM_ALIGN;
    440      1.39      para 
    441      1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    442      1.39      para 			flags |= PR_NOTOUCH;
    443      1.27        ad 
    444      1.39      para 		/* check if we reached the requested size */
    445      1.46      para 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    446      1.23        ad 			break;
    447      1.40     rmind 		}
    448      1.46      para 		if ((cache_size >> shift) > maxidx) {
    449      1.46      para 			maxidx = cache_size >> shift;
    450      1.46      para 		}
    451      1.46      para 
    452      1.46      para 		if ((cache_size >> shift) > maxidx) {
    453      1.46      para 			maxidx = cache_size >> shift;
    454      1.40     rmind 		}
    455       1.1      yamt 
    456      1.46      para 		pa = &pool_allocator_kmem;
    457      1.39      para #if defined(KMEM_POISON)
    458      1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    459      1.49      yamt 		    name, pa, ipl, kmem_poison_ctor,
    460      1.39      para 		    NULL, (void *)cache_size);
    461      1.39      para #else /* defined(KMEM_POISON) */
    462      1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    463      1.46      para 		    name, pa, ipl, NULL, NULL, NULL);
    464      1.39      para #endif /* defined(KMEM_POISON) */
    465       1.1      yamt 
    466      1.39      para 		while (size <= cache_size) {
    467      1.46      para 			alloc_table[(size - 1) >> shift] = pc;
    468      1.39      para 			size += table_unit;
    469      1.39      para 		}
    470       1.1      yamt 	}
    471      1.46      para 	return maxidx;
    472       1.1      yamt }
    473       1.1      yamt 
    474      1.39      para void
    475      1.39      para kmem_init(void)
    476       1.1      yamt {
    477      1.39      para #ifdef KMEM_GUARD
    478  1.60.4.1     skrll 	kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
    479      1.42     rmind 	    kmem_va_arena);
    480      1.39      para #endif
    481      1.46      para 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    482      1.46      para 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    483      1.55      maxv 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    484      1.46      para 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    485       1.1      yamt }
    486       1.4      yamt 
    487      1.39      para size_t
    488      1.39      para kmem_roundup_size(size_t size)
    489       1.7      yamt {
    490      1.39      para 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    491       1.7      yamt }
    492       1.7      yamt 
    493  1.60.4.1     skrll /*
    494  1.60.4.1     skrll  * Used to dynamically allocate string with kmem accordingly to format.
    495  1.60.4.1     skrll  */
    496  1.60.4.1     skrll char *
    497  1.60.4.1     skrll kmem_asprintf(const char *fmt, ...)
    498  1.60.4.1     skrll {
    499  1.60.4.1     skrll 	int size __diagused, len;
    500  1.60.4.1     skrll 	va_list va;
    501  1.60.4.1     skrll 	char *str;
    502  1.60.4.1     skrll 
    503  1.60.4.1     skrll 	va_start(va, fmt);
    504  1.60.4.1     skrll 	len = vsnprintf(NULL, 0, fmt, va);
    505  1.60.4.1     skrll 	va_end(va);
    506  1.60.4.1     skrll 
    507  1.60.4.1     skrll 	str = kmem_alloc(len + 1, KM_SLEEP);
    508  1.60.4.1     skrll 
    509  1.60.4.1     skrll 	va_start(va, fmt);
    510  1.60.4.1     skrll 	size = vsnprintf(str, len + 1, fmt, va);
    511  1.60.4.1     skrll 	va_end(va);
    512  1.60.4.1     skrll 
    513  1.60.4.1     skrll 	KASSERT(size == len);
    514  1.60.4.1     skrll 
    515  1.60.4.1     skrll 	return str;
    516  1.60.4.1     skrll }
    517  1.60.4.1     skrll 
    518      1.54      maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    519       1.4      yamt 
    520      1.54      maxv #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    521       1.4      yamt #if defined(_LP64)
    522      1.39      para #define PRIME 0x9e37fffffffc0000UL
    523       1.4      yamt #else /* defined(_LP64) */
    524      1.39      para #define PRIME 0x9e3779b1
    525       1.4      yamt #endif /* defined(_LP64) */
    526       1.4      yamt 
    527       1.4      yamt static inline uint8_t
    528      1.59      maxv kmem_pattern_generate(const void *p)
    529       1.4      yamt {
    530      1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    531      1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    532      1.39      para }
    533      1.59      maxv #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    534      1.39      para 
    535      1.59      maxv #if defined(KMEM_POISON)
    536      1.39      para static int
    537      1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    538      1.39      para {
    539      1.39      para 	size_t sz = (size_t)arg;
    540      1.39      para 
    541      1.39      para 	kmem_poison_fill(obj, sz);
    542      1.39      para 
    543      1.39      para 	return 0;
    544       1.4      yamt }
    545       1.4      yamt 
    546       1.4      yamt static void
    547       1.4      yamt kmem_poison_fill(void *p, size_t sz)
    548       1.4      yamt {
    549       1.4      yamt 	uint8_t *cp;
    550       1.4      yamt 	const uint8_t *ep;
    551       1.4      yamt 
    552       1.4      yamt 	cp = p;
    553       1.4      yamt 	ep = cp + sz;
    554       1.4      yamt 	while (cp < ep) {
    555      1.59      maxv 		*cp = kmem_pattern_generate(cp);
    556       1.4      yamt 		cp++;
    557       1.4      yamt 	}
    558       1.4      yamt }
    559       1.4      yamt 
    560       1.4      yamt static void
    561       1.4      yamt kmem_poison_check(void *p, size_t sz)
    562       1.4      yamt {
    563       1.4      yamt 	uint8_t *cp;
    564       1.4      yamt 	const uint8_t *ep;
    565       1.4      yamt 
    566       1.4      yamt 	cp = p;
    567       1.4      yamt 	ep = cp + sz;
    568       1.4      yamt 	while (cp < ep) {
    569      1.59      maxv 		const uint8_t expected = kmem_pattern_generate(cp);
    570       1.4      yamt 
    571       1.4      yamt 		if (*cp != expected) {
    572       1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    573      1.39      para 			   __func__, cp, *cp, expected);
    574       1.4      yamt 		}
    575       1.4      yamt 		cp++;
    576       1.4      yamt 	}
    577       1.4      yamt }
    578      1.19      yamt #endif /* defined(KMEM_POISON) */
    579      1.23        ad 
    580      1.23        ad #if defined(KMEM_SIZE)
    581      1.23        ad static void
    582      1.23        ad kmem_size_set(void *p, size_t sz)
    583      1.23        ad {
    584      1.57      maxv 	struct kmem_header *hd;
    585      1.57      maxv 	hd = (struct kmem_header *)p;
    586      1.57      maxv 	hd->size = sz;
    587      1.23        ad }
    588      1.23        ad 
    589      1.23        ad static void
    590      1.39      para kmem_size_check(void *p, size_t sz)
    591      1.23        ad {
    592      1.57      maxv 	struct kmem_header *hd;
    593      1.57      maxv 	size_t hsz;
    594      1.23        ad 
    595      1.57      maxv 	hd = (struct kmem_header *)p;
    596      1.57      maxv 	hsz = hd->size;
    597      1.57      maxv 
    598      1.57      maxv 	if (hsz != sz) {
    599      1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    600      1.57      maxv 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    601      1.23        ad 	}
    602      1.23        ad }
    603      1.54      maxv #endif /* defined(KMEM_SIZE) */
    604      1.54      maxv 
    605      1.54      maxv #if defined(KMEM_REDZONE)
    606      1.59      maxv #define STATIC_BYTE	0xFE
    607      1.59      maxv CTASSERT(REDZONE_SIZE > 1);
    608      1.54      maxv static void
    609      1.54      maxv kmem_redzone_fill(void *p, size_t sz)
    610      1.54      maxv {
    611      1.59      maxv 	uint8_t *cp, pat;
    612      1.54      maxv 	const uint8_t *ep;
    613      1.54      maxv 
    614      1.54      maxv 	cp = (uint8_t *)p + sz;
    615      1.54      maxv 	ep = cp + REDZONE_SIZE;
    616      1.59      maxv 
    617      1.59      maxv 	/*
    618      1.59      maxv 	 * We really don't want the first byte of the red zone to be '\0';
    619      1.59      maxv 	 * an off-by-one in a string may not be properly detected.
    620      1.59      maxv 	 */
    621      1.59      maxv 	pat = kmem_pattern_generate(cp);
    622      1.59      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
    623      1.59      maxv 	cp++;
    624      1.59      maxv 
    625      1.54      maxv 	while (cp < ep) {
    626      1.59      maxv 		*cp = kmem_pattern_generate(cp);
    627      1.54      maxv 		cp++;
    628      1.54      maxv 	}
    629      1.54      maxv }
    630      1.54      maxv 
    631      1.54      maxv static void
    632      1.54      maxv kmem_redzone_check(void *p, size_t sz)
    633      1.54      maxv {
    634      1.59      maxv 	uint8_t *cp, pat, expected;
    635      1.54      maxv 	const uint8_t *ep;
    636      1.54      maxv 
    637      1.54      maxv 	cp = (uint8_t *)p + sz;
    638      1.57      maxv 	ep = cp + REDZONE_SIZE;
    639      1.59      maxv 
    640      1.59      maxv 	pat = kmem_pattern_generate(cp);
    641      1.59      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
    642      1.59      maxv 	if (expected != *cp) {
    643      1.59      maxv 		panic("%s: %p: 0x%02x != 0x%02x\n",
    644      1.59      maxv 		   __func__, cp, *cp, expected);
    645      1.59      maxv 	}
    646      1.59      maxv 	cp++;
    647      1.59      maxv 
    648      1.54      maxv 	while (cp < ep) {
    649      1.59      maxv 		expected = kmem_pattern_generate(cp);
    650      1.54      maxv 		if (*cp != expected) {
    651      1.54      maxv 			panic("%s: %p: 0x%02x != 0x%02x\n",
    652      1.54      maxv 			   __func__, cp, *cp, expected);
    653      1.54      maxv 		}
    654      1.54      maxv 		cp++;
    655      1.54      maxv 	}
    656      1.54      maxv }
    657      1.54      maxv #endif /* defined(KMEM_REDZONE) */
    658      1.54      maxv 
    659      1.33      haad 
    660  1.60.4.1     skrll #if defined(KMEM_GUARD)
    661      1.33      haad /*
    662  1.60.4.1     skrll  * The ultimate memory allocator for debugging, baby.  It tries to catch:
    663  1.60.4.1     skrll  *
    664  1.60.4.1     skrll  * 1. Overflow, in realtime. A guard page sits immediately after the
    665  1.60.4.1     skrll  *    requested area; a read/write overflow therefore triggers a page
    666  1.60.4.1     skrll  *    fault.
    667  1.60.4.1     skrll  * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
    668  1.60.4.1     skrll  *    just before the requested area, and holds the allocated size. Any
    669  1.60.4.1     skrll  *    difference with what is given at free triggers a panic.
    670  1.60.4.1     skrll  * 3. Underflow, at free. If an underflow occurs, the kmem header will be
    671  1.60.4.1     skrll  *    modified, and 2. will trigger a panic.
    672  1.60.4.1     skrll  * 4. Use-after-free. When freeing, the memory is unmapped, and depending
    673  1.60.4.1     skrll  *    on the value of kmem_guard_depth, the kernel will more or less delay
    674  1.60.4.1     skrll  *    the recycling of that memory. Which means that any ulterior read/write
    675  1.60.4.1     skrll  *    access to the memory will trigger a page fault, given it hasn't been
    676  1.60.4.1     skrll  *    recycled yet.
    677  1.60.4.1     skrll  */
    678  1.60.4.1     skrll 
    679  1.60.4.1     skrll #include <sys/atomic.h>
    680  1.60.4.1     skrll #include <uvm/uvm.h>
    681  1.60.4.1     skrll 
    682  1.60.4.1     skrll static bool
    683  1.60.4.1     skrll kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
    684  1.60.4.1     skrll {
    685  1.60.4.1     skrll 	vaddr_t va;
    686  1.60.4.1     skrll 
    687  1.60.4.1     skrll 	/* If not enabled, we have nothing to do. */
    688  1.60.4.1     skrll 	if (depth == 0) {
    689  1.60.4.1     skrll 		return false;
    690  1.60.4.1     skrll 	}
    691  1.60.4.1     skrll 	depth = roundup(depth, PAGE_SIZE / sizeof(void *));
    692  1.60.4.1     skrll 	KASSERT(depth != 0);
    693  1.60.4.1     skrll 
    694  1.60.4.1     skrll 	/*
    695  1.60.4.1     skrll 	 * Allocate fifo.
    696  1.60.4.1     skrll 	 */
    697  1.60.4.1     skrll 	va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
    698  1.60.4.1     skrll 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    699  1.60.4.1     skrll 	if (va == 0) {
    700  1.60.4.1     skrll 		return false;
    701  1.60.4.1     skrll 	}
    702  1.60.4.1     skrll 
    703  1.60.4.1     skrll 	/*
    704  1.60.4.1     skrll 	 * Init object.
    705  1.60.4.1     skrll 	 */
    706  1.60.4.1     skrll 	kg->kg_vmem = vm;
    707  1.60.4.1     skrll 	kg->kg_fifo = (void *)va;
    708  1.60.4.1     skrll 	kg->kg_depth = depth;
    709  1.60.4.1     skrll 	kg->kg_rotor = 0;
    710  1.60.4.1     skrll 
    711  1.60.4.1     skrll 	printf("kmem_guard(%p): depth %d\n", kg, depth);
    712  1.60.4.1     skrll 	return true;
    713  1.60.4.1     skrll }
    714  1.60.4.1     skrll 
    715  1.60.4.1     skrll static void *
    716  1.60.4.1     skrll kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
    717  1.60.4.1     skrll {
    718  1.60.4.1     skrll 	struct vm_page *pg;
    719  1.60.4.1     skrll 	vm_flag_t flags;
    720  1.60.4.1     skrll 	vmem_addr_t va;
    721  1.60.4.1     skrll 	vaddr_t loopva;
    722  1.60.4.1     skrll 	vsize_t loopsize;
    723  1.60.4.1     skrll 	size_t size;
    724  1.60.4.1     skrll 	void **p;
    725  1.60.4.1     skrll 
    726  1.60.4.1     skrll 	/*
    727  1.60.4.1     skrll 	 * Compute the size: take the kmem header into account, and add a guard
    728  1.60.4.1     skrll 	 * page at the end.
    729  1.60.4.1     skrll 	 */
    730  1.60.4.1     skrll 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    731  1.60.4.1     skrll 
    732  1.60.4.1     skrll 	/* Allocate pages of kernel VA, but do not map anything in yet. */
    733  1.60.4.1     skrll 	flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
    734  1.60.4.1     skrll 	if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
    735  1.60.4.1     skrll 		return NULL;
    736  1.60.4.1     skrll 	}
    737  1.60.4.1     skrll 
    738  1.60.4.1     skrll 	loopva = va;
    739  1.60.4.1     skrll 	loopsize = size - PAGE_SIZE;
    740  1.60.4.1     skrll 
    741  1.60.4.1     skrll 	while (loopsize) {
    742  1.60.4.1     skrll 		pg = uvm_pagealloc(NULL, loopva, NULL, 0);
    743  1.60.4.1     skrll 		if (__predict_false(pg == NULL)) {
    744  1.60.4.1     skrll 			if (waitok) {
    745  1.60.4.1     skrll 				uvm_wait("kmem_guard");
    746  1.60.4.1     skrll 				continue;
    747  1.60.4.1     skrll 			} else {
    748  1.60.4.1     skrll 				uvm_km_pgremove_intrsafe(kernel_map, va,
    749  1.60.4.1     skrll 				    va + size);
    750  1.60.4.1     skrll 				vmem_free(kg->kg_vmem, va, size);
    751  1.60.4.1     skrll 				return NULL;
    752  1.60.4.1     skrll 			}
    753  1.60.4.1     skrll 		}
    754  1.60.4.1     skrll 
    755  1.60.4.1     skrll 		pg->flags &= ~PG_BUSY;	/* new page */
    756  1.60.4.1     skrll 		UVM_PAGE_OWN(pg, NULL);
    757  1.60.4.1     skrll 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    758  1.60.4.1     skrll 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    759  1.60.4.1     skrll 
    760  1.60.4.1     skrll 		loopva += PAGE_SIZE;
    761  1.60.4.1     skrll 		loopsize -= PAGE_SIZE;
    762  1.60.4.1     skrll 	}
    763  1.60.4.1     skrll 
    764  1.60.4.1     skrll 	pmap_update(pmap_kernel());
    765  1.60.4.1     skrll 
    766  1.60.4.1     skrll 	/*
    767  1.60.4.1     skrll 	 * Offset the returned pointer so that the unmapped guard page sits
    768  1.60.4.1     skrll 	 * immediately after the returned object.
    769  1.60.4.1     skrll 	 */
    770  1.60.4.1     skrll 	p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
    771  1.60.4.1     skrll 	kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
    772  1.60.4.1     skrll 	return (void *)p;
    773  1.60.4.1     skrll }
    774  1.60.4.1     skrll 
    775  1.60.4.1     skrll static void
    776  1.60.4.1     skrll kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
    777      1.33      haad {
    778  1.60.4.1     skrll 	vaddr_t va;
    779  1.60.4.1     skrll 	u_int rotor;
    780  1.60.4.1     skrll 	size_t size;
    781  1.60.4.1     skrll 	uint8_t *ptr;
    782      1.48  uebayasi 
    783  1.60.4.1     skrll 	ptr = (uint8_t *)p - SIZE_SIZE;
    784  1.60.4.1     skrll 	kmem_size_check(ptr, requested_size);
    785  1.60.4.1     skrll 	va = trunc_page((vaddr_t)ptr);
    786  1.60.4.1     skrll 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    787      1.33      haad 
    788  1.60.4.1     skrll 	KASSERT(pmap_extract(pmap_kernel(), va, NULL));
    789  1.60.4.1     skrll 	KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
    790      1.33      haad 
    791  1.60.4.1     skrll 	/*
    792  1.60.4.1     skrll 	 * Unmap and free the pages. The last one is never allocated.
    793  1.60.4.1     skrll 	 */
    794  1.60.4.1     skrll 	uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
    795  1.60.4.1     skrll 	pmap_update(pmap_kernel());
    796      1.38  christos 
    797  1.60.4.1     skrll #if 0
    798  1.60.4.1     skrll 	/*
    799  1.60.4.1     skrll 	 * XXX: Here, we need to atomically register the va and its size in the
    800  1.60.4.1     skrll 	 * fifo.
    801  1.60.4.1     skrll 	 */
    802      1.33      haad 
    803  1.60.4.1     skrll 	/*
    804  1.60.4.1     skrll 	 * Put the VA allocation into the list and swap an old one out to free.
    805  1.60.4.1     skrll 	 * This behaves mostly like a fifo.
    806  1.60.4.1     skrll 	 */
    807  1.60.4.1     skrll 	rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
    808  1.60.4.1     skrll 	va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
    809  1.60.4.1     skrll 	if (va != 0) {
    810  1.60.4.1     skrll 		vmem_free(kg->kg_vmem, va, size);
    811  1.60.4.1     skrll 	}
    812  1.60.4.1     skrll #else
    813  1.60.4.1     skrll 	(void)rotor;
    814  1.60.4.1     skrll 	vmem_free(kg->kg_vmem, va, size);
    815  1.60.4.1     skrll #endif
    816      1.33      haad }
    817  1.60.4.1     skrll 
    818  1.60.4.1     skrll #endif /* defined(KMEM_GUARD) */
    819