Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.61
      1  1.61      maxv /*	$NetBSD: subr_kmem.c,v 1.61 2015/07/27 09:24:28 maxv Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4  1.61      maxv  * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
      5  1.23        ad  * All rights reserved.
      6  1.23        ad  *
      7  1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.61      maxv  * by Andrew Doran and Maxime Villard.
      9  1.23        ad  *
     10  1.23        ad  * Redistribution and use in source and binary forms, with or without
     11  1.23        ad  * modification, are permitted provided that the following conditions
     12  1.23        ad  * are met:
     13  1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.23        ad  *    documentation and/or other materials provided with the distribution.
     18  1.23        ad  *
     19  1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.23        ad  */
     31  1.23        ad 
     32  1.23        ad /*-
     33   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34   1.1      yamt  * All rights reserved.
     35   1.1      yamt  *
     36   1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37   1.1      yamt  * modification, are permitted provided that the following conditions
     38   1.1      yamt  * are met:
     39   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44   1.1      yamt  *
     45   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55   1.1      yamt  * SUCH DAMAGE.
     56   1.1      yamt  */
     57   1.1      yamt 
     58   1.1      yamt /*
     59  1.55      maxv  * Allocator of kernel wired memory. This allocator has some debug features
     60  1.55      maxv  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  1.50      yamt  */
     62  1.50      yamt 
     63  1.50      yamt /*
     64  1.55      maxv  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  1.57      maxv  *	Prefix each allocations with a fixed-sized, aligned header and record
     66  1.57      maxv  *	the exact user-requested allocation size in it. When freeing, compare
     67  1.57      maxv  *	it with kmem_free's "size" argument.
     68  1.60      maxv  *
     69  1.55      maxv  * KMEM_REDZONE: detect overrun bugs.
     70  1.57      maxv  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
     71  1.57      maxv  *	end of each allocated buffer. Check this pattern on kmem_free.
     72  1.50      yamt  *
     73  1.60      maxv  * These options are enabled on DIAGNOSTIC.
     74  1.60      maxv  *
     75  1.60      maxv  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
     76  1.60      maxv  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     77  1.60      maxv  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     78  1.60      maxv  *  |/HSZ/|     |     |     |     |     |     |     |     |   |*|**|UU|
     79  1.60      maxv  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     80  1.60      maxv  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     81  1.60      maxv  *  |Size |    Buffer usable by the caller (requested size)   |RedZ|Unused\
     82  1.60      maxv  */
     83  1.60      maxv 
     84  1.60      maxv /*
     85  1.55      maxv  * KMEM_POISON: detect modify-after-free bugs.
     86  1.50      yamt  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     87  1.50      yamt  *	Check the pattern on allocation.
     88  1.50      yamt  *
     89  1.50      yamt  * KMEM_GUARD
     90  1.61      maxv  *	A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
     91  1.61      maxv  *	in. See the comment below for what kind of bugs it tries to detect. Even
     92  1.61      maxv  *	if compiled in, it's disabled by default because it's very expensive.
     93  1.61      maxv  *	You can enable it on boot by:
     94  1.55      maxv  *		boot -d
     95  1.55      maxv  *		db> w kmem_guard_depth 0t30000
     96  1.55      maxv  *		db> c
     97   1.1      yamt  *
     98  1.55      maxv  *	The default value of kmem_guard_depth is 0, which means disabled.
     99  1.55      maxv  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
    100   1.1      yamt  */
    101   1.1      yamt 
    102   1.1      yamt #include <sys/cdefs.h>
    103  1.61      maxv __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.61 2015/07/27 09:24:28 maxv Exp $");
    104   1.1      yamt 
    105   1.1      yamt #include <sys/param.h>
    106   1.6      yamt #include <sys/callback.h>
    107   1.1      yamt #include <sys/kmem.h>
    108  1.39      para #include <sys/pool.h>
    109  1.13        ad #include <sys/debug.h>
    110  1.17        ad #include <sys/lockdebug.h>
    111  1.23        ad #include <sys/cpu.h>
    112   1.1      yamt 
    113   1.6      yamt #include <uvm/uvm_extern.h>
    114   1.6      yamt #include <uvm/uvm_map.h>
    115   1.6      yamt 
    116   1.1      yamt #include <lib/libkern/libkern.h>
    117   1.1      yamt 
    118  1.46      para struct kmem_cache_info {
    119  1.40     rmind 	size_t		kc_size;
    120  1.40     rmind 	const char *	kc_name;
    121  1.46      para };
    122  1.46      para 
    123  1.46      para static const struct kmem_cache_info kmem_cache_sizes[] = {
    124  1.39      para 	{  8, "kmem-8" },
    125  1.39      para 	{ 16, "kmem-16" },
    126  1.39      para 	{ 24, "kmem-24" },
    127  1.39      para 	{ 32, "kmem-32" },
    128  1.39      para 	{ 40, "kmem-40" },
    129  1.39      para 	{ 48, "kmem-48" },
    130  1.39      para 	{ 56, "kmem-56" },
    131  1.39      para 	{ 64, "kmem-64" },
    132  1.39      para 	{ 80, "kmem-80" },
    133  1.39      para 	{ 96, "kmem-96" },
    134  1.39      para 	{ 112, "kmem-112" },
    135  1.39      para 	{ 128, "kmem-128" },
    136  1.39      para 	{ 160, "kmem-160" },
    137  1.39      para 	{ 192, "kmem-192" },
    138  1.39      para 	{ 224, "kmem-224" },
    139  1.39      para 	{ 256, "kmem-256" },
    140  1.39      para 	{ 320, "kmem-320" },
    141  1.39      para 	{ 384, "kmem-384" },
    142  1.39      para 	{ 448, "kmem-448" },
    143  1.39      para 	{ 512, "kmem-512" },
    144  1.39      para 	{ 768, "kmem-768" },
    145  1.39      para 	{ 1024, "kmem-1024" },
    146  1.46      para 	{ 0, NULL }
    147  1.46      para };
    148  1.46      para 
    149  1.46      para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    150  1.39      para 	{ 2048, "kmem-2048" },
    151  1.39      para 	{ 4096, "kmem-4096" },
    152  1.46      para 	{ 8192, "kmem-8192" },
    153  1.46      para 	{ 16384, "kmem-16384" },
    154  1.39      para 	{ 0, NULL }
    155  1.39      para };
    156   1.1      yamt 
    157  1.39      para /*
    158  1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    159  1.46      para  * smallest allocateable quantum.
    160  1.46      para  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    161  1.39      para  */
    162  1.40     rmind #define	KMEM_ALIGN		8
    163  1.40     rmind #define	KMEM_SHIFT		3
    164  1.46      para #define	KMEM_MAXSIZE		1024
    165  1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    166   1.1      yamt 
    167  1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    168  1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    169  1.23        ad 
    170  1.46      para #define	KMEM_BIG_ALIGN		2048
    171  1.46      para #define	KMEM_BIG_SHIFT		11
    172  1.46      para #define	KMEM_BIG_MAXSIZE	16384
    173  1.46      para #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    174  1.46      para 
    175  1.46      para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    176  1.46      para static size_t kmem_cache_big_maxidx __read_mostly;
    177  1.46      para 
    178  1.53      maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    179  1.57      maxv #define	KMEM_SIZE
    180  1.60      maxv #define	KMEM_REDZONE
    181  1.53      maxv #endif /* defined(DIAGNOSTIC) */
    182  1.53      maxv 
    183  1.45    martin #if defined(DEBUG) && defined(_HARDKERNEL)
    184  1.61      maxv #define	KMEM_SIZE
    185  1.19      yamt #define	KMEM_POISON
    186  1.27        ad #define	KMEM_GUARD
    187  1.61      maxv static void *kmem_freecheck;
    188  1.19      yamt #endif /* defined(DEBUG) */
    189  1.19      yamt 
    190  1.19      yamt #if defined(KMEM_POISON)
    191  1.39      para static int kmem_poison_ctor(void *, void *, int);
    192   1.4      yamt static void kmem_poison_fill(void *, size_t);
    193   1.4      yamt static void kmem_poison_check(void *, size_t);
    194  1.19      yamt #else /* defined(KMEM_POISON) */
    195  1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    196  1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    197  1.19      yamt #endif /* defined(KMEM_POISON) */
    198  1.19      yamt 
    199  1.19      yamt #if defined(KMEM_REDZONE)
    200  1.54      maxv #define	REDZONE_SIZE	2
    201  1.57      maxv static void kmem_redzone_fill(void *, size_t);
    202  1.57      maxv static void kmem_redzone_check(void *, size_t);
    203  1.19      yamt #else /* defined(KMEM_REDZONE) */
    204  1.19      yamt #define	REDZONE_SIZE	0
    205  1.54      maxv #define	kmem_redzone_fill(p, sz)		/* nothing */
    206  1.54      maxv #define	kmem_redzone_check(p, sz)	/* nothing */
    207  1.19      yamt #endif /* defined(KMEM_REDZONE) */
    208   1.4      yamt 
    209  1.23        ad #if defined(KMEM_SIZE)
    210  1.57      maxv struct kmem_header {
    211  1.57      maxv 	size_t		size;
    212  1.57      maxv } __aligned(KMEM_ALIGN);
    213  1.57      maxv #define	SIZE_SIZE	sizeof(struct kmem_header)
    214  1.23        ad static void kmem_size_set(void *, size_t);
    215  1.39      para static void kmem_size_check(void *, size_t);
    216  1.23        ad #else
    217  1.23        ad #define	SIZE_SIZE	0
    218  1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    219  1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    220  1.23        ad #endif
    221  1.23        ad 
    222  1.52      maxv #if defined(KMEM_GUARD)
    223  1.52      maxv #ifndef KMEM_GUARD_DEPTH
    224  1.52      maxv #define KMEM_GUARD_DEPTH 0
    225  1.52      maxv #endif
    226  1.61      maxv struct kmem_guard {
    227  1.61      maxv 	u_int		kg_depth;
    228  1.61      maxv 	intptr_t *	kg_fifo;
    229  1.61      maxv 	u_int		kg_rotor;
    230  1.61      maxv 	vmem_t *	kg_vmem;
    231  1.61      maxv };
    232  1.61      maxv 
    233  1.61      maxv static bool	kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
    234  1.61      maxv static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
    235  1.61      maxv static void kmem_guard_free(struct kmem_guard *, size_t, void *);
    236  1.61      maxv 
    237  1.52      maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
    238  1.61      maxv static bool kmem_guard_enabled;
    239  1.61      maxv static struct kmem_guard kmem_guard;
    240  1.52      maxv #endif /* defined(KMEM_GUARD) */
    241  1.52      maxv 
    242  1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    243  1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    244  1.32     skrll 
    245  1.46      para /*
    246  1.46      para  * kmem_intr_alloc: allocate wired memory.
    247  1.46      para  */
    248  1.46      para 
    249  1.39      para void *
    250  1.50      yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    251   1.1      yamt {
    252  1.40     rmind 	size_t allocsz, index;
    253  1.50      yamt 	size_t size;
    254  1.39      para 	pool_cache_t pc;
    255  1.39      para 	uint8_t *p;
    256   1.1      yamt 
    257  1.50      yamt 	KASSERT(requested_size > 0);
    258   1.1      yamt 
    259  1.39      para #ifdef KMEM_GUARD
    260  1.61      maxv 	if (kmem_guard_enabled) {
    261  1.61      maxv 		return kmem_guard_alloc(&kmem_guard, requested_size,
    262  1.39      para 		    (kmflags & KM_SLEEP) != 0);
    263   1.1      yamt 	}
    264  1.39      para #endif
    265  1.50      yamt 	size = kmem_roundup_size(requested_size);
    266  1.54      maxv 	allocsz = size + SIZE_SIZE;
    267  1.54      maxv 
    268  1.54      maxv #ifdef KMEM_REDZONE
    269  1.54      maxv 	if (size - requested_size < REDZONE_SIZE) {
    270  1.57      maxv 		/* If there isn't enough space in the padding, allocate
    271  1.57      maxv 		 * one more memory chunk for the red zone. */
    272  1.56      maxv 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    273  1.54      maxv 	}
    274  1.54      maxv #endif
    275  1.39      para 
    276  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    277  1.46      para 	    < kmem_cache_maxidx) {
    278  1.46      para 		pc = kmem_cache[index];
    279  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    280  1.55      maxv 	    < kmem_cache_big_maxidx) {
    281  1.46      para 		pc = kmem_cache_big[index];
    282  1.48  uebayasi 	} else {
    283  1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    284  1.43      para 		    (vsize_t)round_page(size),
    285  1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    286  1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    287  1.46      para 		if (ret) {
    288  1.46      para 			return NULL;
    289  1.46      para 		}
    290  1.46      para 		FREECHECK_OUT(&kmem_freecheck, p);
    291  1.46      para 		return p;
    292   1.1      yamt 	}
    293   1.1      yamt 
    294  1.39      para 	p = pool_cache_get(pc, kmflags);
    295  1.39      para 
    296  1.39      para 	if (__predict_true(p != NULL)) {
    297  1.58      maxv 		kmem_poison_check(p, allocsz);
    298  1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    299  1.50      yamt 		kmem_size_set(p, requested_size);
    300  1.54      maxv 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    301  1.47      para 
    302  1.47      para 		return p + SIZE_SIZE;
    303  1.39      para 	}
    304  1.47      para 	return p;
    305   1.1      yamt }
    306   1.1      yamt 
    307  1.46      para /*
    308  1.46      para  * kmem_intr_zalloc: allocate zeroed wired memory.
    309  1.46      para  */
    310  1.46      para 
    311  1.39      para void *
    312  1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    313  1.23        ad {
    314  1.39      para 	void *p;
    315  1.23        ad 
    316  1.39      para 	p = kmem_intr_alloc(size, kmflags);
    317  1.39      para 	if (p != NULL) {
    318  1.39      para 		memset(p, 0, size);
    319  1.39      para 	}
    320  1.39      para 	return p;
    321  1.23        ad }
    322  1.23        ad 
    323  1.46      para /*
    324  1.46      para  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    325  1.46      para  */
    326  1.46      para 
    327  1.39      para void
    328  1.50      yamt kmem_intr_free(void *p, size_t requested_size)
    329  1.23        ad {
    330  1.40     rmind 	size_t allocsz, index;
    331  1.50      yamt 	size_t size;
    332  1.39      para 	pool_cache_t pc;
    333  1.23        ad 
    334  1.39      para 	KASSERT(p != NULL);
    335  1.50      yamt 	KASSERT(requested_size > 0);
    336  1.39      para 
    337  1.39      para #ifdef KMEM_GUARD
    338  1.61      maxv 	if (kmem_guard_enabled) {
    339  1.61      maxv 		kmem_guard_free(&kmem_guard, requested_size, p);
    340  1.39      para 		return;
    341  1.39      para 	}
    342  1.39      para #endif
    343  1.54      maxv 
    344  1.50      yamt 	size = kmem_roundup_size(requested_size);
    345  1.54      maxv 	allocsz = size + SIZE_SIZE;
    346  1.54      maxv 
    347  1.54      maxv #ifdef KMEM_REDZONE
    348  1.54      maxv 	if (size - requested_size < REDZONE_SIZE) {
    349  1.56      maxv 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    350  1.54      maxv 	}
    351  1.54      maxv #endif
    352  1.39      para 
    353  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    354  1.46      para 	    < kmem_cache_maxidx) {
    355  1.46      para 		pc = kmem_cache[index];
    356  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    357  1.55      maxv 	    < kmem_cache_big_maxidx) {
    358  1.46      para 		pc = kmem_cache_big[index];
    359  1.46      para 	} else {
    360  1.46      para 		FREECHECK_IN(&kmem_freecheck, p);
    361  1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    362  1.43      para 		    round_page(size));
    363  1.39      para 		return;
    364  1.39      para 	}
    365  1.39      para 
    366  1.46      para 	p = (uint8_t *)p - SIZE_SIZE;
    367  1.50      yamt 	kmem_size_check(p, requested_size);
    368  1.54      maxv 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    369  1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    370  1.46      para 	LOCKDEBUG_MEM_CHECK(p, size);
    371  1.39      para 	kmem_poison_fill(p, allocsz);
    372  1.39      para 
    373  1.39      para 	pool_cache_put(pc, p);
    374  1.23        ad }
    375  1.23        ad 
    376   1.1      yamt /* ---- kmem API */
    377   1.1      yamt 
    378   1.1      yamt /*
    379   1.1      yamt  * kmem_alloc: allocate wired memory.
    380   1.1      yamt  * => must not be called from interrupt context.
    381   1.1      yamt  */
    382   1.1      yamt 
    383   1.1      yamt void *
    384   1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    385   1.1      yamt {
    386  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    387  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    388  1.39      para 	return kmem_intr_alloc(size, kmflags);
    389   1.1      yamt }
    390   1.1      yamt 
    391   1.1      yamt /*
    392  1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    393   1.2      yamt  * => must not be called from interrupt context.
    394   1.2      yamt  */
    395   1.2      yamt 
    396   1.2      yamt void *
    397   1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    398   1.2      yamt {
    399  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    400  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    401  1.39      para 	return kmem_intr_zalloc(size, kmflags);
    402   1.2      yamt }
    403   1.2      yamt 
    404   1.2      yamt /*
    405   1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    406   1.1      yamt  * => must not be called from interrupt context.
    407   1.1      yamt  */
    408   1.1      yamt 
    409   1.1      yamt void
    410   1.1      yamt kmem_free(void *p, size_t size)
    411   1.1      yamt {
    412  1.23        ad 	KASSERT(!cpu_intr_p());
    413  1.27        ad 	KASSERT(!cpu_softintr_p());
    414  1.39      para 	kmem_intr_free(p, size);
    415   1.1      yamt }
    416   1.1      yamt 
    417  1.46      para static size_t
    418  1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    419  1.46      para     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    420   1.1      yamt {
    421  1.46      para 	size_t maxidx = 0;
    422  1.46      para 	size_t table_unit = (1 << shift);
    423  1.39      para 	size_t size = table_unit;
    424  1.23        ad 	int i;
    425   1.1      yamt 
    426  1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    427  1.40     rmind 		const char *name = array[i].kc_name;
    428  1.39      para 		size_t cache_size = array[i].kc_size;
    429  1.46      para 		struct pool_allocator *pa;
    430  1.40     rmind 		int flags = PR_NOALIGN;
    431  1.40     rmind 		pool_cache_t pc;
    432  1.39      para 		size_t align;
    433  1.39      para 
    434  1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    435  1.39      para 			align = CACHE_LINE_SIZE;
    436  1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    437  1.39      para 			align = PAGE_SIZE;
    438  1.39      para 		else
    439  1.39      para 			align = KMEM_ALIGN;
    440  1.39      para 
    441  1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    442  1.39      para 			flags |= PR_NOTOUCH;
    443  1.27        ad 
    444  1.39      para 		/* check if we reached the requested size */
    445  1.46      para 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    446  1.23        ad 			break;
    447  1.40     rmind 		}
    448  1.46      para 		if ((cache_size >> shift) > maxidx) {
    449  1.46      para 			maxidx = cache_size >> shift;
    450  1.46      para 		}
    451  1.46      para 
    452  1.46      para 		if ((cache_size >> shift) > maxidx) {
    453  1.46      para 			maxidx = cache_size >> shift;
    454  1.40     rmind 		}
    455   1.1      yamt 
    456  1.46      para 		pa = &pool_allocator_kmem;
    457  1.39      para #if defined(KMEM_POISON)
    458  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    459  1.49      yamt 		    name, pa, ipl, kmem_poison_ctor,
    460  1.39      para 		    NULL, (void *)cache_size);
    461  1.39      para #else /* defined(KMEM_POISON) */
    462  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    463  1.46      para 		    name, pa, ipl, NULL, NULL, NULL);
    464  1.39      para #endif /* defined(KMEM_POISON) */
    465   1.1      yamt 
    466  1.39      para 		while (size <= cache_size) {
    467  1.46      para 			alloc_table[(size - 1) >> shift] = pc;
    468  1.39      para 			size += table_unit;
    469  1.39      para 		}
    470   1.1      yamt 	}
    471  1.46      para 	return maxidx;
    472   1.1      yamt }
    473   1.1      yamt 
    474  1.39      para void
    475  1.39      para kmem_init(void)
    476   1.1      yamt {
    477  1.39      para #ifdef KMEM_GUARD
    478  1.61      maxv 	kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
    479  1.42     rmind 	    kmem_va_arena);
    480  1.39      para #endif
    481  1.46      para 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    482  1.46      para 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    483  1.55      maxv 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    484  1.46      para 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    485   1.1      yamt }
    486   1.4      yamt 
    487  1.39      para size_t
    488  1.39      para kmem_roundup_size(size_t size)
    489   1.7      yamt {
    490  1.61      maxv 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    491  1.61      maxv }
    492   1.7      yamt 
    493  1.61      maxv /*
    494  1.61      maxv  * Used to dynamically allocate string with kmem accordingly to format.
    495  1.61      maxv  */
    496  1.61      maxv char *
    497  1.61      maxv kmem_asprintf(const char *fmt, ...)
    498  1.61      maxv {
    499  1.61      maxv 	int size __diagused, len;
    500  1.61      maxv 	va_list va;
    501  1.61      maxv 	char *str;
    502  1.61      maxv 
    503  1.61      maxv 	va_start(va, fmt);
    504  1.61      maxv 	len = vsnprintf(NULL, 0, fmt, va);
    505  1.61      maxv 	va_end(va);
    506  1.61      maxv 
    507  1.61      maxv 	str = kmem_alloc(len + 1, KM_SLEEP);
    508  1.61      maxv 
    509  1.61      maxv 	va_start(va, fmt);
    510  1.61      maxv 	size = vsnprintf(str, len + 1, fmt, va);
    511  1.61      maxv 	va_end(va);
    512  1.61      maxv 
    513  1.61      maxv 	KASSERT(size == len);
    514  1.61      maxv 
    515  1.61      maxv 	return str;
    516   1.7      yamt }
    517   1.7      yamt 
    518  1.54      maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    519   1.4      yamt 
    520  1.54      maxv #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    521   1.4      yamt #if defined(_LP64)
    522  1.39      para #define PRIME 0x9e37fffffffc0000UL
    523   1.4      yamt #else /* defined(_LP64) */
    524  1.39      para #define PRIME 0x9e3779b1
    525   1.4      yamt #endif /* defined(_LP64) */
    526   1.4      yamt 
    527   1.4      yamt static inline uint8_t
    528  1.59      maxv kmem_pattern_generate(const void *p)
    529   1.4      yamt {
    530  1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    531  1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    532  1.39      para }
    533  1.59      maxv #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    534  1.39      para 
    535  1.59      maxv #if defined(KMEM_POISON)
    536  1.39      para static int
    537  1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    538  1.39      para {
    539  1.39      para 	size_t sz = (size_t)arg;
    540  1.39      para 
    541  1.39      para 	kmem_poison_fill(obj, sz);
    542  1.39      para 
    543  1.39      para 	return 0;
    544   1.4      yamt }
    545   1.4      yamt 
    546   1.4      yamt static void
    547   1.4      yamt kmem_poison_fill(void *p, size_t sz)
    548   1.4      yamt {
    549   1.4      yamt 	uint8_t *cp;
    550   1.4      yamt 	const uint8_t *ep;
    551   1.4      yamt 
    552   1.4      yamt 	cp = p;
    553   1.4      yamt 	ep = cp + sz;
    554   1.4      yamt 	while (cp < ep) {
    555  1.59      maxv 		*cp = kmem_pattern_generate(cp);
    556   1.4      yamt 		cp++;
    557   1.4      yamt 	}
    558   1.4      yamt }
    559   1.4      yamt 
    560   1.4      yamt static void
    561   1.4      yamt kmem_poison_check(void *p, size_t sz)
    562   1.4      yamt {
    563   1.4      yamt 	uint8_t *cp;
    564   1.4      yamt 	const uint8_t *ep;
    565   1.4      yamt 
    566   1.4      yamt 	cp = p;
    567   1.4      yamt 	ep = cp + sz;
    568   1.4      yamt 	while (cp < ep) {
    569  1.59      maxv 		const uint8_t expected = kmem_pattern_generate(cp);
    570   1.4      yamt 
    571   1.4      yamt 		if (*cp != expected) {
    572   1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    573  1.39      para 			   __func__, cp, *cp, expected);
    574   1.4      yamt 		}
    575   1.4      yamt 		cp++;
    576   1.4      yamt 	}
    577   1.4      yamt }
    578  1.19      yamt #endif /* defined(KMEM_POISON) */
    579  1.23        ad 
    580  1.23        ad #if defined(KMEM_SIZE)
    581  1.23        ad static void
    582  1.23        ad kmem_size_set(void *p, size_t sz)
    583  1.23        ad {
    584  1.57      maxv 	struct kmem_header *hd;
    585  1.57      maxv 	hd = (struct kmem_header *)p;
    586  1.57      maxv 	hd->size = sz;
    587  1.23        ad }
    588  1.23        ad 
    589  1.23        ad static void
    590  1.39      para kmem_size_check(void *p, size_t sz)
    591  1.23        ad {
    592  1.57      maxv 	struct kmem_header *hd;
    593  1.57      maxv 	size_t hsz;
    594  1.23        ad 
    595  1.57      maxv 	hd = (struct kmem_header *)p;
    596  1.57      maxv 	hsz = hd->size;
    597  1.57      maxv 
    598  1.57      maxv 	if (hsz != sz) {
    599  1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    600  1.57      maxv 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    601  1.23        ad 	}
    602  1.23        ad }
    603  1.54      maxv #endif /* defined(KMEM_SIZE) */
    604  1.54      maxv 
    605  1.54      maxv #if defined(KMEM_REDZONE)
    606  1.59      maxv #define STATIC_BYTE	0xFE
    607  1.59      maxv CTASSERT(REDZONE_SIZE > 1);
    608  1.54      maxv static void
    609  1.54      maxv kmem_redzone_fill(void *p, size_t sz)
    610  1.54      maxv {
    611  1.59      maxv 	uint8_t *cp, pat;
    612  1.54      maxv 	const uint8_t *ep;
    613  1.54      maxv 
    614  1.54      maxv 	cp = (uint8_t *)p + sz;
    615  1.54      maxv 	ep = cp + REDZONE_SIZE;
    616  1.59      maxv 
    617  1.59      maxv 	/*
    618  1.59      maxv 	 * We really don't want the first byte of the red zone to be '\0';
    619  1.59      maxv 	 * an off-by-one in a string may not be properly detected.
    620  1.59      maxv 	 */
    621  1.59      maxv 	pat = kmem_pattern_generate(cp);
    622  1.59      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
    623  1.59      maxv 	cp++;
    624  1.59      maxv 
    625  1.54      maxv 	while (cp < ep) {
    626  1.59      maxv 		*cp = kmem_pattern_generate(cp);
    627  1.54      maxv 		cp++;
    628  1.54      maxv 	}
    629  1.54      maxv }
    630  1.54      maxv 
    631  1.54      maxv static void
    632  1.54      maxv kmem_redzone_check(void *p, size_t sz)
    633  1.54      maxv {
    634  1.59      maxv 	uint8_t *cp, pat, expected;
    635  1.54      maxv 	const uint8_t *ep;
    636  1.54      maxv 
    637  1.54      maxv 	cp = (uint8_t *)p + sz;
    638  1.57      maxv 	ep = cp + REDZONE_SIZE;
    639  1.59      maxv 
    640  1.59      maxv 	pat = kmem_pattern_generate(cp);
    641  1.59      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
    642  1.59      maxv 	if (expected != *cp) {
    643  1.59      maxv 		panic("%s: %p: 0x%02x != 0x%02x\n",
    644  1.59      maxv 		   __func__, cp, *cp, expected);
    645  1.59      maxv 	}
    646  1.59      maxv 	cp++;
    647  1.59      maxv 
    648  1.54      maxv 	while (cp < ep) {
    649  1.59      maxv 		expected = kmem_pattern_generate(cp);
    650  1.54      maxv 		if (*cp != expected) {
    651  1.54      maxv 			panic("%s: %p: 0x%02x != 0x%02x\n",
    652  1.54      maxv 			   __func__, cp, *cp, expected);
    653  1.54      maxv 		}
    654  1.54      maxv 		cp++;
    655  1.54      maxv 	}
    656  1.54      maxv }
    657  1.54      maxv #endif /* defined(KMEM_REDZONE) */
    658  1.54      maxv 
    659  1.33      haad 
    660  1.61      maxv #if defined(KMEM_GUARD)
    661  1.33      haad /*
    662  1.61      maxv  * The ultimate memory allocator for debugging, baby.  It tries to catch:
    663  1.61      maxv  *
    664  1.61      maxv  * 1. Overflow, in realtime. A guard page sits immediately after the
    665  1.61      maxv  *    requested area; a read/write overflow therefore triggers a page
    666  1.61      maxv  *    fault.
    667  1.61      maxv  * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
    668  1.61      maxv  *    just before the requested area, and holds the allocated size. Any
    669  1.61      maxv  *    difference with what is given at free triggers a panic.
    670  1.61      maxv  * 3. Underflow, at free. If an underflow occurs, the kmem header will be
    671  1.61      maxv  *    modified, and 2. will trigger a panic.
    672  1.61      maxv  * 4. Use-after-free. When freeing, the memory is unmapped, and depending
    673  1.61      maxv  *    on the value of kmem_guard_depth, the kernel will more or less delay
    674  1.61      maxv  *    the recycling of that memory. Which means that any ulterior read/write
    675  1.61      maxv  *    access to the memory will trigger a page fault, given it hasn't been
    676  1.61      maxv  *    recycled yet.
    677  1.61      maxv  */
    678  1.61      maxv 
    679  1.61      maxv #include <sys/atomic.h>
    680  1.61      maxv #include <uvm/uvm.h>
    681  1.61      maxv 
    682  1.61      maxv static bool
    683  1.61      maxv kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
    684  1.61      maxv {
    685  1.61      maxv 	vaddr_t va;
    686  1.61      maxv 
    687  1.61      maxv 	/* If not enabled, we have nothing to do. */
    688  1.61      maxv 	if (depth == 0) {
    689  1.61      maxv 		return false;
    690  1.61      maxv 	}
    691  1.61      maxv 	depth = roundup(depth, PAGE_SIZE / sizeof(void *));
    692  1.61      maxv 	KASSERT(depth != 0);
    693  1.61      maxv 
    694  1.61      maxv 	/*
    695  1.61      maxv 	 * Allocate fifo.
    696  1.61      maxv 	 */
    697  1.61      maxv 	va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
    698  1.61      maxv 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    699  1.61      maxv 	if (va == 0) {
    700  1.61      maxv 		return false;
    701  1.61      maxv 	}
    702  1.61      maxv 
    703  1.61      maxv 	/*
    704  1.61      maxv 	 * Init object.
    705  1.61      maxv 	 */
    706  1.61      maxv 	kg->kg_vmem = vm;
    707  1.61      maxv 	kg->kg_fifo = (void *)va;
    708  1.61      maxv 	kg->kg_depth = depth;
    709  1.61      maxv 	kg->kg_rotor = 0;
    710  1.61      maxv 
    711  1.61      maxv 	printf("kmem_guard(%p): depth %d\n", kg, depth);
    712  1.61      maxv 	return true;
    713  1.61      maxv }
    714  1.61      maxv 
    715  1.61      maxv static void *
    716  1.61      maxv kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
    717  1.61      maxv {
    718  1.61      maxv 	struct vm_page *pg;
    719  1.61      maxv 	vm_flag_t flags;
    720  1.61      maxv 	vmem_addr_t va;
    721  1.61      maxv 	vaddr_t loopva;
    722  1.61      maxv 	vsize_t loopsize;
    723  1.61      maxv 	size_t size;
    724  1.61      maxv 	void **p;
    725  1.61      maxv 
    726  1.61      maxv 	/*
    727  1.61      maxv 	 * Compute the size: take the kmem header into account, and add a guard
    728  1.61      maxv 	 * page at the end.
    729  1.61      maxv 	 */
    730  1.61      maxv 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    731  1.61      maxv 
    732  1.61      maxv 	/* Allocate pages of kernel VA, but do not map anything in yet. */
    733  1.61      maxv 	flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
    734  1.61      maxv 	if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
    735  1.61      maxv 		return NULL;
    736  1.61      maxv 	}
    737  1.61      maxv 
    738  1.61      maxv 	loopva = va;
    739  1.61      maxv 	loopsize = size - PAGE_SIZE;
    740  1.61      maxv 
    741  1.61      maxv 	while (loopsize) {
    742  1.61      maxv 		pg = uvm_pagealloc(NULL, loopva, NULL, 0);
    743  1.61      maxv 		if (__predict_false(pg == NULL)) {
    744  1.61      maxv 			if (waitok) {
    745  1.61      maxv 				uvm_wait("kmem_guard");
    746  1.61      maxv 				continue;
    747  1.61      maxv 			} else {
    748  1.61      maxv 				uvm_km_pgremove_intrsafe(kernel_map, va,
    749  1.61      maxv 				    va + size);
    750  1.61      maxv 				vmem_free(kg->kg_vmem, va, size);
    751  1.61      maxv 				return NULL;
    752  1.61      maxv 			}
    753  1.61      maxv 		}
    754  1.61      maxv 
    755  1.61      maxv 		pg->flags &= ~PG_BUSY;	/* new page */
    756  1.61      maxv 		UVM_PAGE_OWN(pg, NULL);
    757  1.61      maxv 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    758  1.61      maxv 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    759  1.61      maxv 
    760  1.61      maxv 		loopva += PAGE_SIZE;
    761  1.61      maxv 		loopsize -= PAGE_SIZE;
    762  1.61      maxv 	}
    763  1.61      maxv 
    764  1.61      maxv 	pmap_update(pmap_kernel());
    765  1.61      maxv 
    766  1.61      maxv 	/*
    767  1.61      maxv 	 * Offset the returned pointer so that the unmapped guard page sits
    768  1.61      maxv 	 * immediately after the returned object.
    769  1.61      maxv 	 */
    770  1.61      maxv 	p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
    771  1.61      maxv 	kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
    772  1.61      maxv 	return (void *)p;
    773  1.61      maxv }
    774  1.61      maxv 
    775  1.61      maxv static void
    776  1.61      maxv kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
    777  1.33      haad {
    778  1.61      maxv 	vaddr_t va;
    779  1.61      maxv 	u_int rotor;
    780  1.61      maxv 	size_t size;
    781  1.61      maxv 	uint8_t *ptr;
    782  1.48  uebayasi 
    783  1.61      maxv 	ptr = (uint8_t *)p - SIZE_SIZE;
    784  1.61      maxv 	kmem_size_check(ptr, requested_size);
    785  1.61      maxv 	va = trunc_page((vaddr_t)ptr);
    786  1.61      maxv 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    787  1.33      haad 
    788  1.61      maxv 	KASSERT(pmap_extract(pmap_kernel(), va, NULL));
    789  1.61      maxv 	KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
    790  1.33      haad 
    791  1.61      maxv 	/*
    792  1.61      maxv 	 * Unmap and free the pages. The last one is never allocated.
    793  1.61      maxv 	 */
    794  1.61      maxv 	uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
    795  1.61      maxv 	pmap_update(pmap_kernel());
    796  1.38  christos 
    797  1.61      maxv #if 0
    798  1.61      maxv 	/*
    799  1.61      maxv 	 * XXX: Here, we need to atomically register the va and its size in the
    800  1.61      maxv 	 * fifo.
    801  1.61      maxv 	 */
    802  1.33      haad 
    803  1.61      maxv 	/*
    804  1.61      maxv 	 * Put the VA allocation into the list and swap an old one out to free.
    805  1.61      maxv 	 * This behaves mostly like a fifo.
    806  1.61      maxv 	 */
    807  1.61      maxv 	rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
    808  1.61      maxv 	va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
    809  1.61      maxv 	if (va != 0) {
    810  1.61      maxv 		vmem_free(kg->kg_vmem, va, size);
    811  1.61      maxv 	}
    812  1.61      maxv #else
    813  1.61      maxv 	(void)rotor;
    814  1.61      maxv 	vmem_free(kg->kg_vmem, va, size);
    815  1.61      maxv #endif
    816  1.33      haad }
    817  1.61      maxv 
    818  1.61      maxv #endif /* defined(KMEM_GUARD) */
    819