subr_kmem.c revision 1.60.4.3 1 1.60.4.3 skrll /* $NetBSD: subr_kmem.c,v 1.60.4.3 2017/08/28 17:53:07 skrll Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.60.4.1 skrll * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.60.4.1 skrll * by Andrew Doran and Maxime Villard.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.55 maxv * Allocator of kernel wired memory. This allocator has some debug features
60 1.55 maxv * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 1.50 yamt */
62 1.50 yamt
63 1.50 yamt /*
64 1.55 maxv * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 1.57 maxv * Prefix each allocations with a fixed-sized, aligned header and record
66 1.57 maxv * the exact user-requested allocation size in it. When freeing, compare
67 1.57 maxv * it with kmem_free's "size" argument.
68 1.60 maxv *
69 1.55 maxv * KMEM_REDZONE: detect overrun bugs.
70 1.57 maxv * Add a 2-byte pattern (allocate one more memory chunk if needed) at the
71 1.57 maxv * end of each allocated buffer. Check this pattern on kmem_free.
72 1.50 yamt *
73 1.60 maxv * These options are enabled on DIAGNOSTIC.
74 1.60 maxv *
75 1.60 maxv * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
76 1.60 maxv * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
77 1.60 maxv * |/////| | | | | | | | | |*|**|UU|
78 1.60 maxv * |/HSZ/| | | | | | | | | |*|**|UU|
79 1.60 maxv * |/////| | | | | | | | | |*|**|UU|
80 1.60 maxv * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
81 1.60 maxv * |Size | Buffer usable by the caller (requested size) |RedZ|Unused\
82 1.60 maxv */
83 1.60 maxv
84 1.60 maxv /*
85 1.55 maxv * KMEM_POISON: detect modify-after-free bugs.
86 1.50 yamt * Fill freed (in the sense of kmem_free) memory with a garbage pattern.
87 1.50 yamt * Check the pattern on allocation.
88 1.50 yamt *
89 1.50 yamt * KMEM_GUARD
90 1.60.4.1 skrll * A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
91 1.60.4.1 skrll * in. See the comment below for what kind of bugs it tries to detect. Even
92 1.60.4.1 skrll * if compiled in, it's disabled by default because it's very expensive.
93 1.60.4.1 skrll * You can enable it on boot by:
94 1.55 maxv * boot -d
95 1.55 maxv * db> w kmem_guard_depth 0t30000
96 1.55 maxv * db> c
97 1.1 yamt *
98 1.55 maxv * The default value of kmem_guard_depth is 0, which means disabled.
99 1.55 maxv * It can be changed by KMEM_GUARD_DEPTH kernel config option.
100 1.1 yamt */
101 1.1 yamt
102 1.1 yamt #include <sys/cdefs.h>
103 1.60.4.3 skrll __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.60.4.3 2017/08/28 17:53:07 skrll Exp $");
104 1.60.4.3 skrll #ifdef _KERNEL_OPT
105 1.60.4.3 skrll #include "opt_kmem.h"
106 1.60.4.3 skrll #endif
107 1.1 yamt
108 1.1 yamt #include <sys/param.h>
109 1.6 yamt #include <sys/callback.h>
110 1.1 yamt #include <sys/kmem.h>
111 1.39 para #include <sys/pool.h>
112 1.13 ad #include <sys/debug.h>
113 1.17 ad #include <sys/lockdebug.h>
114 1.23 ad #include <sys/cpu.h>
115 1.1 yamt
116 1.6 yamt #include <uvm/uvm_extern.h>
117 1.6 yamt #include <uvm/uvm_map.h>
118 1.6 yamt
119 1.1 yamt #include <lib/libkern/libkern.h>
120 1.1 yamt
121 1.46 para struct kmem_cache_info {
122 1.40 rmind size_t kc_size;
123 1.40 rmind const char * kc_name;
124 1.46 para };
125 1.46 para
126 1.46 para static const struct kmem_cache_info kmem_cache_sizes[] = {
127 1.39 para { 8, "kmem-8" },
128 1.39 para { 16, "kmem-16" },
129 1.39 para { 24, "kmem-24" },
130 1.39 para { 32, "kmem-32" },
131 1.39 para { 40, "kmem-40" },
132 1.39 para { 48, "kmem-48" },
133 1.39 para { 56, "kmem-56" },
134 1.39 para { 64, "kmem-64" },
135 1.39 para { 80, "kmem-80" },
136 1.39 para { 96, "kmem-96" },
137 1.39 para { 112, "kmem-112" },
138 1.39 para { 128, "kmem-128" },
139 1.39 para { 160, "kmem-160" },
140 1.39 para { 192, "kmem-192" },
141 1.39 para { 224, "kmem-224" },
142 1.39 para { 256, "kmem-256" },
143 1.39 para { 320, "kmem-320" },
144 1.39 para { 384, "kmem-384" },
145 1.39 para { 448, "kmem-448" },
146 1.39 para { 512, "kmem-512" },
147 1.39 para { 768, "kmem-768" },
148 1.39 para { 1024, "kmem-1024" },
149 1.46 para { 0, NULL }
150 1.46 para };
151 1.46 para
152 1.46 para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
153 1.39 para { 2048, "kmem-2048" },
154 1.39 para { 4096, "kmem-4096" },
155 1.46 para { 8192, "kmem-8192" },
156 1.46 para { 16384, "kmem-16384" },
157 1.39 para { 0, NULL }
158 1.39 para };
159 1.1 yamt
160 1.39 para /*
161 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
162 1.46 para * smallest allocateable quantum.
163 1.46 para * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
164 1.39 para */
165 1.40 rmind #define KMEM_ALIGN 8
166 1.40 rmind #define KMEM_SHIFT 3
167 1.46 para #define KMEM_MAXSIZE 1024
168 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
169 1.1 yamt
170 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
171 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
172 1.23 ad
173 1.46 para #define KMEM_BIG_ALIGN 2048
174 1.46 para #define KMEM_BIG_SHIFT 11
175 1.46 para #define KMEM_BIG_MAXSIZE 16384
176 1.46 para #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
177 1.46 para
178 1.46 para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
179 1.46 para static size_t kmem_cache_big_maxidx __read_mostly;
180 1.46 para
181 1.53 maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
182 1.57 maxv #define KMEM_SIZE
183 1.60 maxv #define KMEM_REDZONE
184 1.53 maxv #endif /* defined(DIAGNOSTIC) */
185 1.53 maxv
186 1.45 martin #if defined(DEBUG) && defined(_HARDKERNEL)
187 1.60.4.1 skrll #define KMEM_SIZE
188 1.19 yamt #define KMEM_POISON
189 1.27 ad #define KMEM_GUARD
190 1.60.4.1 skrll static void *kmem_freecheck;
191 1.19 yamt #endif /* defined(DEBUG) */
192 1.19 yamt
193 1.19 yamt #if defined(KMEM_POISON)
194 1.39 para static int kmem_poison_ctor(void *, void *, int);
195 1.4 yamt static void kmem_poison_fill(void *, size_t);
196 1.4 yamt static void kmem_poison_check(void *, size_t);
197 1.19 yamt #else /* defined(KMEM_POISON) */
198 1.40 rmind #define kmem_poison_fill(p, sz) /* nothing */
199 1.40 rmind #define kmem_poison_check(p, sz) /* nothing */
200 1.19 yamt #endif /* defined(KMEM_POISON) */
201 1.19 yamt
202 1.19 yamt #if defined(KMEM_REDZONE)
203 1.54 maxv #define REDZONE_SIZE 2
204 1.57 maxv static void kmem_redzone_fill(void *, size_t);
205 1.57 maxv static void kmem_redzone_check(void *, size_t);
206 1.19 yamt #else /* defined(KMEM_REDZONE) */
207 1.19 yamt #define REDZONE_SIZE 0
208 1.54 maxv #define kmem_redzone_fill(p, sz) /* nothing */
209 1.54 maxv #define kmem_redzone_check(p, sz) /* nothing */
210 1.19 yamt #endif /* defined(KMEM_REDZONE) */
211 1.4 yamt
212 1.23 ad #if defined(KMEM_SIZE)
213 1.57 maxv struct kmem_header {
214 1.57 maxv size_t size;
215 1.57 maxv } __aligned(KMEM_ALIGN);
216 1.57 maxv #define SIZE_SIZE sizeof(struct kmem_header)
217 1.23 ad static void kmem_size_set(void *, size_t);
218 1.39 para static void kmem_size_check(void *, size_t);
219 1.23 ad #else
220 1.23 ad #define SIZE_SIZE 0
221 1.23 ad #define kmem_size_set(p, sz) /* nothing */
222 1.23 ad #define kmem_size_check(p, sz) /* nothing */
223 1.23 ad #endif
224 1.23 ad
225 1.52 maxv #if defined(KMEM_GUARD)
226 1.52 maxv #ifndef KMEM_GUARD_DEPTH
227 1.52 maxv #define KMEM_GUARD_DEPTH 0
228 1.52 maxv #endif
229 1.60.4.1 skrll struct kmem_guard {
230 1.60.4.1 skrll u_int kg_depth;
231 1.60.4.1 skrll intptr_t * kg_fifo;
232 1.60.4.1 skrll u_int kg_rotor;
233 1.60.4.1 skrll vmem_t * kg_vmem;
234 1.60.4.1 skrll };
235 1.60.4.1 skrll
236 1.60.4.1 skrll static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
237 1.60.4.1 skrll static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
238 1.60.4.1 skrll static void kmem_guard_free(struct kmem_guard *, size_t, void *);
239 1.60.4.1 skrll
240 1.52 maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
241 1.60.4.1 skrll static bool kmem_guard_enabled;
242 1.60.4.1 skrll static struct kmem_guard kmem_guard;
243 1.52 maxv #endif /* defined(KMEM_GUARD) */
244 1.52 maxv
245 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
246 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
247 1.32 skrll
248 1.46 para /*
249 1.46 para * kmem_intr_alloc: allocate wired memory.
250 1.46 para */
251 1.46 para
252 1.39 para void *
253 1.50 yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
254 1.1 yamt {
255 1.40 rmind size_t allocsz, index;
256 1.50 yamt size_t size;
257 1.39 para pool_cache_t pc;
258 1.39 para uint8_t *p;
259 1.1 yamt
260 1.50 yamt KASSERT(requested_size > 0);
261 1.1 yamt
262 1.39 para #ifdef KMEM_GUARD
263 1.60.4.1 skrll if (kmem_guard_enabled) {
264 1.60.4.1 skrll return kmem_guard_alloc(&kmem_guard, requested_size,
265 1.39 para (kmflags & KM_SLEEP) != 0);
266 1.1 yamt }
267 1.39 para #endif
268 1.50 yamt size = kmem_roundup_size(requested_size);
269 1.54 maxv allocsz = size + SIZE_SIZE;
270 1.54 maxv
271 1.54 maxv #ifdef KMEM_REDZONE
272 1.54 maxv if (size - requested_size < REDZONE_SIZE) {
273 1.57 maxv /* If there isn't enough space in the padding, allocate
274 1.57 maxv * one more memory chunk for the red zone. */
275 1.56 maxv allocsz += kmem_roundup_size(REDZONE_SIZE);
276 1.54 maxv }
277 1.54 maxv #endif
278 1.39 para
279 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
280 1.46 para < kmem_cache_maxidx) {
281 1.46 para pc = kmem_cache[index];
282 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
283 1.55 maxv < kmem_cache_big_maxidx) {
284 1.46 para pc = kmem_cache_big[index];
285 1.48 uebayasi } else {
286 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
287 1.43 para (vsize_t)round_page(size),
288 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
289 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
290 1.46 para if (ret) {
291 1.46 para return NULL;
292 1.46 para }
293 1.46 para FREECHECK_OUT(&kmem_freecheck, p);
294 1.46 para return p;
295 1.1 yamt }
296 1.1 yamt
297 1.39 para p = pool_cache_get(pc, kmflags);
298 1.39 para
299 1.39 para if (__predict_true(p != NULL)) {
300 1.58 maxv kmem_poison_check(p, allocsz);
301 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
302 1.50 yamt kmem_size_set(p, requested_size);
303 1.54 maxv kmem_redzone_fill(p, requested_size + SIZE_SIZE);
304 1.47 para
305 1.47 para return p + SIZE_SIZE;
306 1.39 para }
307 1.47 para return p;
308 1.1 yamt }
309 1.1 yamt
310 1.46 para /*
311 1.46 para * kmem_intr_zalloc: allocate zeroed wired memory.
312 1.46 para */
313 1.46 para
314 1.39 para void *
315 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
316 1.23 ad {
317 1.39 para void *p;
318 1.23 ad
319 1.39 para p = kmem_intr_alloc(size, kmflags);
320 1.39 para if (p != NULL) {
321 1.39 para memset(p, 0, size);
322 1.39 para }
323 1.39 para return p;
324 1.23 ad }
325 1.23 ad
326 1.46 para /*
327 1.46 para * kmem_intr_free: free wired memory allocated by kmem_alloc.
328 1.46 para */
329 1.46 para
330 1.39 para void
331 1.50 yamt kmem_intr_free(void *p, size_t requested_size)
332 1.23 ad {
333 1.40 rmind size_t allocsz, index;
334 1.50 yamt size_t size;
335 1.39 para pool_cache_t pc;
336 1.23 ad
337 1.39 para KASSERT(p != NULL);
338 1.50 yamt KASSERT(requested_size > 0);
339 1.39 para
340 1.39 para #ifdef KMEM_GUARD
341 1.60.4.1 skrll if (kmem_guard_enabled) {
342 1.60.4.1 skrll kmem_guard_free(&kmem_guard, requested_size, p);
343 1.39 para return;
344 1.39 para }
345 1.39 para #endif
346 1.54 maxv
347 1.50 yamt size = kmem_roundup_size(requested_size);
348 1.54 maxv allocsz = size + SIZE_SIZE;
349 1.54 maxv
350 1.54 maxv #ifdef KMEM_REDZONE
351 1.54 maxv if (size - requested_size < REDZONE_SIZE) {
352 1.56 maxv allocsz += kmem_roundup_size(REDZONE_SIZE);
353 1.54 maxv }
354 1.54 maxv #endif
355 1.39 para
356 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
357 1.46 para < kmem_cache_maxidx) {
358 1.46 para pc = kmem_cache[index];
359 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
360 1.55 maxv < kmem_cache_big_maxidx) {
361 1.46 para pc = kmem_cache_big[index];
362 1.46 para } else {
363 1.46 para FREECHECK_IN(&kmem_freecheck, p);
364 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
365 1.43 para round_page(size));
366 1.39 para return;
367 1.39 para }
368 1.39 para
369 1.46 para p = (uint8_t *)p - SIZE_SIZE;
370 1.50 yamt kmem_size_check(p, requested_size);
371 1.54 maxv kmem_redzone_check(p, requested_size + SIZE_SIZE);
372 1.39 para FREECHECK_IN(&kmem_freecheck, p);
373 1.46 para LOCKDEBUG_MEM_CHECK(p, size);
374 1.39 para kmem_poison_fill(p, allocsz);
375 1.39 para
376 1.39 para pool_cache_put(pc, p);
377 1.23 ad }
378 1.23 ad
379 1.1 yamt /* ---- kmem API */
380 1.1 yamt
381 1.1 yamt /*
382 1.1 yamt * kmem_alloc: allocate wired memory.
383 1.1 yamt * => must not be called from interrupt context.
384 1.1 yamt */
385 1.1 yamt
386 1.1 yamt void *
387 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
388 1.1 yamt {
389 1.60.4.2 skrll void *v;
390 1.60.4.2 skrll
391 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
392 1.40 rmind "kmem(9) should not be used from the interrupt context");
393 1.60.4.2 skrll v = kmem_intr_alloc(size, kmflags);
394 1.60.4.2 skrll KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
395 1.60.4.2 skrll return v;
396 1.1 yamt }
397 1.1 yamt
398 1.1 yamt /*
399 1.39 para * kmem_zalloc: allocate zeroed wired memory.
400 1.2 yamt * => must not be called from interrupt context.
401 1.2 yamt */
402 1.2 yamt
403 1.2 yamt void *
404 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
405 1.2 yamt {
406 1.60.4.2 skrll void *v;
407 1.60.4.2 skrll
408 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
409 1.40 rmind "kmem(9) should not be used from the interrupt context");
410 1.60.4.2 skrll v = kmem_intr_zalloc(size, kmflags);
411 1.60.4.2 skrll KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
412 1.60.4.2 skrll return v;
413 1.2 yamt }
414 1.2 yamt
415 1.2 yamt /*
416 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
417 1.1 yamt * => must not be called from interrupt context.
418 1.1 yamt */
419 1.1 yamt
420 1.1 yamt void
421 1.1 yamt kmem_free(void *p, size_t size)
422 1.1 yamt {
423 1.23 ad KASSERT(!cpu_intr_p());
424 1.27 ad KASSERT(!cpu_softintr_p());
425 1.39 para kmem_intr_free(p, size);
426 1.1 yamt }
427 1.1 yamt
428 1.46 para static size_t
429 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
430 1.46 para pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
431 1.1 yamt {
432 1.46 para size_t maxidx = 0;
433 1.46 para size_t table_unit = (1 << shift);
434 1.39 para size_t size = table_unit;
435 1.23 ad int i;
436 1.1 yamt
437 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
438 1.40 rmind const char *name = array[i].kc_name;
439 1.39 para size_t cache_size = array[i].kc_size;
440 1.46 para struct pool_allocator *pa;
441 1.40 rmind int flags = PR_NOALIGN;
442 1.40 rmind pool_cache_t pc;
443 1.39 para size_t align;
444 1.39 para
445 1.39 para if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
446 1.39 para align = CACHE_LINE_SIZE;
447 1.39 para else if ((cache_size & (PAGE_SIZE - 1)) == 0)
448 1.39 para align = PAGE_SIZE;
449 1.39 para else
450 1.39 para align = KMEM_ALIGN;
451 1.39 para
452 1.39 para if (cache_size < CACHE_LINE_SIZE)
453 1.39 para flags |= PR_NOTOUCH;
454 1.27 ad
455 1.39 para /* check if we reached the requested size */
456 1.46 para if (cache_size > maxsize || cache_size > PAGE_SIZE) {
457 1.23 ad break;
458 1.40 rmind }
459 1.46 para if ((cache_size >> shift) > maxidx) {
460 1.46 para maxidx = cache_size >> shift;
461 1.46 para }
462 1.46 para
463 1.46 para if ((cache_size >> shift) > maxidx) {
464 1.46 para maxidx = cache_size >> shift;
465 1.40 rmind }
466 1.1 yamt
467 1.46 para pa = &pool_allocator_kmem;
468 1.39 para #if defined(KMEM_POISON)
469 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
470 1.49 yamt name, pa, ipl, kmem_poison_ctor,
471 1.39 para NULL, (void *)cache_size);
472 1.39 para #else /* defined(KMEM_POISON) */
473 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
474 1.46 para name, pa, ipl, NULL, NULL, NULL);
475 1.39 para #endif /* defined(KMEM_POISON) */
476 1.1 yamt
477 1.39 para while (size <= cache_size) {
478 1.46 para alloc_table[(size - 1) >> shift] = pc;
479 1.39 para size += table_unit;
480 1.39 para }
481 1.1 yamt }
482 1.46 para return maxidx;
483 1.1 yamt }
484 1.1 yamt
485 1.39 para void
486 1.39 para kmem_init(void)
487 1.1 yamt {
488 1.39 para #ifdef KMEM_GUARD
489 1.60.4.1 skrll kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
490 1.42 rmind kmem_va_arena);
491 1.39 para #endif
492 1.46 para kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
493 1.46 para kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
494 1.55 maxv kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
495 1.46 para kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
496 1.1 yamt }
497 1.4 yamt
498 1.39 para size_t
499 1.39 para kmem_roundup_size(size_t size)
500 1.7 yamt {
501 1.39 para return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
502 1.7 yamt }
503 1.7 yamt
504 1.60.4.1 skrll /*
505 1.60.4.1 skrll * Used to dynamically allocate string with kmem accordingly to format.
506 1.60.4.1 skrll */
507 1.60.4.1 skrll char *
508 1.60.4.1 skrll kmem_asprintf(const char *fmt, ...)
509 1.60.4.1 skrll {
510 1.60.4.1 skrll int size __diagused, len;
511 1.60.4.1 skrll va_list va;
512 1.60.4.1 skrll char *str;
513 1.60.4.1 skrll
514 1.60.4.1 skrll va_start(va, fmt);
515 1.60.4.1 skrll len = vsnprintf(NULL, 0, fmt, va);
516 1.60.4.1 skrll va_end(va);
517 1.60.4.1 skrll
518 1.60.4.1 skrll str = kmem_alloc(len + 1, KM_SLEEP);
519 1.60.4.1 skrll
520 1.60.4.1 skrll va_start(va, fmt);
521 1.60.4.1 skrll size = vsnprintf(str, len + 1, fmt, va);
522 1.60.4.1 skrll va_end(va);
523 1.60.4.1 skrll
524 1.60.4.1 skrll KASSERT(size == len);
525 1.60.4.1 skrll
526 1.60.4.1 skrll return str;
527 1.60.4.1 skrll }
528 1.60.4.1 skrll
529 1.54 maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
530 1.4 yamt
531 1.54 maxv #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
532 1.4 yamt #if defined(_LP64)
533 1.39 para #define PRIME 0x9e37fffffffc0000UL
534 1.4 yamt #else /* defined(_LP64) */
535 1.39 para #define PRIME 0x9e3779b1
536 1.4 yamt #endif /* defined(_LP64) */
537 1.4 yamt
538 1.4 yamt static inline uint8_t
539 1.59 maxv kmem_pattern_generate(const void *p)
540 1.4 yamt {
541 1.39 para return (uint8_t)(((uintptr_t)p) * PRIME
542 1.39 para >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
543 1.39 para }
544 1.59 maxv #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
545 1.39 para
546 1.59 maxv #if defined(KMEM_POISON)
547 1.39 para static int
548 1.39 para kmem_poison_ctor(void *arg, void *obj, int flag)
549 1.39 para {
550 1.39 para size_t sz = (size_t)arg;
551 1.39 para
552 1.39 para kmem_poison_fill(obj, sz);
553 1.39 para
554 1.39 para return 0;
555 1.4 yamt }
556 1.4 yamt
557 1.4 yamt static void
558 1.4 yamt kmem_poison_fill(void *p, size_t sz)
559 1.4 yamt {
560 1.4 yamt uint8_t *cp;
561 1.4 yamt const uint8_t *ep;
562 1.4 yamt
563 1.4 yamt cp = p;
564 1.4 yamt ep = cp + sz;
565 1.4 yamt while (cp < ep) {
566 1.59 maxv *cp = kmem_pattern_generate(cp);
567 1.4 yamt cp++;
568 1.4 yamt }
569 1.4 yamt }
570 1.4 yamt
571 1.4 yamt static void
572 1.4 yamt kmem_poison_check(void *p, size_t sz)
573 1.4 yamt {
574 1.4 yamt uint8_t *cp;
575 1.4 yamt const uint8_t *ep;
576 1.4 yamt
577 1.4 yamt cp = p;
578 1.4 yamt ep = cp + sz;
579 1.4 yamt while (cp < ep) {
580 1.59 maxv const uint8_t expected = kmem_pattern_generate(cp);
581 1.4 yamt
582 1.4 yamt if (*cp != expected) {
583 1.4 yamt panic("%s: %p: 0x%02x != 0x%02x\n",
584 1.39 para __func__, cp, *cp, expected);
585 1.4 yamt }
586 1.4 yamt cp++;
587 1.4 yamt }
588 1.4 yamt }
589 1.19 yamt #endif /* defined(KMEM_POISON) */
590 1.23 ad
591 1.23 ad #if defined(KMEM_SIZE)
592 1.23 ad static void
593 1.23 ad kmem_size_set(void *p, size_t sz)
594 1.23 ad {
595 1.57 maxv struct kmem_header *hd;
596 1.57 maxv hd = (struct kmem_header *)p;
597 1.57 maxv hd->size = sz;
598 1.23 ad }
599 1.23 ad
600 1.23 ad static void
601 1.39 para kmem_size_check(void *p, size_t sz)
602 1.23 ad {
603 1.57 maxv struct kmem_header *hd;
604 1.57 maxv size_t hsz;
605 1.23 ad
606 1.57 maxv hd = (struct kmem_header *)p;
607 1.57 maxv hsz = hd->size;
608 1.57 maxv
609 1.57 maxv if (hsz != sz) {
610 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
611 1.57 maxv (const uint8_t *)p + SIZE_SIZE, sz, hsz);
612 1.23 ad }
613 1.23 ad }
614 1.54 maxv #endif /* defined(KMEM_SIZE) */
615 1.54 maxv
616 1.54 maxv #if defined(KMEM_REDZONE)
617 1.59 maxv #define STATIC_BYTE 0xFE
618 1.59 maxv CTASSERT(REDZONE_SIZE > 1);
619 1.54 maxv static void
620 1.54 maxv kmem_redzone_fill(void *p, size_t sz)
621 1.54 maxv {
622 1.59 maxv uint8_t *cp, pat;
623 1.54 maxv const uint8_t *ep;
624 1.54 maxv
625 1.54 maxv cp = (uint8_t *)p + sz;
626 1.54 maxv ep = cp + REDZONE_SIZE;
627 1.59 maxv
628 1.59 maxv /*
629 1.59 maxv * We really don't want the first byte of the red zone to be '\0';
630 1.59 maxv * an off-by-one in a string may not be properly detected.
631 1.59 maxv */
632 1.59 maxv pat = kmem_pattern_generate(cp);
633 1.59 maxv *cp = (pat == '\0') ? STATIC_BYTE: pat;
634 1.59 maxv cp++;
635 1.59 maxv
636 1.54 maxv while (cp < ep) {
637 1.59 maxv *cp = kmem_pattern_generate(cp);
638 1.54 maxv cp++;
639 1.54 maxv }
640 1.54 maxv }
641 1.54 maxv
642 1.54 maxv static void
643 1.54 maxv kmem_redzone_check(void *p, size_t sz)
644 1.54 maxv {
645 1.59 maxv uint8_t *cp, pat, expected;
646 1.54 maxv const uint8_t *ep;
647 1.54 maxv
648 1.54 maxv cp = (uint8_t *)p + sz;
649 1.57 maxv ep = cp + REDZONE_SIZE;
650 1.59 maxv
651 1.59 maxv pat = kmem_pattern_generate(cp);
652 1.59 maxv expected = (pat == '\0') ? STATIC_BYTE: pat;
653 1.59 maxv if (expected != *cp) {
654 1.59 maxv panic("%s: %p: 0x%02x != 0x%02x\n",
655 1.59 maxv __func__, cp, *cp, expected);
656 1.59 maxv }
657 1.59 maxv cp++;
658 1.59 maxv
659 1.54 maxv while (cp < ep) {
660 1.59 maxv expected = kmem_pattern_generate(cp);
661 1.54 maxv if (*cp != expected) {
662 1.54 maxv panic("%s: %p: 0x%02x != 0x%02x\n",
663 1.54 maxv __func__, cp, *cp, expected);
664 1.54 maxv }
665 1.54 maxv cp++;
666 1.54 maxv }
667 1.54 maxv }
668 1.54 maxv #endif /* defined(KMEM_REDZONE) */
669 1.54 maxv
670 1.33 haad
671 1.60.4.1 skrll #if defined(KMEM_GUARD)
672 1.33 haad /*
673 1.60.4.1 skrll * The ultimate memory allocator for debugging, baby. It tries to catch:
674 1.60.4.1 skrll *
675 1.60.4.1 skrll * 1. Overflow, in realtime. A guard page sits immediately after the
676 1.60.4.1 skrll * requested area; a read/write overflow therefore triggers a page
677 1.60.4.1 skrll * fault.
678 1.60.4.1 skrll * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
679 1.60.4.1 skrll * just before the requested area, and holds the allocated size. Any
680 1.60.4.1 skrll * difference with what is given at free triggers a panic.
681 1.60.4.1 skrll * 3. Underflow, at free. If an underflow occurs, the kmem header will be
682 1.60.4.1 skrll * modified, and 2. will trigger a panic.
683 1.60.4.1 skrll * 4. Use-after-free. When freeing, the memory is unmapped, and depending
684 1.60.4.1 skrll * on the value of kmem_guard_depth, the kernel will more or less delay
685 1.60.4.1 skrll * the recycling of that memory. Which means that any ulterior read/write
686 1.60.4.1 skrll * access to the memory will trigger a page fault, given it hasn't been
687 1.60.4.1 skrll * recycled yet.
688 1.60.4.1 skrll */
689 1.60.4.1 skrll
690 1.60.4.1 skrll #include <sys/atomic.h>
691 1.60.4.1 skrll #include <uvm/uvm.h>
692 1.60.4.1 skrll
693 1.60.4.1 skrll static bool
694 1.60.4.1 skrll kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
695 1.60.4.1 skrll {
696 1.60.4.1 skrll vaddr_t va;
697 1.60.4.1 skrll
698 1.60.4.1 skrll /* If not enabled, we have nothing to do. */
699 1.60.4.1 skrll if (depth == 0) {
700 1.60.4.1 skrll return false;
701 1.60.4.1 skrll }
702 1.60.4.1 skrll depth = roundup(depth, PAGE_SIZE / sizeof(void *));
703 1.60.4.1 skrll KASSERT(depth != 0);
704 1.60.4.1 skrll
705 1.60.4.1 skrll /*
706 1.60.4.1 skrll * Allocate fifo.
707 1.60.4.1 skrll */
708 1.60.4.1 skrll va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
709 1.60.4.1 skrll UVM_KMF_WIRED | UVM_KMF_ZERO);
710 1.60.4.1 skrll if (va == 0) {
711 1.60.4.1 skrll return false;
712 1.60.4.1 skrll }
713 1.60.4.1 skrll
714 1.60.4.1 skrll /*
715 1.60.4.1 skrll * Init object.
716 1.60.4.1 skrll */
717 1.60.4.1 skrll kg->kg_vmem = vm;
718 1.60.4.1 skrll kg->kg_fifo = (void *)va;
719 1.60.4.1 skrll kg->kg_depth = depth;
720 1.60.4.1 skrll kg->kg_rotor = 0;
721 1.60.4.1 skrll
722 1.60.4.1 skrll printf("kmem_guard(%p): depth %d\n", kg, depth);
723 1.60.4.1 skrll return true;
724 1.60.4.1 skrll }
725 1.60.4.1 skrll
726 1.60.4.1 skrll static void *
727 1.60.4.1 skrll kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
728 1.60.4.1 skrll {
729 1.60.4.1 skrll struct vm_page *pg;
730 1.60.4.1 skrll vm_flag_t flags;
731 1.60.4.1 skrll vmem_addr_t va;
732 1.60.4.1 skrll vaddr_t loopva;
733 1.60.4.1 skrll vsize_t loopsize;
734 1.60.4.1 skrll size_t size;
735 1.60.4.1 skrll void **p;
736 1.60.4.1 skrll
737 1.60.4.1 skrll /*
738 1.60.4.1 skrll * Compute the size: take the kmem header into account, and add a guard
739 1.60.4.1 skrll * page at the end.
740 1.60.4.1 skrll */
741 1.60.4.1 skrll size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
742 1.60.4.1 skrll
743 1.60.4.1 skrll /* Allocate pages of kernel VA, but do not map anything in yet. */
744 1.60.4.1 skrll flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
745 1.60.4.1 skrll if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
746 1.60.4.1 skrll return NULL;
747 1.60.4.1 skrll }
748 1.60.4.1 skrll
749 1.60.4.1 skrll loopva = va;
750 1.60.4.1 skrll loopsize = size - PAGE_SIZE;
751 1.60.4.1 skrll
752 1.60.4.1 skrll while (loopsize) {
753 1.60.4.1 skrll pg = uvm_pagealloc(NULL, loopva, NULL, 0);
754 1.60.4.1 skrll if (__predict_false(pg == NULL)) {
755 1.60.4.1 skrll if (waitok) {
756 1.60.4.1 skrll uvm_wait("kmem_guard");
757 1.60.4.1 skrll continue;
758 1.60.4.1 skrll } else {
759 1.60.4.1 skrll uvm_km_pgremove_intrsafe(kernel_map, va,
760 1.60.4.1 skrll va + size);
761 1.60.4.1 skrll vmem_free(kg->kg_vmem, va, size);
762 1.60.4.1 skrll return NULL;
763 1.60.4.1 skrll }
764 1.60.4.1 skrll }
765 1.60.4.1 skrll
766 1.60.4.1 skrll pg->flags &= ~PG_BUSY; /* new page */
767 1.60.4.1 skrll UVM_PAGE_OWN(pg, NULL);
768 1.60.4.1 skrll pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
769 1.60.4.1 skrll VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
770 1.60.4.1 skrll
771 1.60.4.1 skrll loopva += PAGE_SIZE;
772 1.60.4.1 skrll loopsize -= PAGE_SIZE;
773 1.60.4.1 skrll }
774 1.60.4.1 skrll
775 1.60.4.1 skrll pmap_update(pmap_kernel());
776 1.60.4.1 skrll
777 1.60.4.1 skrll /*
778 1.60.4.1 skrll * Offset the returned pointer so that the unmapped guard page sits
779 1.60.4.1 skrll * immediately after the returned object.
780 1.60.4.1 skrll */
781 1.60.4.1 skrll p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
782 1.60.4.1 skrll kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
783 1.60.4.1 skrll return (void *)p;
784 1.60.4.1 skrll }
785 1.60.4.1 skrll
786 1.60.4.1 skrll static void
787 1.60.4.1 skrll kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
788 1.33 haad {
789 1.60.4.1 skrll vaddr_t va;
790 1.60.4.1 skrll u_int rotor;
791 1.60.4.1 skrll size_t size;
792 1.60.4.1 skrll uint8_t *ptr;
793 1.48 uebayasi
794 1.60.4.1 skrll ptr = (uint8_t *)p - SIZE_SIZE;
795 1.60.4.1 skrll kmem_size_check(ptr, requested_size);
796 1.60.4.1 skrll va = trunc_page((vaddr_t)ptr);
797 1.60.4.1 skrll size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
798 1.33 haad
799 1.60.4.1 skrll KASSERT(pmap_extract(pmap_kernel(), va, NULL));
800 1.60.4.1 skrll KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
801 1.33 haad
802 1.60.4.1 skrll /*
803 1.60.4.1 skrll * Unmap and free the pages. The last one is never allocated.
804 1.60.4.1 skrll */
805 1.60.4.1 skrll uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
806 1.60.4.1 skrll pmap_update(pmap_kernel());
807 1.38 christos
808 1.60.4.1 skrll #if 0
809 1.60.4.1 skrll /*
810 1.60.4.1 skrll * XXX: Here, we need to atomically register the va and its size in the
811 1.60.4.1 skrll * fifo.
812 1.60.4.1 skrll */
813 1.33 haad
814 1.60.4.1 skrll /*
815 1.60.4.1 skrll * Put the VA allocation into the list and swap an old one out to free.
816 1.60.4.1 skrll * This behaves mostly like a fifo.
817 1.60.4.1 skrll */
818 1.60.4.1 skrll rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
819 1.60.4.1 skrll va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
820 1.60.4.1 skrll if (va != 0) {
821 1.60.4.1 skrll vmem_free(kg->kg_vmem, va, size);
822 1.60.4.1 skrll }
823 1.60.4.1 skrll #else
824 1.60.4.1 skrll (void)rotor;
825 1.60.4.1 skrll vmem_free(kg->kg_vmem, va, size);
826 1.60.4.1 skrll #endif
827 1.33 haad }
828 1.60.4.1 skrll
829 1.60.4.1 skrll #endif /* defined(KMEM_GUARD) */
830