Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.67
      1  1.67      maxv /*	$NetBSD: subr_kmem.c,v 1.67 2018/08/20 11:35:28 maxv Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4  1.61      maxv  * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
      5  1.23        ad  * All rights reserved.
      6  1.23        ad  *
      7  1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.61      maxv  * by Andrew Doran and Maxime Villard.
      9  1.23        ad  *
     10  1.23        ad  * Redistribution and use in source and binary forms, with or without
     11  1.23        ad  * modification, are permitted provided that the following conditions
     12  1.23        ad  * are met:
     13  1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.23        ad  *    documentation and/or other materials provided with the distribution.
     18  1.23        ad  *
     19  1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.23        ad  */
     31  1.23        ad 
     32  1.23        ad /*-
     33   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34   1.1      yamt  * All rights reserved.
     35   1.1      yamt  *
     36   1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37   1.1      yamt  * modification, are permitted provided that the following conditions
     38   1.1      yamt  * are met:
     39   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44   1.1      yamt  *
     45   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55   1.1      yamt  * SUCH DAMAGE.
     56   1.1      yamt  */
     57   1.1      yamt 
     58   1.1      yamt /*
     59  1.55      maxv  * Allocator of kernel wired memory. This allocator has some debug features
     60  1.55      maxv  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  1.50      yamt  */
     62  1.50      yamt 
     63  1.50      yamt /*
     64  1.55      maxv  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  1.57      maxv  *	Prefix each allocations with a fixed-sized, aligned header and record
     66  1.57      maxv  *	the exact user-requested allocation size in it. When freeing, compare
     67  1.57      maxv  *	it with kmem_free's "size" argument.
     68  1.60      maxv  *
     69  1.67      maxv  * This option enabled on DIAGNOSTIC.
     70  1.50      yamt  *
     71  1.67      maxv  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
     72  1.67      maxv  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
     73  1.67      maxv  *  |/////|     |     |     |     |     |     |     |     |   |U|
     74  1.67      maxv  *  |/HSZ/|     |     |     |     |     |     |     |     |   |U|
     75  1.67      maxv  *  |/////|     |     |     |     |     |     |     |     |   |U|
     76  1.67      maxv  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
     77  1.67      maxv  *  |Size |    Buffer usable by the caller (requested size)   |Unused\
     78  1.60      maxv  */
     79  1.60      maxv 
     80  1.60      maxv /*
     81  1.50      yamt  * KMEM_GUARD
     82  1.61      maxv  *	A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
     83  1.61      maxv  *	in. See the comment below for what kind of bugs it tries to detect. Even
     84  1.61      maxv  *	if compiled in, it's disabled by default because it's very expensive.
     85  1.61      maxv  *	You can enable it on boot by:
     86  1.55      maxv  *		boot -d
     87  1.55      maxv  *		db> w kmem_guard_depth 0t30000
     88  1.55      maxv  *		db> c
     89   1.1      yamt  *
     90  1.55      maxv  *	The default value of kmem_guard_depth is 0, which means disabled.
     91  1.55      maxv  *	It can be changed by KMEM_GUARD_DEPTH kernel config option.
     92   1.1      yamt  */
     93   1.1      yamt 
     94   1.1      yamt #include <sys/cdefs.h>
     95  1.67      maxv __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.67 2018/08/20 11:35:28 maxv Exp $");
     96  1.63  christos 
     97  1.63  christos #ifdef _KERNEL_OPT
     98  1.63  christos #include "opt_kmem.h"
     99  1.63  christos #endif
    100   1.1      yamt 
    101   1.1      yamt #include <sys/param.h>
    102   1.6      yamt #include <sys/callback.h>
    103   1.1      yamt #include <sys/kmem.h>
    104  1.39      para #include <sys/pool.h>
    105  1.13        ad #include <sys/debug.h>
    106  1.17        ad #include <sys/lockdebug.h>
    107  1.23        ad #include <sys/cpu.h>
    108   1.1      yamt 
    109   1.6      yamt #include <uvm/uvm_extern.h>
    110   1.6      yamt #include <uvm/uvm_map.h>
    111   1.6      yamt 
    112   1.1      yamt #include <lib/libkern/libkern.h>
    113   1.1      yamt 
    114  1.46      para struct kmem_cache_info {
    115  1.40     rmind 	size_t		kc_size;
    116  1.40     rmind 	const char *	kc_name;
    117  1.46      para };
    118  1.46      para 
    119  1.46      para static const struct kmem_cache_info kmem_cache_sizes[] = {
    120  1.39      para 	{  8, "kmem-8" },
    121  1.39      para 	{ 16, "kmem-16" },
    122  1.39      para 	{ 24, "kmem-24" },
    123  1.39      para 	{ 32, "kmem-32" },
    124  1.39      para 	{ 40, "kmem-40" },
    125  1.39      para 	{ 48, "kmem-48" },
    126  1.39      para 	{ 56, "kmem-56" },
    127  1.39      para 	{ 64, "kmem-64" },
    128  1.39      para 	{ 80, "kmem-80" },
    129  1.39      para 	{ 96, "kmem-96" },
    130  1.39      para 	{ 112, "kmem-112" },
    131  1.39      para 	{ 128, "kmem-128" },
    132  1.39      para 	{ 160, "kmem-160" },
    133  1.39      para 	{ 192, "kmem-192" },
    134  1.39      para 	{ 224, "kmem-224" },
    135  1.39      para 	{ 256, "kmem-256" },
    136  1.39      para 	{ 320, "kmem-320" },
    137  1.39      para 	{ 384, "kmem-384" },
    138  1.39      para 	{ 448, "kmem-448" },
    139  1.39      para 	{ 512, "kmem-512" },
    140  1.39      para 	{ 768, "kmem-768" },
    141  1.39      para 	{ 1024, "kmem-1024" },
    142  1.46      para 	{ 0, NULL }
    143  1.46      para };
    144  1.46      para 
    145  1.46      para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    146  1.39      para 	{ 2048, "kmem-2048" },
    147  1.39      para 	{ 4096, "kmem-4096" },
    148  1.46      para 	{ 8192, "kmem-8192" },
    149  1.46      para 	{ 16384, "kmem-16384" },
    150  1.39      para 	{ 0, NULL }
    151  1.39      para };
    152   1.1      yamt 
    153  1.39      para /*
    154  1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    155  1.46      para  * smallest allocateable quantum.
    156  1.46      para  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    157  1.39      para  */
    158  1.40     rmind #define	KMEM_ALIGN		8
    159  1.40     rmind #define	KMEM_SHIFT		3
    160  1.46      para #define	KMEM_MAXSIZE		1024
    161  1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    162   1.1      yamt 
    163  1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    164  1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    165  1.23        ad 
    166  1.46      para #define	KMEM_BIG_ALIGN		2048
    167  1.46      para #define	KMEM_BIG_SHIFT		11
    168  1.46      para #define	KMEM_BIG_MAXSIZE	16384
    169  1.46      para #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    170  1.46      para 
    171  1.46      para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    172  1.46      para static size_t kmem_cache_big_maxidx __read_mostly;
    173  1.46      para 
    174  1.53      maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    175  1.57      maxv #define	KMEM_SIZE
    176  1.67      maxv #endif
    177  1.53      maxv 
    178  1.45    martin #if defined(DEBUG) && defined(_HARDKERNEL)
    179  1.61      maxv #define	KMEM_SIZE
    180  1.27        ad #define	KMEM_GUARD
    181  1.61      maxv static void *kmem_freecheck;
    182  1.67      maxv #endif
    183   1.4      yamt 
    184  1.23        ad #if defined(KMEM_SIZE)
    185  1.57      maxv struct kmem_header {
    186  1.57      maxv 	size_t		size;
    187  1.57      maxv } __aligned(KMEM_ALIGN);
    188  1.57      maxv #define	SIZE_SIZE	sizeof(struct kmem_header)
    189  1.23        ad static void kmem_size_set(void *, size_t);
    190  1.39      para static void kmem_size_check(void *, size_t);
    191  1.23        ad #else
    192  1.23        ad #define	SIZE_SIZE	0
    193  1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    194  1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    195  1.23        ad #endif
    196  1.23        ad 
    197  1.52      maxv #if defined(KMEM_GUARD)
    198  1.52      maxv #ifndef KMEM_GUARD_DEPTH
    199  1.52      maxv #define KMEM_GUARD_DEPTH 0
    200  1.52      maxv #endif
    201  1.61      maxv struct kmem_guard {
    202  1.61      maxv 	u_int		kg_depth;
    203  1.61      maxv 	intptr_t *	kg_fifo;
    204  1.61      maxv 	u_int		kg_rotor;
    205  1.61      maxv 	vmem_t *	kg_vmem;
    206  1.61      maxv };
    207  1.67      maxv static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
    208  1.61      maxv static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
    209  1.61      maxv static void kmem_guard_free(struct kmem_guard *, size_t, void *);
    210  1.52      maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
    211  1.61      maxv static bool kmem_guard_enabled;
    212  1.61      maxv static struct kmem_guard kmem_guard;
    213  1.52      maxv #endif /* defined(KMEM_GUARD) */
    214  1.52      maxv 
    215  1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    216  1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    217  1.32     skrll 
    218  1.46      para /*
    219  1.46      para  * kmem_intr_alloc: allocate wired memory.
    220  1.46      para  */
    221  1.46      para 
    222  1.39      para void *
    223  1.50      yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    224   1.1      yamt {
    225  1.40     rmind 	size_t allocsz, index;
    226  1.50      yamt 	size_t size;
    227  1.39      para 	pool_cache_t pc;
    228  1.39      para 	uint8_t *p;
    229   1.1      yamt 
    230  1.50      yamt 	KASSERT(requested_size > 0);
    231   1.1      yamt 
    232  1.65  riastrad 	KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
    233  1.65  riastrad 	KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
    234  1.65  riastrad 
    235  1.39      para #ifdef KMEM_GUARD
    236  1.61      maxv 	if (kmem_guard_enabled) {
    237  1.61      maxv 		return kmem_guard_alloc(&kmem_guard, requested_size,
    238  1.39      para 		    (kmflags & KM_SLEEP) != 0);
    239   1.1      yamt 	}
    240  1.39      para #endif
    241  1.67      maxv 
    242  1.50      yamt 	size = kmem_roundup_size(requested_size);
    243  1.54      maxv 	allocsz = size + SIZE_SIZE;
    244  1.54      maxv 
    245  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    246  1.46      para 	    < kmem_cache_maxidx) {
    247  1.46      para 		pc = kmem_cache[index];
    248  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    249  1.55      maxv 	    < kmem_cache_big_maxidx) {
    250  1.46      para 		pc = kmem_cache_big[index];
    251  1.48  uebayasi 	} else {
    252  1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    253  1.43      para 		    (vsize_t)round_page(size),
    254  1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    255  1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    256  1.46      para 		if (ret) {
    257  1.46      para 			return NULL;
    258  1.46      para 		}
    259  1.46      para 		FREECHECK_OUT(&kmem_freecheck, p);
    260  1.46      para 		return p;
    261   1.1      yamt 	}
    262   1.1      yamt 
    263  1.39      para 	p = pool_cache_get(pc, kmflags);
    264  1.39      para 
    265  1.39      para 	if (__predict_true(p != NULL)) {
    266  1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    267  1.50      yamt 		kmem_size_set(p, requested_size);
    268  1.47      para 
    269  1.47      para 		return p + SIZE_SIZE;
    270  1.39      para 	}
    271  1.47      para 	return p;
    272   1.1      yamt }
    273   1.1      yamt 
    274  1.46      para /*
    275  1.46      para  * kmem_intr_zalloc: allocate zeroed wired memory.
    276  1.46      para  */
    277  1.46      para 
    278  1.39      para void *
    279  1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    280  1.23        ad {
    281  1.39      para 	void *p;
    282  1.23        ad 
    283  1.39      para 	p = kmem_intr_alloc(size, kmflags);
    284  1.39      para 	if (p != NULL) {
    285  1.39      para 		memset(p, 0, size);
    286  1.39      para 	}
    287  1.39      para 	return p;
    288  1.23        ad }
    289  1.23        ad 
    290  1.46      para /*
    291  1.46      para  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    292  1.46      para  */
    293  1.46      para 
    294  1.39      para void
    295  1.50      yamt kmem_intr_free(void *p, size_t requested_size)
    296  1.23        ad {
    297  1.40     rmind 	size_t allocsz, index;
    298  1.50      yamt 	size_t size;
    299  1.39      para 	pool_cache_t pc;
    300  1.23        ad 
    301  1.39      para 	KASSERT(p != NULL);
    302  1.50      yamt 	KASSERT(requested_size > 0);
    303  1.39      para 
    304  1.39      para #ifdef KMEM_GUARD
    305  1.61      maxv 	if (kmem_guard_enabled) {
    306  1.61      maxv 		kmem_guard_free(&kmem_guard, requested_size, p);
    307  1.39      para 		return;
    308  1.39      para 	}
    309  1.39      para #endif
    310  1.54      maxv 
    311  1.50      yamt 	size = kmem_roundup_size(requested_size);
    312  1.54      maxv 	allocsz = size + SIZE_SIZE;
    313  1.54      maxv 
    314  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    315  1.46      para 	    < kmem_cache_maxidx) {
    316  1.46      para 		pc = kmem_cache[index];
    317  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    318  1.55      maxv 	    < kmem_cache_big_maxidx) {
    319  1.46      para 		pc = kmem_cache_big[index];
    320  1.46      para 	} else {
    321  1.46      para 		FREECHECK_IN(&kmem_freecheck, p);
    322  1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    323  1.43      para 		    round_page(size));
    324  1.39      para 		return;
    325  1.39      para 	}
    326  1.39      para 
    327  1.46      para 	p = (uint8_t *)p - SIZE_SIZE;
    328  1.50      yamt 	kmem_size_check(p, requested_size);
    329  1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    330  1.46      para 	LOCKDEBUG_MEM_CHECK(p, size);
    331  1.39      para 
    332  1.39      para 	pool_cache_put(pc, p);
    333  1.23        ad }
    334  1.23        ad 
    335   1.1      yamt /* ---- kmem API */
    336   1.1      yamt 
    337   1.1      yamt /*
    338   1.1      yamt  * kmem_alloc: allocate wired memory.
    339   1.1      yamt  * => must not be called from interrupt context.
    340   1.1      yamt  */
    341   1.1      yamt 
    342   1.1      yamt void *
    343   1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    344   1.1      yamt {
    345  1.62       chs 	void *v;
    346  1.62       chs 
    347  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    348  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    349  1.62       chs 	v = kmem_intr_alloc(size, kmflags);
    350  1.62       chs 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    351  1.62       chs 	return v;
    352   1.1      yamt }
    353   1.1      yamt 
    354   1.1      yamt /*
    355  1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    356   1.2      yamt  * => must not be called from interrupt context.
    357   1.2      yamt  */
    358   1.2      yamt 
    359   1.2      yamt void *
    360   1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    361   1.2      yamt {
    362  1.62       chs 	void *v;
    363  1.62       chs 
    364  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    365  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    366  1.62       chs 	v = kmem_intr_zalloc(size, kmflags);
    367  1.62       chs 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    368  1.62       chs 	return v;
    369   1.2      yamt }
    370   1.2      yamt 
    371   1.2      yamt /*
    372   1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    373   1.1      yamt  * => must not be called from interrupt context.
    374   1.1      yamt  */
    375   1.1      yamt 
    376   1.1      yamt void
    377   1.1      yamt kmem_free(void *p, size_t size)
    378   1.1      yamt {
    379  1.23        ad 	KASSERT(!cpu_intr_p());
    380  1.27        ad 	KASSERT(!cpu_softintr_p());
    381  1.39      para 	kmem_intr_free(p, size);
    382   1.1      yamt }
    383   1.1      yamt 
    384  1.46      para static size_t
    385  1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    386  1.46      para     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    387   1.1      yamt {
    388  1.46      para 	size_t maxidx = 0;
    389  1.46      para 	size_t table_unit = (1 << shift);
    390  1.39      para 	size_t size = table_unit;
    391  1.23        ad 	int i;
    392   1.1      yamt 
    393  1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    394  1.40     rmind 		const char *name = array[i].kc_name;
    395  1.39      para 		size_t cache_size = array[i].kc_size;
    396  1.46      para 		struct pool_allocator *pa;
    397  1.40     rmind 		int flags = PR_NOALIGN;
    398  1.40     rmind 		pool_cache_t pc;
    399  1.39      para 		size_t align;
    400  1.39      para 
    401  1.39      para 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    402  1.39      para 			align = CACHE_LINE_SIZE;
    403  1.39      para 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    404  1.39      para 			align = PAGE_SIZE;
    405  1.39      para 		else
    406  1.39      para 			align = KMEM_ALIGN;
    407  1.39      para 
    408  1.39      para 		if (cache_size < CACHE_LINE_SIZE)
    409  1.39      para 			flags |= PR_NOTOUCH;
    410  1.27        ad 
    411  1.39      para 		/* check if we reached the requested size */
    412  1.46      para 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    413  1.23        ad 			break;
    414  1.40     rmind 		}
    415  1.46      para 		if ((cache_size >> shift) > maxidx) {
    416  1.46      para 			maxidx = cache_size >> shift;
    417  1.46      para 		}
    418  1.46      para 
    419  1.46      para 		if ((cache_size >> shift) > maxidx) {
    420  1.46      para 			maxidx = cache_size >> shift;
    421  1.40     rmind 		}
    422   1.1      yamt 
    423  1.46      para 		pa = &pool_allocator_kmem;
    424  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    425  1.46      para 		    name, pa, ipl, NULL, NULL, NULL);
    426   1.1      yamt 
    427  1.39      para 		while (size <= cache_size) {
    428  1.46      para 			alloc_table[(size - 1) >> shift] = pc;
    429  1.39      para 			size += table_unit;
    430  1.39      para 		}
    431   1.1      yamt 	}
    432  1.46      para 	return maxidx;
    433   1.1      yamt }
    434   1.1      yamt 
    435  1.39      para void
    436  1.39      para kmem_init(void)
    437   1.1      yamt {
    438  1.39      para #ifdef KMEM_GUARD
    439  1.61      maxv 	kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
    440  1.42     rmind 	    kmem_va_arena);
    441  1.39      para #endif
    442  1.46      para 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    443  1.46      para 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    444  1.55      maxv 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    445  1.46      para 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    446   1.1      yamt }
    447   1.4      yamt 
    448  1.39      para size_t
    449  1.39      para kmem_roundup_size(size_t size)
    450   1.7      yamt {
    451  1.61      maxv 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    452  1.61      maxv }
    453   1.7      yamt 
    454  1.61      maxv /*
    455  1.61      maxv  * Used to dynamically allocate string with kmem accordingly to format.
    456  1.61      maxv  */
    457  1.61      maxv char *
    458  1.61      maxv kmem_asprintf(const char *fmt, ...)
    459  1.61      maxv {
    460  1.61      maxv 	int size __diagused, len;
    461  1.61      maxv 	va_list va;
    462  1.61      maxv 	char *str;
    463  1.61      maxv 
    464  1.61      maxv 	va_start(va, fmt);
    465  1.61      maxv 	len = vsnprintf(NULL, 0, fmt, va);
    466  1.61      maxv 	va_end(va);
    467  1.61      maxv 
    468  1.61      maxv 	str = kmem_alloc(len + 1, KM_SLEEP);
    469  1.61      maxv 
    470  1.61      maxv 	va_start(va, fmt);
    471  1.61      maxv 	size = vsnprintf(str, len + 1, fmt, va);
    472  1.61      maxv 	va_end(va);
    473  1.61      maxv 
    474  1.61      maxv 	KASSERT(size == len);
    475  1.61      maxv 
    476  1.61      maxv 	return str;
    477   1.7      yamt }
    478   1.7      yamt 
    479  1.64  christos char *
    480  1.64  christos kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
    481  1.64  christos {
    482  1.64  christos 	size_t len = strlen(str) + 1;
    483  1.64  christos 	char *ptr = kmem_alloc(len, flags);
    484  1.64  christos 	if (ptr == NULL)
    485  1.64  christos 		return NULL;
    486  1.64  christos 
    487  1.64  christos 	if (lenp)
    488  1.64  christos 		*lenp = len;
    489  1.64  christos 	memcpy(ptr, str, len);
    490  1.64  christos 	return ptr;
    491  1.64  christos }
    492  1.64  christos 
    493  1.66  christos char *
    494  1.66  christos kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
    495  1.66  christos {
    496  1.66  christos 	KASSERT(str != NULL);
    497  1.66  christos 	KASSERT(maxlen != 0);
    498  1.66  christos 
    499  1.66  christos 	size_t len = strnlen(str, maxlen);
    500  1.66  christos 	char *ptr = kmem_alloc(len + 1, flags);
    501  1.66  christos 	if (ptr == NULL)
    502  1.66  christos 		return NULL;
    503  1.66  christos 
    504  1.66  christos 	memcpy(ptr, str, len);
    505  1.66  christos 	ptr[len] = '\0';
    506  1.66  christos 
    507  1.66  christos 	return ptr;
    508  1.66  christos }
    509  1.66  christos 
    510  1.64  christos void
    511  1.64  christos kmem_strfree(char *str)
    512  1.64  christos {
    513  1.64  christos 	if (str == NULL)
    514  1.64  christos 		return;
    515  1.64  christos 
    516  1.64  christos 	kmem_free(str, strlen(str) + 1);
    517  1.64  christos }
    518  1.64  christos 
    519  1.54      maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
    520   1.4      yamt 
    521  1.23        ad #if defined(KMEM_SIZE)
    522  1.23        ad static void
    523  1.23        ad kmem_size_set(void *p, size_t sz)
    524  1.23        ad {
    525  1.57      maxv 	struct kmem_header *hd;
    526  1.57      maxv 	hd = (struct kmem_header *)p;
    527  1.57      maxv 	hd->size = sz;
    528  1.23        ad }
    529  1.23        ad 
    530  1.23        ad static void
    531  1.39      para kmem_size_check(void *p, size_t sz)
    532  1.23        ad {
    533  1.57      maxv 	struct kmem_header *hd;
    534  1.57      maxv 	size_t hsz;
    535  1.23        ad 
    536  1.57      maxv 	hd = (struct kmem_header *)p;
    537  1.57      maxv 	hsz = hd->size;
    538  1.57      maxv 
    539  1.57      maxv 	if (hsz != sz) {
    540  1.23        ad 		panic("kmem_free(%p, %zu) != allocated size %zu",
    541  1.57      maxv 		    (const uint8_t *)p + SIZE_SIZE, sz, hsz);
    542  1.23        ad 	}
    543  1.23        ad }
    544  1.54      maxv #endif /* defined(KMEM_SIZE) */
    545  1.54      maxv 
    546  1.61      maxv #if defined(KMEM_GUARD)
    547  1.33      haad /*
    548  1.61      maxv  * The ultimate memory allocator for debugging, baby.  It tries to catch:
    549  1.61      maxv  *
    550  1.61      maxv  * 1. Overflow, in realtime. A guard page sits immediately after the
    551  1.61      maxv  *    requested area; a read/write overflow therefore triggers a page
    552  1.61      maxv  *    fault.
    553  1.61      maxv  * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
    554  1.61      maxv  *    just before the requested area, and holds the allocated size. Any
    555  1.61      maxv  *    difference with what is given at free triggers a panic.
    556  1.61      maxv  * 3. Underflow, at free. If an underflow occurs, the kmem header will be
    557  1.61      maxv  *    modified, and 2. will trigger a panic.
    558  1.61      maxv  * 4. Use-after-free. When freeing, the memory is unmapped, and depending
    559  1.61      maxv  *    on the value of kmem_guard_depth, the kernel will more or less delay
    560  1.61      maxv  *    the recycling of that memory. Which means that any ulterior read/write
    561  1.61      maxv  *    access to the memory will trigger a page fault, given it hasn't been
    562  1.61      maxv  *    recycled yet.
    563  1.61      maxv  */
    564  1.61      maxv 
    565  1.61      maxv #include <sys/atomic.h>
    566  1.61      maxv #include <uvm/uvm.h>
    567  1.61      maxv 
    568  1.61      maxv static bool
    569  1.61      maxv kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
    570  1.61      maxv {
    571  1.61      maxv 	vaddr_t va;
    572  1.61      maxv 
    573  1.61      maxv 	/* If not enabled, we have nothing to do. */
    574  1.61      maxv 	if (depth == 0) {
    575  1.61      maxv 		return false;
    576  1.61      maxv 	}
    577  1.61      maxv 	depth = roundup(depth, PAGE_SIZE / sizeof(void *));
    578  1.61      maxv 	KASSERT(depth != 0);
    579  1.61      maxv 
    580  1.61      maxv 	/*
    581  1.61      maxv 	 * Allocate fifo.
    582  1.61      maxv 	 */
    583  1.61      maxv 	va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
    584  1.61      maxv 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    585  1.61      maxv 	if (va == 0) {
    586  1.61      maxv 		return false;
    587  1.61      maxv 	}
    588  1.61      maxv 
    589  1.61      maxv 	/*
    590  1.61      maxv 	 * Init object.
    591  1.61      maxv 	 */
    592  1.61      maxv 	kg->kg_vmem = vm;
    593  1.61      maxv 	kg->kg_fifo = (void *)va;
    594  1.61      maxv 	kg->kg_depth = depth;
    595  1.61      maxv 	kg->kg_rotor = 0;
    596  1.61      maxv 
    597  1.61      maxv 	printf("kmem_guard(%p): depth %d\n", kg, depth);
    598  1.61      maxv 	return true;
    599  1.61      maxv }
    600  1.61      maxv 
    601  1.61      maxv static void *
    602  1.61      maxv kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
    603  1.61      maxv {
    604  1.61      maxv 	struct vm_page *pg;
    605  1.61      maxv 	vm_flag_t flags;
    606  1.61      maxv 	vmem_addr_t va;
    607  1.61      maxv 	vaddr_t loopva;
    608  1.61      maxv 	vsize_t loopsize;
    609  1.61      maxv 	size_t size;
    610  1.61      maxv 	void **p;
    611  1.61      maxv 
    612  1.61      maxv 	/*
    613  1.61      maxv 	 * Compute the size: take the kmem header into account, and add a guard
    614  1.61      maxv 	 * page at the end.
    615  1.61      maxv 	 */
    616  1.61      maxv 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    617  1.61      maxv 
    618  1.61      maxv 	/* Allocate pages of kernel VA, but do not map anything in yet. */
    619  1.61      maxv 	flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
    620  1.61      maxv 	if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
    621  1.61      maxv 		return NULL;
    622  1.61      maxv 	}
    623  1.61      maxv 
    624  1.61      maxv 	loopva = va;
    625  1.61      maxv 	loopsize = size - PAGE_SIZE;
    626  1.61      maxv 
    627  1.61      maxv 	while (loopsize) {
    628  1.61      maxv 		pg = uvm_pagealloc(NULL, loopva, NULL, 0);
    629  1.61      maxv 		if (__predict_false(pg == NULL)) {
    630  1.61      maxv 			if (waitok) {
    631  1.61      maxv 				uvm_wait("kmem_guard");
    632  1.61      maxv 				continue;
    633  1.61      maxv 			} else {
    634  1.61      maxv 				uvm_km_pgremove_intrsafe(kernel_map, va,
    635  1.61      maxv 				    va + size);
    636  1.61      maxv 				vmem_free(kg->kg_vmem, va, size);
    637  1.61      maxv 				return NULL;
    638  1.61      maxv 			}
    639  1.61      maxv 		}
    640  1.61      maxv 
    641  1.61      maxv 		pg->flags &= ~PG_BUSY;	/* new page */
    642  1.61      maxv 		UVM_PAGE_OWN(pg, NULL);
    643  1.61      maxv 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    644  1.61      maxv 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    645  1.61      maxv 
    646  1.61      maxv 		loopva += PAGE_SIZE;
    647  1.61      maxv 		loopsize -= PAGE_SIZE;
    648  1.61      maxv 	}
    649  1.61      maxv 
    650  1.61      maxv 	pmap_update(pmap_kernel());
    651  1.61      maxv 
    652  1.61      maxv 	/*
    653  1.61      maxv 	 * Offset the returned pointer so that the unmapped guard page sits
    654  1.61      maxv 	 * immediately after the returned object.
    655  1.61      maxv 	 */
    656  1.61      maxv 	p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
    657  1.61      maxv 	kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
    658  1.61      maxv 	return (void *)p;
    659  1.61      maxv }
    660  1.61      maxv 
    661  1.61      maxv static void
    662  1.61      maxv kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
    663  1.33      haad {
    664  1.61      maxv 	vaddr_t va;
    665  1.61      maxv 	u_int rotor;
    666  1.61      maxv 	size_t size;
    667  1.61      maxv 	uint8_t *ptr;
    668  1.48  uebayasi 
    669  1.61      maxv 	ptr = (uint8_t *)p - SIZE_SIZE;
    670  1.61      maxv 	kmem_size_check(ptr, requested_size);
    671  1.61      maxv 	va = trunc_page((vaddr_t)ptr);
    672  1.61      maxv 	size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
    673  1.33      haad 
    674  1.61      maxv 	KASSERT(pmap_extract(pmap_kernel(), va, NULL));
    675  1.61      maxv 	KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
    676  1.33      haad 
    677  1.61      maxv 	/*
    678  1.61      maxv 	 * Unmap and free the pages. The last one is never allocated.
    679  1.61      maxv 	 */
    680  1.61      maxv 	uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
    681  1.61      maxv 	pmap_update(pmap_kernel());
    682  1.38  christos 
    683  1.61      maxv #if 0
    684  1.61      maxv 	/*
    685  1.61      maxv 	 * XXX: Here, we need to atomically register the va and its size in the
    686  1.61      maxv 	 * fifo.
    687  1.61      maxv 	 */
    688  1.33      haad 
    689  1.61      maxv 	/*
    690  1.61      maxv 	 * Put the VA allocation into the list and swap an old one out to free.
    691  1.61      maxv 	 * This behaves mostly like a fifo.
    692  1.61      maxv 	 */
    693  1.61      maxv 	rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
    694  1.61      maxv 	va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
    695  1.61      maxv 	if (va != 0) {
    696  1.61      maxv 		vmem_free(kg->kg_vmem, va, size);
    697  1.61      maxv 	}
    698  1.61      maxv #else
    699  1.61      maxv 	(void)rotor;
    700  1.61      maxv 	vmem_free(kg->kg_vmem, va, size);
    701  1.61      maxv #endif
    702  1.33      haad }
    703  1.61      maxv 
    704  1.61      maxv #endif /* defined(KMEM_GUARD) */
    705