Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.66
      1  1.66  christos /*	$NetBSD: subr_kmem.c,v 1.66 2018/01/09 01:53:55 christos Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4  1.61      maxv  * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
      5  1.23        ad  * All rights reserved.
      6  1.23        ad  *
      7  1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.61      maxv  * by Andrew Doran and Maxime Villard.
      9  1.23        ad  *
     10  1.23        ad  * Redistribution and use in source and binary forms, with or without
     11  1.23        ad  * modification, are permitted provided that the following conditions
     12  1.23        ad  * are met:
     13  1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.23        ad  *    documentation and/or other materials provided with the distribution.
     18  1.23        ad  *
     19  1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.23        ad  */
     31  1.23        ad 
     32  1.23        ad /*-
     33   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34   1.1      yamt  * All rights reserved.
     35   1.1      yamt  *
     36   1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37   1.1      yamt  * modification, are permitted provided that the following conditions
     38   1.1      yamt  * are met:
     39   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44   1.1      yamt  *
     45   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55   1.1      yamt  * SUCH DAMAGE.
     56   1.1      yamt  */
     57   1.1      yamt 
     58   1.1      yamt /*
     59  1.55      maxv  * Allocator of kernel wired memory. This allocator has some debug features
     60  1.55      maxv  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  1.50      yamt  */
     62  1.50      yamt 
     63  1.50      yamt /*
     64  1.55      maxv  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  1.57      maxv  *	Prefix each allocations with a fixed-sized, aligned header and record
     66  1.57      maxv  *	the exact user-requested allocation size in it. When freeing, compare
     67  1.57      maxv  *	it with kmem_free's "size" argument.
     68  1.60      maxv  *
     69  1.55      maxv  * KMEM_REDZONE: detect overrun bugs.
     70  1.57      maxv  *	Add a 2-byte pattern (allocate one more memory chunk if needed) at the
     71  1.57      maxv  *	end of each allocated buffer. Check this pattern on kmem_free.
     72  1.50      yamt  *
     73  1.60      maxv  * These options are enabled on DIAGNOSTIC.
     74  1.60      maxv  *
     75  1.60      maxv  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
     76  1.60      maxv  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     77  1.60      maxv  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     78  1.60      maxv  *  |/HSZ/|     |     |     |     |     |     |     |     |   |*|**|UU|
     79  1.60      maxv  *  |/////|     |     |     |     |     |     |     |     |   |*|**|UU|
     80  1.60      maxv  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
     81  1.60      maxv  *  |Size |    Buffer usable by the caller (requested size)   |RedZ|Unused\
     82  1.60      maxv  */
     83  1.60      maxv 
     84  1.60      maxv /*
     85  1.55      maxv  * KMEM_POISON: detect modify-after-free bugs.
     86  1.50      yamt  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     87  1.50      yamt  *	Check the pattern on allocation.
     88  1.50      yamt  *
     89  1.50      yamt  * KMEM_GUARD
     90  1.61      maxv  *	A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
     91  1.61      maxv  *	in. See the comment below for what kind of bugs it tries to detect. Even
     92  1.61      maxv  *	if compiled in, it's disabled by default because it's very expensive.
     93  1.61      maxv  *	You can enable it on boot by:
     94  1.55      maxv  *		boot -d
     95  1.55      maxv  *		db> w kmem_guard_depth 0t30000
     96  1.55      maxv  *		db> c
     97   1.1      yamt  *
     98  1.55      maxv  *	The default value of kmem_guard_depth is 0, which means disabled.
     99  1.55      maxv  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
    100   1.1      yamt  */
    101   1.1      yamt 
    102   1.1      yamt #include <sys/cdefs.h>
    103  1.66  christos __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.66 2018/01/09 01:53:55 christos Exp $");
    104  1.63  christos 
    105  1.63  christos #ifdef _KERNEL_OPT
    106  1.63  christos #include "opt_kmem.h"
    107  1.63  christos #endif
    108   1.1      yamt 
    109   1.1      yamt #include <sys/param.h>
    110   1.6      yamt #include <sys/callback.h>
    111   1.1      yamt #include <sys/kmem.h>
    112  1.39      para #include <sys/pool.h>
    113  1.13        ad #include <sys/debug.h>
    114  1.17        ad #include <sys/lockdebug.h>
    115  1.23        ad #include <sys/cpu.h>
    116   1.1      yamt 
    117   1.6      yamt #include <uvm/uvm_extern.h>
    118   1.6      yamt #include <uvm/uvm_map.h>
    119   1.6      yamt 
    120   1.1      yamt #include <lib/libkern/libkern.h>
    121   1.1      yamt 
    122  1.46      para struct kmem_cache_info {
    123  1.40     rmind 	size_t		kc_size;
    124  1.40     rmind 	const char *	kc_name;
    125  1.46      para };
    126  1.46      para 
    127  1.46      para static const struct kmem_cache_info kmem_cache_sizes[] = {
    128  1.39      para 	{  8, "kmem-8" },
    129  1.39      para 	{ 16, "kmem-16" },
    130  1.39      para 	{ 24, "kmem-24" },
    131  1.39      para 	{ 32, "kmem-32" },
    132  1.39      para 	{ 40, "kmem-40" },
    133  1.39      para 	{ 48, "kmem-48" },
    134  1.39      para 	{ 56, "kmem-56" },
    135  1.39      para 	{ 64, "kmem-64" },
    136  1.39      para 	{ 80, "kmem-80" },
    137  1.39      para 	{ 96, "kmem-96" },
    138  1.39      para 	{ 112, "kmem-112" },
    139  1.39      para 	{ 128, "kmem-128" },
    140  1.39      para 	{ 160, "kmem-160" },
    141  1.39      para 	{ 192, "kmem-192" },
    142  1.39      para 	{ 224, "kmem-224" },
    143  1.39      para 	{ 256, "kmem-256" },
    144  1.39      para 	{ 320, "kmem-320" },
    145  1.39      para 	{ 384, "kmem-384" },
    146  1.39      para 	{ 448, "kmem-448" },
    147  1.39      para 	{ 512, "kmem-512" },
    148  1.39      para 	{ 768, "kmem-768" },
    149  1.39      para 	{ 1024, "kmem-1024" },
    150  1.46      para 	{ 0, NULL }
    151  1.46      para };
    152  1.46      para 
    153  1.46      para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    154  1.39      para 	{ 2048, "kmem-2048" },
    155  1.39      para 	{ 4096, "kmem-4096" },
    156  1.46      para 	{ 8192, "kmem-8192" },
    157  1.46      para 	{ 16384, "kmem-16384" },
    158  1.39      para 	{ 0, NULL }
    159  1.39      para };
    160   1.1      yamt 
    161  1.39      para /*
    162  1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    163  1.46      para  * smallest allocateable quantum.
    164  1.46      para  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    165  1.39      para  */
    166  1.40     rmind #define	KMEM_ALIGN		8
    167  1.40     rmind #define	KMEM_SHIFT		3
    168  1.46      para #define	KMEM_MAXSIZE		1024
    169  1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    170   1.1      yamt 
    171  1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    172  1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    173  1.23        ad 
    174  1.46      para #define	KMEM_BIG_ALIGN		2048
    175  1.46      para #define	KMEM_BIG_SHIFT		11
    176  1.46      para #define	KMEM_BIG_MAXSIZE	16384
    177  1.46      para #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    178  1.46      para 
    179  1.46      para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    180  1.46      para static size_t kmem_cache_big_maxidx __read_mostly;
    181  1.46      para 
    182  1.53      maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    183  1.57      maxv #define	KMEM_SIZE
    184  1.60      maxv #define	KMEM_REDZONE
    185  1.53      maxv #endif /* defined(DIAGNOSTIC) */
    186  1.53      maxv 
    187  1.45    martin #if defined(DEBUG) && defined(_HARDKERNEL)
    188  1.61      maxv #define	KMEM_SIZE
    189  1.19      yamt #define	KMEM_POISON
    190  1.27        ad #define	KMEM_GUARD
    191  1.61      maxv static void *kmem_freecheck;
    192  1.19      yamt #endif /* defined(DEBUG) */
    193  1.19      yamt 
    194  1.19      yamt #if defined(KMEM_POISON)
    195  1.39      para static int kmem_poison_ctor(void *, void *, int);
    196   1.4      yamt static void kmem_poison_fill(void *, size_t);
    197   1.4      yamt static void kmem_poison_check(void *, size_t);
    198  1.19      yamt #else /* defined(KMEM_POISON) */
    199  1.40     rmind #define	kmem_poison_fill(p, sz)		/* nothing */
    200  1.40     rmind #define	kmem_poison_check(p, sz)	/* nothing */
    201  1.19      yamt #endif /* defined(KMEM_POISON) */
    202  1.19      yamt 
    203  1.19      yamt #if defined(KMEM_REDZONE)
    204  1.54      maxv #define	REDZONE_SIZE	2
    205  1.57      maxv static void kmem_redzone_fill(void *, size_t);
    206  1.57      maxv static void kmem_redzone_check(void *, size_t);
    207  1.19      yamt #else /* defined(KMEM_REDZONE) */
    208  1.19      yamt #define	REDZONE_SIZE	0
    209  1.54      maxv #define	kmem_redzone_fill(p, sz)		/* nothing */
    210  1.54      maxv #define	kmem_redzone_check(p, sz)	/* nothing */
    211  1.19      yamt #endif /* defined(KMEM_REDZONE) */
    212   1.4      yamt 
    213  1.23        ad #if defined(KMEM_SIZE)
    214  1.57      maxv struct kmem_header {
    215  1.57      maxv 	size_t		size;
    216  1.57      maxv } __aligned(KMEM_ALIGN);
    217  1.57      maxv #define	SIZE_SIZE	sizeof(struct kmem_header)
    218  1.23        ad static void kmem_size_set(void *, size_t);
    219  1.39      para static void kmem_size_check(void *, size_t);
    220  1.23        ad #else
    221  1.23        ad #define	SIZE_SIZE	0
    222  1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    223  1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    224  1.23        ad #endif
    225  1.23        ad 
    226  1.52      maxv #if defined(KMEM_GUARD)
    227  1.52      maxv #ifndef KMEM_GUARD_DEPTH
    228  1.52      maxv #define KMEM_GUARD_DEPTH 0
    229  1.52      maxv #endif
    230  1.61      maxv struct kmem_guard {
    231  1.61      maxv 	u_int		kg_depth;
    232  1.61      maxv 	intptr_t *	kg_fifo;
    233  1.61      maxv 	u_int		kg_rotor;
    234  1.61      maxv 	vmem_t *	kg_vmem;
    235  1.61      maxv };
    236  1.61      maxv 
    237  1.61      maxv static bool	kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
    238  1.61      maxv static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
    239  1.61      maxv static void kmem_guard_free(struct kmem_guard *, size_t, void *);
    240  1.61      maxv 
    241  1.52      maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
    242  1.61      maxv static bool kmem_guard_enabled;
    243  1.61      maxv static struct kmem_guard kmem_guard;
    244  1.52      maxv #endif /* defined(KMEM_GUARD) */
    245  1.52      maxv 
    246  1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    247  1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    248  1.32     skrll 
    249  1.46      para /*
    250  1.46      para  * kmem_intr_alloc: allocate wired memory.
    251  1.46      para  */
    252  1.46      para 
    253  1.39      para void *
    254  1.50      yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    255   1.1      yamt {
    256  1.40     rmind 	size_t allocsz, index;
    257  1.50      yamt 	size_t size;
    258  1.39      para 	pool_cache_t pc;
    259  1.39      para 	uint8_t *p;
    260   1.1      yamt 
    261  1.50      yamt 	KASSERT(requested_size > 0);
    262   1.1      yamt 
    263  1.65  riastrad 	KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
    264  1.65  riastrad 	KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
    265  1.65  riastrad 
    266  1.39      para #ifdef KMEM_GUARD
    267  1.61      maxv 	if (kmem_guard_enabled) {
    268  1.61      maxv 		return kmem_guard_alloc(&kmem_guard, requested_size,
    269  1.39      para 		    (kmflags & KM_SLEEP) != 0);
    270   1.1      yamt 	}
    271  1.39      para #endif
    272  1.50      yamt 	size = kmem_roundup_size(requested_size);
    273  1.54      maxv 	allocsz = size + SIZE_SIZE;
    274  1.54      maxv 
    275  1.54      maxv #ifdef KMEM_REDZONE
    276  1.54      maxv 	if (size - requested_size < REDZONE_SIZE) {
    277  1.57      maxv 		/* If there isn't enough space in the padding, allocate
    278  1.57      maxv 		 * one more memory chunk for the red zone. */
    279  1.56      maxv 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    280  1.54      maxv 	}
    281  1.54      maxv #endif
    282  1.39      para 
    283  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    284  1.46      para 	    < kmem_cache_maxidx) {
    285  1.46      para 		pc = kmem_cache[index];
    286  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    287  1.55      maxv 	    < kmem_cache_big_maxidx) {
    288  1.46      para 		pc = kmem_cache_big[index];
    289  1.48  uebayasi 	} else {
    290  1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    291  1.43      para 		    (vsize_t)round_page(size),
    292  1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    293  1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    294  1.46      para 		if (ret) {
    295  1.46      para 			return NULL;
    296  1.46      para 		}
    297  1.46      para 		FREECHECK_OUT(&kmem_freecheck, p);
    298  1.46      para 		return p;
    299   1.1      yamt 	}
    300   1.1      yamt 
    301  1.39      para 	p = pool_cache_get(pc, kmflags);
    302  1.39      para 
    303  1.39      para 	if (__predict_true(p != NULL)) {
    304  1.58      maxv 		kmem_poison_check(p, allocsz);
    305  1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    306  1.50      yamt 		kmem_size_set(p, requested_size);
    307  1.54      maxv 		kmem_redzone_fill(p, requested_size + SIZE_SIZE);
    308  1.47      para 
    309  1.47      para 		return p + SIZE_SIZE;
    310  1.39      para 	}
    311  1.47      para 	return p;
    312   1.1      yamt }
    313   1.1      yamt 
    314  1.46      para /*
    315  1.46      para  * kmem_intr_zalloc: allocate zeroed wired memory.
    316  1.46      para  */
    317  1.46      para 
    318  1.39      para void *
    319  1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    320  1.23        ad {
    321  1.39      para 	void *p;
    322  1.23        ad 
    323  1.39      para 	p = kmem_intr_alloc(size, kmflags);
    324  1.39      para 	if (p != NULL) {
    325  1.39      para 		memset(p, 0, size);
    326  1.39      para 	}
    327  1.39      para 	return p;
    328  1.23        ad }
    329  1.23        ad 
    330  1.46      para /*
    331  1.46      para  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    332  1.46      para  */
    333  1.46      para 
    334  1.39      para void
    335  1.50      yamt kmem_intr_free(void *p, size_t requested_size)
    336  1.23        ad {
    337  1.40     rmind 	size_t allocsz, index;
    338  1.50      yamt 	size_t size;
    339  1.39      para 	pool_cache_t pc;
    340  1.23        ad 
    341  1.39      para 	KASSERT(p != NULL);
    342  1.50      yamt 	KASSERT(requested_size > 0);
    343  1.39      para 
    344  1.39      para #ifdef KMEM_GUARD
    345  1.61      maxv 	if (kmem_guard_enabled) {
    346  1.61      maxv 		kmem_guard_free(&kmem_guard, requested_size, p);
    347  1.39      para 		return;
    348  1.39      para 	}
    349  1.39      para #endif
    350  1.54      maxv 
    351  1.50      yamt 	size = kmem_roundup_size(requested_size);
    352  1.54      maxv 	allocsz = size + SIZE_SIZE;
    353  1.54      maxv 
    354  1.54      maxv #ifdef KMEM_REDZONE
    355  1.54      maxv 	if (size - requested_size < REDZONE_SIZE) {
    356  1.56      maxv 		allocsz += kmem_roundup_size(REDZONE_SIZE);
    357  1.54      maxv 	}
    358  1.54      maxv #endif
    359  1.39      para 
    360  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    361  1.46      para 	    < kmem_cache_maxidx) {
    362  1.46      para 		pc = kmem_cache[index];
    363  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    364  1.55      maxv 	    < kmem_cache_big_maxidx) {
    365  1.46      para 		pc = kmem_cache_big[index];
    366  1.46      para 	} else {
    367  1.46      para 		FREECHECK_IN(&kmem_freecheck, p);
    368  1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    369  1.43      para 		    round_page(size));
    370  1.39      para 		return;
    371  1.39      para 	}
    372  1.39      para 
    373  1.46      para 	p = (uint8_t *)p - SIZE_SIZE;
    374  1.50      yamt 	kmem_size_check(p, requested_size);
    375  1.54      maxv 	kmem_redzone_check(p, requested_size + SIZE_SIZE);
    376  1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    377  1.46      para 	LOCKDEBUG_MEM_CHECK(p, size);
    378  1.39      para 	kmem_poison_fill(p, allocsz);
    379  1.39      para 
    380  1.39      para 	pool_cache_put(pc, p);
    381  1.23        ad }
    382  1.23        ad 
    383   1.1      yamt /* ---- kmem API */
    384   1.1      yamt 
    385   1.1      yamt /*
    386   1.1      yamt  * kmem_alloc: allocate wired memory.
    387   1.1      yamt  * => must not be called from interrupt context.
    388   1.1      yamt  */
    389   1.1      yamt 
    390   1.1      yamt void *
    391   1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    392   1.1      yamt {
    393  1.62       chs 	void *v;
    394  1.62       chs 
    395  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    396  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    397  1.62       chs 	v = kmem_intr_alloc(size, kmflags);
    398  1.62       chs 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    399  1.62       chs 	return v;
    400   1.1      yamt }
    401   1.1      yamt 
    402   1.1      yamt /*
    403  1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    404   1.2      yamt  * => must not be called from interrupt context.
    405   1.2      yamt  */
    406   1.2      yamt 
    407   1.2      yamt void *
    408   1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    409   1.2      yamt {
    410  1.62       chs 	void *v;
    411  1.62       chs 
    412  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    413  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    414  1.62       chs 	v = kmem_intr_zalloc(size, kmflags);
    415  1.62       chs 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    416  1.62       chs 	return v;
    417   1.2      yamt }
    418   1.2      yamt 
    419   1.2      yamt /*
    420   1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    421   1.1      yamt  * => must not be called from interrupt context.
    422   1.1      yamt  */
    423   1.1      yamt 
    424   1.1      yamt void
    425   1.1      yamt kmem_free(void *p, size_t size)
    426   1.1      yamt {
    427  1.23        ad 	KASSERT(!cpu_intr_p());
    428  1.27        ad 	KASSERT(!cpu_softintr_p());
    429  1.39      para 	kmem_intr_free(p, size);
    430   1.1      yamt }
    431   1.1      yamt 
    432  1.46      para static size_t
    433  1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    434  1.46      para     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    435   1.1      yamt {
    436  1.46      para 	size_t maxidx = 0;
    437  1.46      para 	size_t table_unit = (1 << shift);
    438  1.39      para 	size_t size = table_unit;
    439  1.23        ad 	int i;
    440   1.1      yamt 
    441  1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    442  1.40     rmind 		const char *name = array[i].kc_name;
    443  1.39      para 		size_t cache_size = array[i].kc_size;
    444  1.46      para 		struct pool_allocator *pa;
    445  1.40     rmind 		int flags = PR_NOALIGN;
    446  1.40     rmind 		pool_cache_t pc;
    447  1.39      para 		size_t align;
    448  1.39      para 
    449  1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    450  1.39      para 			align = CACHE_LINE_SIZE;
    451  1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    452  1.39      para 			align = PAGE_SIZE;
    453  1.39      para 		else
    454  1.39      para 			align = KMEM_ALIGN;
    455  1.39      para 
    456  1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    457  1.39      para 			flags |= PR_NOTOUCH;
    458  1.27        ad 
    459  1.39      para 		/* check if we reached the requested size */
    460  1.46      para 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    461  1.23        ad 			break;
    462  1.40     rmind 		}
    463  1.46      para 		if ((cache_size >> shift) > maxidx) {
    464  1.46      para 			maxidx = cache_size >> shift;
    465  1.46      para 		}
    466  1.46      para 
    467  1.46      para 		if ((cache_size >> shift) > maxidx) {
    468  1.46      para 			maxidx = cache_size >> shift;
    469  1.40     rmind 		}
    470   1.1      yamt 
    471  1.46      para 		pa = &pool_allocator_kmem;
    472  1.39      para #if defined(KMEM_POISON)
    473  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    474  1.49      yamt 		    name, pa, ipl, kmem_poison_ctor,
    475  1.39      para 		    NULL, (void *)cache_size);
    476  1.39      para #else /* defined(KMEM_POISON) */
    477  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    478  1.46      para 		    name, pa, ipl, NULL, NULL, NULL);
    479  1.39      para #endif /* defined(KMEM_POISON) */
    480   1.1      yamt 
    481  1.39      para 		while (size <= cache_size) {
    482  1.46      para 			alloc_table[(size - 1) >> shift] = pc;
    483  1.39      para 			size += table_unit;
    484  1.39      para 		}
    485   1.1      yamt 	}
    486  1.46      para 	return maxidx;
    487   1.1      yamt }
    488   1.1      yamt 
    489  1.39      para void
    490  1.39      para kmem_init(void)
    491   1.1      yamt {
    492  1.39      para #ifdef KMEM_GUARD
    493  1.61      maxv 	kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
    494  1.42     rmind 	    kmem_va_arena);
    495  1.39      para #endif
    496  1.46      para 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    497  1.46      para 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    498  1.55      maxv 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    499  1.46      para 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    500   1.1      yamt }
    501   1.4      yamt 
    502  1.39      para size_t
    503  1.39      para kmem_roundup_size(size_t size)
    504   1.7      yamt {
    505  1.61      maxv 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    506  1.61      maxv }
    507   1.7      yamt 
    508  1.61      maxv /*
    509  1.61      maxv  * Used to dynamically allocate string with kmem accordingly to format.
    510  1.61      maxv  */
    511  1.61      maxv char *
    512  1.61      maxv kmem_asprintf(const char *fmt, ...)
    513  1.61      maxv {
    514  1.61      maxv 	int size __diagused, len;
    515  1.61      maxv 	va_list va;
    516  1.61      maxv 	char *str;
    517  1.61      maxv 
    518  1.61      maxv 	va_start(va, fmt);
    519  1.61      maxv 	len = vsnprintf(NULL, 0, fmt, va);
    520  1.61      maxv 	va_end(va);
    521  1.61      maxv 
    522  1.61      maxv 	str = kmem_alloc(len + 1, KM_SLEEP);
    523  1.61      maxv 
    524  1.61      maxv 	va_start(va, fmt);
    525  1.61      maxv 	size = vsnprintf(str, len + 1, fmt, va);
    526  1.61      maxv 	va_end(va);
    527  1.61      maxv 
    528  1.61      maxv 	KASSERT(size == len);
    529  1.61      maxv 
    530  1.61      maxv 	return str;
    531   1.7      yamt }
    532   1.7      yamt 
    533  1.64  christos char *
    534  1.64  christos kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
    535  1.64  christos {
    536  1.64  christos 	size_t len = strlen(str) + 1;
    537  1.64  christos 	char *ptr = kmem_alloc(len, flags);
    538  1.64  christos 	if (ptr == NULL)
    539  1.64  christos 		return NULL;
    540  1.64  christos 
    541  1.64  christos 	if (lenp)
    542  1.64  christos 		*lenp = len;
    543  1.64  christos 	memcpy(ptr, str, len);
    544  1.64  christos 	return ptr;
    545  1.64  christos }
    546  1.64  christos 
    547  1.66  christos char *
    548  1.66  christos kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
    549  1.66  christos {
    550  1.66  christos 	KASSERT(str != NULL);
    551  1.66  christos 	KASSERT(maxlen != 0);
    552  1.66  christos 
    553  1.66  christos 	size_t len = strnlen(str, maxlen);
    554  1.66  christos 	char *ptr = kmem_alloc(len + 1, flags);
    555  1.66  christos 	if (ptr == NULL)
    556  1.66  christos 		return NULL;
    557  1.66  christos 
    558  1.66  christos 	memcpy(ptr, str, len);
    559  1.66  christos 	ptr[len] = '\0';
    560  1.66  christos 
    561  1.66  christos 	return ptr;
    562  1.66  christos }
    563  1.66  christos 
    564  1.64  christos void
    565  1.64  christos kmem_strfree(char *str)
    566  1.64  christos {
    567  1.64  christos 	if (str == NULL)
    568  1.64  christos 		return;
    569  1.64  christos 
    570  1.64  christos 	kmem_free(str, strlen(str) + 1);
    571  1.64  christos }
    572  1.64  christos 
    573  1.54      maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    574   1.4      yamt 
    575  1.54      maxv #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
    576   1.4      yamt #if defined(_LP64)
    577  1.39      para #define PRIME 0x9e37fffffffc0000UL
    578   1.4      yamt #else /* defined(_LP64) */
    579  1.39      para #define PRIME 0x9e3779b1
    580   1.4      yamt #endif /* defined(_LP64) */
    581   1.4      yamt 
    582   1.4      yamt static inline uint8_t
    583  1.59      maxv kmem_pattern_generate(const void *p)
    584   1.4      yamt {
    585  1.39      para 	return (uint8_t)(((uintptr_t)p) * PRIME
    586  1.39      para 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    587  1.39      para }
    588  1.59      maxv #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
    589  1.39      para 
    590  1.59      maxv #if defined(KMEM_POISON)
    591  1.39      para static int
    592  1.39      para kmem_poison_ctor(void *arg, void *obj, int flag)
    593  1.39      para {
    594  1.39      para 	size_t sz = (size_t)arg;
    595  1.39      para 
    596  1.39      para 	kmem_poison_fill(obj, sz);
    597  1.39      para 
    598  1.39      para 	return 0;
    599   1.4      yamt }
    600   1.4      yamt 
    601   1.4      yamt static void
    602   1.4      yamt kmem_poison_fill(void *p, size_t sz)
    603   1.4      yamt {
    604   1.4      yamt 	uint8_t *cp;
    605   1.4      yamt 	const uint8_t *ep;
    606   1.4      yamt 
    607   1.4      yamt 	cp = p;
    608   1.4      yamt 	ep = cp + sz;
    609   1.4      yamt 	while (cp < ep) {
    610  1.59      maxv 		*cp = kmem_pattern_generate(cp);
    611   1.4      yamt 		cp++;
    612   1.4      yamt 	}
    613   1.4      yamt }
    614   1.4      yamt 
    615   1.4      yamt static void
    616   1.4      yamt kmem_poison_check(void *p, size_t sz)
    617   1.4      yamt {
    618   1.4      yamt 	uint8_t *cp;
    619   1.4      yamt 	const uint8_t *ep;
    620   1.4      yamt 
    621   1.4      yamt 	cp = p;
    622   1.4      yamt 	ep = cp + sz;
    623   1.4      yamt 	while (cp < ep) {
    624  1.59      maxv 		const uint8_t expected = kmem_pattern_generate(cp);
    625   1.4      yamt 
    626   1.4      yamt 		if (*cp != expected) {
    627   1.4      yamt 			panic("%s: %p: 0x%02x != 0x%02x\n",
    628  1.39      para 			   __func__, cp, *cp, expected);
    629   1.4      yamt 		}
    630   1.4      yamt 		cp++;
    631   1.4      yamt 	}
    632   1.4      yamt }
    633  1.19      yamt #endif /* defined(KMEM_POISON) */
    634  1.23        ad 
    635  1.23        ad #if defined(KMEM_SIZE)
    636  1.23        ad static void
    637  1.23        ad kmem_size_set(void *p, size_t sz)
    638  1.23        ad {
    639  1.57      maxv 	struct kmem_header *hd;
    640  1.57      maxv 	hd = (struct kmem_header *)p;
    641  1.57      maxv 	hd->size = sz;
    642  1.23        ad }
    643  1.23        ad 
    644  1.23        ad static void
    645  1.39      para kmem_size_check(void *p, size_t sz)
    646  1.23        ad {
    647  1.57      maxv 	struct kmem_header *hd;
    648  1.57      maxv 	size_t hsz;
    649  1.23        ad 
    650  1.57      maxv 	hd = (struct kmem_header *)p;
    651  1.57      maxv 	hsz = hd->size;
    652  1.57      maxv 
    653  1.57      maxv 	if (hsz != sz) {
    654  1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    655  1.57      maxv 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    656  1.23        ad 	}
    657  1.23        ad }
    658  1.54      maxv #endif /* defined(KMEM_SIZE) */
    659  1.54      maxv 
    660  1.54      maxv #if defined(KMEM_REDZONE)
    661  1.59      maxv #define STATIC_BYTE	0xFE
    662  1.59      maxv CTASSERT(REDZONE_SIZE > 1);
    663  1.54      maxv static void
    664  1.54      maxv kmem_redzone_fill(void *p, size_t sz)
    665  1.54      maxv {
    666  1.59      maxv 	uint8_t *cp, pat;
    667  1.54      maxv 	const uint8_t *ep;
    668  1.54      maxv 
    669  1.54      maxv 	cp = (uint8_t *)p + sz;
    670  1.54      maxv 	ep = cp + REDZONE_SIZE;
    671  1.59      maxv 
    672  1.59      maxv 	/*
    673  1.59      maxv 	 * We really don't want the first byte of the red zone to be '\0';
    674  1.59      maxv 	 * an off-by-one in a string may not be properly detected.
    675  1.59      maxv 	 */
    676  1.59      maxv 	pat = kmem_pattern_generate(cp);
    677  1.59      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
    678  1.59      maxv 	cp++;
    679  1.59      maxv 
    680  1.54      maxv 	while (cp < ep) {
    681  1.59      maxv 		*cp = kmem_pattern_generate(cp);
    682  1.54      maxv 		cp++;
    683  1.54      maxv 	}
    684  1.54      maxv }
    685  1.54      maxv 
    686  1.54      maxv static void
    687  1.54      maxv kmem_redzone_check(void *p, size_t sz)
    688  1.54      maxv {
    689  1.59      maxv 	uint8_t *cp, pat, expected;
    690  1.54      maxv 	const uint8_t *ep;
    691  1.54      maxv 
    692  1.54      maxv 	cp = (uint8_t *)p + sz;
    693  1.57      maxv 	ep = cp + REDZONE_SIZE;
    694  1.59      maxv 
    695  1.59      maxv 	pat = kmem_pattern_generate(cp);
    696  1.59      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
    697  1.59      maxv 	if (expected != *cp) {
    698  1.59      maxv 		panic("%s: %p: 0x%02x != 0x%02x\n",
    699  1.59      maxv 		   __func__, cp, *cp, expected);
    700  1.59      maxv 	}
    701  1.59      maxv 	cp++;
    702  1.59      maxv 
    703  1.54      maxv 	while (cp < ep) {
    704  1.59      maxv 		expected = kmem_pattern_generate(cp);
    705  1.54      maxv 		if (*cp != expected) {
    706  1.54      maxv 			panic("%s: %p: 0x%02x != 0x%02x\n",
    707  1.54      maxv 			   __func__, cp, *cp, expected);
    708  1.54      maxv 		}
    709  1.54      maxv 		cp++;
    710  1.54      maxv 	}
    711  1.54      maxv }
    712  1.54      maxv #endif /* defined(KMEM_REDZONE) */
    713  1.54      maxv 
    714  1.33      haad 
    715  1.61      maxv #if defined(KMEM_GUARD)
    716  1.33      haad /*
    717  1.61      maxv  * The ultimate memory allocator for debugging, baby.  It tries to catch:
    718  1.61      maxv  *
    719  1.61      maxv  * 1. Overflow, in realtime. A guard page sits immediately after the
    720  1.61      maxv  *    requested area; a read/write overflow therefore triggers a page
    721  1.61      maxv  *    fault.
    722  1.61      maxv  * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
    723  1.61      maxv  *    just before the requested area, and holds the allocated size. Any
    724  1.61      maxv  *    difference with what is given at free triggers a panic.
    725  1.61      maxv  * 3. Underflow, at free. If an underflow occurs, the kmem header will be
    726  1.61      maxv  *    modified, and 2. will trigger a panic.
    727  1.61      maxv  * 4. Use-after-free. When freeing, the memory is unmapped, and depending
    728  1.61      maxv  *    on the value of kmem_guard_depth, the kernel will more or less delay
    729  1.61      maxv  *    the recycling of that memory. Which means that any ulterior read/write
    730  1.61      maxv  *    access to the memory will trigger a page fault, given it hasn't been
    731  1.61      maxv  *    recycled yet.
    732  1.61      maxv  */
    733  1.61      maxv 
    734  1.61      maxv #include <sys/atomic.h>
    735  1.61      maxv #include <uvm/uvm.h>
    736  1.61      maxv 
    737  1.61      maxv static bool
    738  1.61      maxv kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
    739  1.61      maxv {
    740  1.61      maxv 	vaddr_t va;
    741  1.61      maxv 
    742  1.61      maxv 	/* If not enabled, we have nothing to do. */
    743  1.61      maxv 	if (depth == 0) {
    744  1.61      maxv 		return false;
    745  1.61      maxv 	}
    746  1.61      maxv 	depth = roundup(depth, PAGE_SIZE / sizeof(void *));
    747  1.61      maxv 	KASSERT(depth != 0);
    748  1.61      maxv 
    749  1.61      maxv 	/*
    750  1.61      maxv 	 * Allocate fifo.
    751  1.61      maxv 	 */
    752  1.61      maxv 	va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
    753  1.61      maxv 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    754  1.61      maxv 	if (va == 0) {
    755  1.61      maxv 		return false;
    756  1.61      maxv 	}
    757  1.61      maxv 
    758  1.61      maxv 	/*
    759  1.61      maxv 	 * Init object.
    760  1.61      maxv 	 */
    761  1.61      maxv 	kg->kg_vmem = vm;
    762  1.61      maxv 	kg->kg_fifo = (void *)va;
    763  1.61      maxv 	kg->kg_depth = depth;
    764  1.61      maxv 	kg->kg_rotor = 0;
    765  1.61      maxv 
    766  1.61      maxv 	printf("kmem_guard(%p): depth %d\n", kg, depth);
    767  1.61      maxv 	return true;
    768  1.61      maxv }
    769  1.61      maxv 
    770  1.61      maxv static void *
    771  1.61      maxv kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
    772  1.61      maxv {
    773  1.61      maxv 	struct vm_page *pg;
    774  1.61      maxv 	vm_flag_t flags;
    775  1.61      maxv 	vmem_addr_t va;
    776  1.61      maxv 	vaddr_t loopva;
    777  1.61      maxv 	vsize_t loopsize;
    778  1.61      maxv 	size_t size;
    779  1.61      maxv 	void **p;
    780  1.61      maxv 
    781  1.61      maxv 	/*
    782  1.61      maxv 	 * Compute the size: take the kmem header into account, and add a guard
    783  1.61      maxv 	 * page at the end.
    784  1.61      maxv 	 */
    785  1.61      maxv 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    786  1.61      maxv 
    787  1.61      maxv 	/* Allocate pages of kernel VA, but do not map anything in yet. */
    788  1.61      maxv 	flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
    789  1.61      maxv 	if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
    790  1.61      maxv 		return NULL;
    791  1.61      maxv 	}
    792  1.61      maxv 
    793  1.61      maxv 	loopva = va;
    794  1.61      maxv 	loopsize = size - PAGE_SIZE;
    795  1.61      maxv 
    796  1.61      maxv 	while (loopsize) {
    797  1.61      maxv 		pg = uvm_pagealloc(NULL, loopva, NULL, 0);
    798  1.61      maxv 		if (__predict_false(pg == NULL)) {
    799  1.61      maxv 			if (waitok) {
    800  1.61      maxv 				uvm_wait("kmem_guard");
    801  1.61      maxv 				continue;
    802  1.61      maxv 			} else {
    803  1.61      maxv 				uvm_km_pgremove_intrsafe(kernel_map, va,
    804  1.61      maxv 				    va + size);
    805  1.61      maxv 				vmem_free(kg->kg_vmem, va, size);
    806  1.61      maxv 				return NULL;
    807  1.61      maxv 			}
    808  1.61      maxv 		}
    809  1.61      maxv 
    810  1.61      maxv 		pg->flags &= ~PG_BUSY;	/* new page */
    811  1.61      maxv 		UVM_PAGE_OWN(pg, NULL);
    812  1.61      maxv 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    813  1.61      maxv 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    814  1.61      maxv 
    815  1.61      maxv 		loopva += PAGE_SIZE;
    816  1.61      maxv 		loopsize -= PAGE_SIZE;
    817  1.61      maxv 	}
    818  1.61      maxv 
    819  1.61      maxv 	pmap_update(pmap_kernel());
    820  1.61      maxv 
    821  1.61      maxv 	/*
    822  1.61      maxv 	 * Offset the returned pointer so that the unmapped guard page sits
    823  1.61      maxv 	 * immediately after the returned object.
    824  1.61      maxv 	 */
    825  1.61      maxv 	p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
    826  1.61      maxv 	kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
    827  1.61      maxv 	return (void *)p;
    828  1.61      maxv }
    829  1.61      maxv 
    830  1.61      maxv static void
    831  1.61      maxv kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
    832  1.33      haad {
    833  1.61      maxv 	vaddr_t va;
    834  1.61      maxv 	u_int rotor;
    835  1.61      maxv 	size_t size;
    836  1.61      maxv 	uint8_t *ptr;
    837  1.48  uebayasi 
    838  1.61      maxv 	ptr = (uint8_t *)p - SIZE_SIZE;
    839  1.61      maxv 	kmem_size_check(ptr, requested_size);
    840  1.61      maxv 	va = trunc_page((vaddr_t)ptr);
    841  1.61      maxv 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    842  1.33      haad 
    843  1.61      maxv 	KASSERT(pmap_extract(pmap_kernel(), va, NULL));
    844  1.61      maxv 	KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
    845  1.33      haad 
    846  1.61      maxv 	/*
    847  1.61      maxv 	 * Unmap and free the pages. The last one is never allocated.
    848  1.61      maxv 	 */
    849  1.61      maxv 	uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
    850  1.61      maxv 	pmap_update(pmap_kernel());
    851  1.38  christos 
    852  1.61      maxv #if 0
    853  1.61      maxv 	/*
    854  1.61      maxv 	 * XXX: Here, we need to atomically register the va and its size in the
    855  1.61      maxv 	 * fifo.
    856  1.61      maxv 	 */
    857  1.33      haad 
    858  1.61      maxv 	/*
    859  1.61      maxv 	 * Put the VA allocation into the list and swap an old one out to free.
    860  1.61      maxv 	 * This behaves mostly like a fifo.
    861  1.61      maxv 	 */
    862  1.61      maxv 	rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
    863  1.61      maxv 	va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
    864  1.61      maxv 	if (va != 0) {
    865  1.61      maxv 		vmem_free(kg->kg_vmem, va, size);
    866  1.61      maxv 	}
    867  1.61      maxv #else
    868  1.61      maxv 	(void)rotor;
    869  1.61      maxv 	vmem_free(kg->kg_vmem, va, size);
    870  1.61      maxv #endif
    871  1.33      haad }
    872  1.61      maxv 
    873  1.61      maxv #endif /* defined(KMEM_GUARD) */
    874