subr_kmem.c revision 1.69 1 1.69 maxv /* $NetBSD: subr_kmem.c,v 1.69 2018/08/20 15:04:52 maxv Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.61 maxv * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.61 maxv * by Andrew Doran and Maxime Villard.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.55 maxv * Allocator of kernel wired memory. This allocator has some debug features
60 1.55 maxv * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 1.50 yamt */
62 1.50 yamt
63 1.50 yamt /*
64 1.55 maxv * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 1.57 maxv * Prefix each allocations with a fixed-sized, aligned header and record
66 1.57 maxv * the exact user-requested allocation size in it. When freeing, compare
67 1.57 maxv * it with kmem_free's "size" argument.
68 1.60 maxv *
69 1.67 maxv * This option enabled on DIAGNOSTIC.
70 1.50 yamt *
71 1.67 maxv * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
72 1.67 maxv * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
73 1.67 maxv * |/////| | | | | | | | | |U|
74 1.67 maxv * |/HSZ/| | | | | | | | | |U|
75 1.67 maxv * |/////| | | | | | | | | |U|
76 1.67 maxv * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
77 1.67 maxv * |Size | Buffer usable by the caller (requested size) |Unused\
78 1.60 maxv */
79 1.60 maxv
80 1.60 maxv /*
81 1.50 yamt * KMEM_GUARD
82 1.61 maxv * A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
83 1.61 maxv * in. See the comment below for what kind of bugs it tries to detect. Even
84 1.61 maxv * if compiled in, it's disabled by default because it's very expensive.
85 1.61 maxv * You can enable it on boot by:
86 1.55 maxv * boot -d
87 1.55 maxv * db> w kmem_guard_depth 0t30000
88 1.55 maxv * db> c
89 1.1 yamt *
90 1.55 maxv * The default value of kmem_guard_depth is 0, which means disabled.
91 1.55 maxv * It can be changed by KMEM_GUARD_DEPTH kernel config option.
92 1.1 yamt */
93 1.1 yamt
94 1.1 yamt #include <sys/cdefs.h>
95 1.69 maxv __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.69 2018/08/20 15:04:52 maxv Exp $");
96 1.63 christos
97 1.63 christos #ifdef _KERNEL_OPT
98 1.63 christos #include "opt_kmem.h"
99 1.69 maxv #include "opt_kasan.h"
100 1.63 christos #endif
101 1.1 yamt
102 1.1 yamt #include <sys/param.h>
103 1.6 yamt #include <sys/callback.h>
104 1.1 yamt #include <sys/kmem.h>
105 1.39 para #include <sys/pool.h>
106 1.13 ad #include <sys/debug.h>
107 1.17 ad #include <sys/lockdebug.h>
108 1.23 ad #include <sys/cpu.h>
109 1.1 yamt
110 1.69 maxv #ifdef KASAN
111 1.69 maxv #include <sys/asan.h>
112 1.69 maxv #endif
113 1.69 maxv
114 1.6 yamt #include <uvm/uvm_extern.h>
115 1.6 yamt #include <uvm/uvm_map.h>
116 1.6 yamt
117 1.1 yamt #include <lib/libkern/libkern.h>
118 1.1 yamt
119 1.46 para struct kmem_cache_info {
120 1.40 rmind size_t kc_size;
121 1.40 rmind const char * kc_name;
122 1.46 para };
123 1.46 para
124 1.46 para static const struct kmem_cache_info kmem_cache_sizes[] = {
125 1.39 para { 8, "kmem-8" },
126 1.39 para { 16, "kmem-16" },
127 1.39 para { 24, "kmem-24" },
128 1.39 para { 32, "kmem-32" },
129 1.39 para { 40, "kmem-40" },
130 1.39 para { 48, "kmem-48" },
131 1.39 para { 56, "kmem-56" },
132 1.39 para { 64, "kmem-64" },
133 1.39 para { 80, "kmem-80" },
134 1.39 para { 96, "kmem-96" },
135 1.39 para { 112, "kmem-112" },
136 1.39 para { 128, "kmem-128" },
137 1.39 para { 160, "kmem-160" },
138 1.39 para { 192, "kmem-192" },
139 1.39 para { 224, "kmem-224" },
140 1.39 para { 256, "kmem-256" },
141 1.39 para { 320, "kmem-320" },
142 1.39 para { 384, "kmem-384" },
143 1.39 para { 448, "kmem-448" },
144 1.39 para { 512, "kmem-512" },
145 1.39 para { 768, "kmem-768" },
146 1.39 para { 1024, "kmem-1024" },
147 1.46 para { 0, NULL }
148 1.46 para };
149 1.46 para
150 1.46 para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
151 1.39 para { 2048, "kmem-2048" },
152 1.39 para { 4096, "kmem-4096" },
153 1.46 para { 8192, "kmem-8192" },
154 1.46 para { 16384, "kmem-16384" },
155 1.39 para { 0, NULL }
156 1.39 para };
157 1.1 yamt
158 1.39 para /*
159 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
160 1.46 para * smallest allocateable quantum.
161 1.46 para * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
162 1.39 para */
163 1.40 rmind #define KMEM_ALIGN 8
164 1.40 rmind #define KMEM_SHIFT 3
165 1.46 para #define KMEM_MAXSIZE 1024
166 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
167 1.1 yamt
168 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
169 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
170 1.23 ad
171 1.46 para #define KMEM_BIG_ALIGN 2048
172 1.46 para #define KMEM_BIG_SHIFT 11
173 1.46 para #define KMEM_BIG_MAXSIZE 16384
174 1.46 para #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
175 1.46 para
176 1.46 para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
177 1.46 para static size_t kmem_cache_big_maxidx __read_mostly;
178 1.46 para
179 1.53 maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
180 1.57 maxv #define KMEM_SIZE
181 1.67 maxv #endif
182 1.53 maxv
183 1.45 martin #if defined(DEBUG) && defined(_HARDKERNEL)
184 1.61 maxv #define KMEM_SIZE
185 1.27 ad #define KMEM_GUARD
186 1.61 maxv static void *kmem_freecheck;
187 1.67 maxv #endif
188 1.4 yamt
189 1.23 ad #if defined(KMEM_SIZE)
190 1.57 maxv struct kmem_header {
191 1.57 maxv size_t size;
192 1.57 maxv } __aligned(KMEM_ALIGN);
193 1.57 maxv #define SIZE_SIZE sizeof(struct kmem_header)
194 1.23 ad static void kmem_size_set(void *, size_t);
195 1.39 para static void kmem_size_check(void *, size_t);
196 1.23 ad #else
197 1.23 ad #define SIZE_SIZE 0
198 1.23 ad #define kmem_size_set(p, sz) /* nothing */
199 1.23 ad #define kmem_size_check(p, sz) /* nothing */
200 1.23 ad #endif
201 1.23 ad
202 1.52 maxv #if defined(KMEM_GUARD)
203 1.52 maxv #ifndef KMEM_GUARD_DEPTH
204 1.52 maxv #define KMEM_GUARD_DEPTH 0
205 1.52 maxv #endif
206 1.61 maxv struct kmem_guard {
207 1.61 maxv u_int kg_depth;
208 1.61 maxv intptr_t * kg_fifo;
209 1.61 maxv u_int kg_rotor;
210 1.61 maxv vmem_t * kg_vmem;
211 1.61 maxv };
212 1.67 maxv static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
213 1.61 maxv static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
214 1.61 maxv static void kmem_guard_free(struct kmem_guard *, size_t, void *);
215 1.52 maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
216 1.61 maxv static bool kmem_guard_enabled;
217 1.61 maxv static struct kmem_guard kmem_guard;
218 1.52 maxv #endif /* defined(KMEM_GUARD) */
219 1.52 maxv
220 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
221 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
222 1.32 skrll
223 1.46 para /*
224 1.46 para * kmem_intr_alloc: allocate wired memory.
225 1.46 para */
226 1.46 para
227 1.39 para void *
228 1.50 yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
229 1.1 yamt {
230 1.69 maxv #ifdef KASAN
231 1.69 maxv size_t origsize = requested_size;
232 1.69 maxv #endif
233 1.40 rmind size_t allocsz, index;
234 1.50 yamt size_t size;
235 1.39 para pool_cache_t pc;
236 1.39 para uint8_t *p;
237 1.1 yamt
238 1.50 yamt KASSERT(requested_size > 0);
239 1.1 yamt
240 1.65 riastrad KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
241 1.65 riastrad KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
242 1.65 riastrad
243 1.39 para #ifdef KMEM_GUARD
244 1.61 maxv if (kmem_guard_enabled) {
245 1.61 maxv return kmem_guard_alloc(&kmem_guard, requested_size,
246 1.39 para (kmflags & KM_SLEEP) != 0);
247 1.1 yamt }
248 1.39 para #endif
249 1.67 maxv
250 1.69 maxv #ifdef KASAN
251 1.69 maxv kasan_add_redzone(&requested_size);
252 1.69 maxv #endif
253 1.69 maxv
254 1.50 yamt size = kmem_roundup_size(requested_size);
255 1.54 maxv allocsz = size + SIZE_SIZE;
256 1.54 maxv
257 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
258 1.46 para < kmem_cache_maxidx) {
259 1.46 para pc = kmem_cache[index];
260 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
261 1.55 maxv < kmem_cache_big_maxidx) {
262 1.46 para pc = kmem_cache_big[index];
263 1.48 uebayasi } else {
264 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
265 1.43 para (vsize_t)round_page(size),
266 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
267 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
268 1.46 para if (ret) {
269 1.46 para return NULL;
270 1.46 para }
271 1.46 para FREECHECK_OUT(&kmem_freecheck, p);
272 1.46 para return p;
273 1.1 yamt }
274 1.1 yamt
275 1.39 para p = pool_cache_get(pc, kmflags);
276 1.39 para
277 1.39 para if (__predict_true(p != NULL)) {
278 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
279 1.50 yamt kmem_size_set(p, requested_size);
280 1.68 maxv p += SIZE_SIZE;
281 1.69 maxv #ifdef KASAN
282 1.69 maxv kasan_alloc(p, origsize, size);
283 1.69 maxv #endif
284 1.68 maxv return p;
285 1.39 para }
286 1.47 para return p;
287 1.1 yamt }
288 1.1 yamt
289 1.46 para /*
290 1.46 para * kmem_intr_zalloc: allocate zeroed wired memory.
291 1.46 para */
292 1.46 para
293 1.39 para void *
294 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
295 1.23 ad {
296 1.39 para void *p;
297 1.23 ad
298 1.39 para p = kmem_intr_alloc(size, kmflags);
299 1.39 para if (p != NULL) {
300 1.39 para memset(p, 0, size);
301 1.39 para }
302 1.39 para return p;
303 1.23 ad }
304 1.23 ad
305 1.46 para /*
306 1.46 para * kmem_intr_free: free wired memory allocated by kmem_alloc.
307 1.46 para */
308 1.46 para
309 1.39 para void
310 1.50 yamt kmem_intr_free(void *p, size_t requested_size)
311 1.23 ad {
312 1.40 rmind size_t allocsz, index;
313 1.50 yamt size_t size;
314 1.39 para pool_cache_t pc;
315 1.23 ad
316 1.39 para KASSERT(p != NULL);
317 1.50 yamt KASSERT(requested_size > 0);
318 1.39 para
319 1.39 para #ifdef KMEM_GUARD
320 1.61 maxv if (kmem_guard_enabled) {
321 1.61 maxv kmem_guard_free(&kmem_guard, requested_size, p);
322 1.39 para return;
323 1.39 para }
324 1.39 para #endif
325 1.54 maxv
326 1.69 maxv #ifdef KASAN
327 1.69 maxv kasan_add_redzone(&requested_size);
328 1.69 maxv #endif
329 1.69 maxv
330 1.50 yamt size = kmem_roundup_size(requested_size);
331 1.54 maxv allocsz = size + SIZE_SIZE;
332 1.54 maxv
333 1.69 maxv #ifdef KASAN
334 1.69 maxv kasan_free(p, size);
335 1.69 maxv #endif
336 1.69 maxv
337 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
338 1.46 para < kmem_cache_maxidx) {
339 1.46 para pc = kmem_cache[index];
340 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
341 1.55 maxv < kmem_cache_big_maxidx) {
342 1.46 para pc = kmem_cache_big[index];
343 1.46 para } else {
344 1.46 para FREECHECK_IN(&kmem_freecheck, p);
345 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
346 1.43 para round_page(size));
347 1.39 para return;
348 1.39 para }
349 1.39 para
350 1.46 para p = (uint8_t *)p - SIZE_SIZE;
351 1.50 yamt kmem_size_check(p, requested_size);
352 1.39 para FREECHECK_IN(&kmem_freecheck, p);
353 1.46 para LOCKDEBUG_MEM_CHECK(p, size);
354 1.39 para
355 1.39 para pool_cache_put(pc, p);
356 1.23 ad }
357 1.23 ad
358 1.1 yamt /* ---- kmem API */
359 1.1 yamt
360 1.1 yamt /*
361 1.1 yamt * kmem_alloc: allocate wired memory.
362 1.1 yamt * => must not be called from interrupt context.
363 1.1 yamt */
364 1.1 yamt
365 1.1 yamt void *
366 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
367 1.1 yamt {
368 1.62 chs void *v;
369 1.62 chs
370 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
371 1.40 rmind "kmem(9) should not be used from the interrupt context");
372 1.62 chs v = kmem_intr_alloc(size, kmflags);
373 1.62 chs KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
374 1.62 chs return v;
375 1.1 yamt }
376 1.1 yamt
377 1.1 yamt /*
378 1.39 para * kmem_zalloc: allocate zeroed wired memory.
379 1.2 yamt * => must not be called from interrupt context.
380 1.2 yamt */
381 1.2 yamt
382 1.2 yamt void *
383 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
384 1.2 yamt {
385 1.62 chs void *v;
386 1.62 chs
387 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
388 1.40 rmind "kmem(9) should not be used from the interrupt context");
389 1.62 chs v = kmem_intr_zalloc(size, kmflags);
390 1.62 chs KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
391 1.62 chs return v;
392 1.2 yamt }
393 1.2 yamt
394 1.2 yamt /*
395 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
396 1.1 yamt * => must not be called from interrupt context.
397 1.1 yamt */
398 1.1 yamt
399 1.1 yamt void
400 1.1 yamt kmem_free(void *p, size_t size)
401 1.1 yamt {
402 1.23 ad KASSERT(!cpu_intr_p());
403 1.27 ad KASSERT(!cpu_softintr_p());
404 1.39 para kmem_intr_free(p, size);
405 1.1 yamt }
406 1.1 yamt
407 1.46 para static size_t
408 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
409 1.46 para pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
410 1.1 yamt {
411 1.46 para size_t maxidx = 0;
412 1.46 para size_t table_unit = (1 << shift);
413 1.39 para size_t size = table_unit;
414 1.23 ad int i;
415 1.1 yamt
416 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
417 1.40 rmind const char *name = array[i].kc_name;
418 1.39 para size_t cache_size = array[i].kc_size;
419 1.46 para struct pool_allocator *pa;
420 1.40 rmind int flags = PR_NOALIGN;
421 1.40 rmind pool_cache_t pc;
422 1.39 para size_t align;
423 1.39 para
424 1.39 para if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
425 1.39 para align = CACHE_LINE_SIZE;
426 1.39 para else if ((cache_size & (PAGE_SIZE - 1)) == 0)
427 1.39 para align = PAGE_SIZE;
428 1.39 para else
429 1.39 para align = KMEM_ALIGN;
430 1.39 para
431 1.39 para if (cache_size < CACHE_LINE_SIZE)
432 1.39 para flags |= PR_NOTOUCH;
433 1.27 ad
434 1.39 para /* check if we reached the requested size */
435 1.46 para if (cache_size > maxsize || cache_size > PAGE_SIZE) {
436 1.23 ad break;
437 1.40 rmind }
438 1.46 para if ((cache_size >> shift) > maxidx) {
439 1.46 para maxidx = cache_size >> shift;
440 1.46 para }
441 1.46 para
442 1.46 para if ((cache_size >> shift) > maxidx) {
443 1.46 para maxidx = cache_size >> shift;
444 1.40 rmind }
445 1.1 yamt
446 1.46 para pa = &pool_allocator_kmem;
447 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
448 1.46 para name, pa, ipl, NULL, NULL, NULL);
449 1.1 yamt
450 1.39 para while (size <= cache_size) {
451 1.46 para alloc_table[(size - 1) >> shift] = pc;
452 1.39 para size += table_unit;
453 1.39 para }
454 1.1 yamt }
455 1.46 para return maxidx;
456 1.1 yamt }
457 1.1 yamt
458 1.39 para void
459 1.39 para kmem_init(void)
460 1.1 yamt {
461 1.39 para #ifdef KMEM_GUARD
462 1.61 maxv kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
463 1.42 rmind kmem_va_arena);
464 1.39 para #endif
465 1.46 para kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
466 1.46 para kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
467 1.55 maxv kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
468 1.46 para kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
469 1.1 yamt }
470 1.4 yamt
471 1.39 para size_t
472 1.39 para kmem_roundup_size(size_t size)
473 1.7 yamt {
474 1.61 maxv return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
475 1.61 maxv }
476 1.7 yamt
477 1.61 maxv /*
478 1.61 maxv * Used to dynamically allocate string with kmem accordingly to format.
479 1.61 maxv */
480 1.61 maxv char *
481 1.61 maxv kmem_asprintf(const char *fmt, ...)
482 1.61 maxv {
483 1.61 maxv int size __diagused, len;
484 1.61 maxv va_list va;
485 1.61 maxv char *str;
486 1.61 maxv
487 1.61 maxv va_start(va, fmt);
488 1.61 maxv len = vsnprintf(NULL, 0, fmt, va);
489 1.61 maxv va_end(va);
490 1.61 maxv
491 1.61 maxv str = kmem_alloc(len + 1, KM_SLEEP);
492 1.61 maxv
493 1.61 maxv va_start(va, fmt);
494 1.61 maxv size = vsnprintf(str, len + 1, fmt, va);
495 1.61 maxv va_end(va);
496 1.61 maxv
497 1.61 maxv KASSERT(size == len);
498 1.61 maxv
499 1.61 maxv return str;
500 1.7 yamt }
501 1.7 yamt
502 1.64 christos char *
503 1.64 christos kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
504 1.64 christos {
505 1.64 christos size_t len = strlen(str) + 1;
506 1.64 christos char *ptr = kmem_alloc(len, flags);
507 1.64 christos if (ptr == NULL)
508 1.64 christos return NULL;
509 1.64 christos
510 1.64 christos if (lenp)
511 1.64 christos *lenp = len;
512 1.64 christos memcpy(ptr, str, len);
513 1.64 christos return ptr;
514 1.64 christos }
515 1.64 christos
516 1.66 christos char *
517 1.66 christos kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
518 1.66 christos {
519 1.66 christos KASSERT(str != NULL);
520 1.66 christos KASSERT(maxlen != 0);
521 1.66 christos
522 1.66 christos size_t len = strnlen(str, maxlen);
523 1.66 christos char *ptr = kmem_alloc(len + 1, flags);
524 1.66 christos if (ptr == NULL)
525 1.66 christos return NULL;
526 1.66 christos
527 1.66 christos memcpy(ptr, str, len);
528 1.66 christos ptr[len] = '\0';
529 1.66 christos
530 1.66 christos return ptr;
531 1.66 christos }
532 1.66 christos
533 1.64 christos void
534 1.64 christos kmem_strfree(char *str)
535 1.64 christos {
536 1.64 christos if (str == NULL)
537 1.64 christos return;
538 1.64 christos
539 1.64 christos kmem_free(str, strlen(str) + 1);
540 1.64 christos }
541 1.64 christos
542 1.54 maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
543 1.4 yamt
544 1.23 ad #if defined(KMEM_SIZE)
545 1.23 ad static void
546 1.23 ad kmem_size_set(void *p, size_t sz)
547 1.23 ad {
548 1.57 maxv struct kmem_header *hd;
549 1.57 maxv hd = (struct kmem_header *)p;
550 1.57 maxv hd->size = sz;
551 1.23 ad }
552 1.23 ad
553 1.23 ad static void
554 1.39 para kmem_size_check(void *p, size_t sz)
555 1.23 ad {
556 1.57 maxv struct kmem_header *hd;
557 1.57 maxv size_t hsz;
558 1.23 ad
559 1.57 maxv hd = (struct kmem_header *)p;
560 1.57 maxv hsz = hd->size;
561 1.57 maxv
562 1.57 maxv if (hsz != sz) {
563 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
564 1.57 maxv (const uint8_t *)p + SIZE_SIZE, sz, hsz);
565 1.23 ad }
566 1.23 ad }
567 1.54 maxv #endif /* defined(KMEM_SIZE) */
568 1.54 maxv
569 1.61 maxv #if defined(KMEM_GUARD)
570 1.33 haad /*
571 1.61 maxv * The ultimate memory allocator for debugging, baby. It tries to catch:
572 1.61 maxv *
573 1.61 maxv * 1. Overflow, in realtime. A guard page sits immediately after the
574 1.61 maxv * requested area; a read/write overflow therefore triggers a page
575 1.61 maxv * fault.
576 1.61 maxv * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
577 1.61 maxv * just before the requested area, and holds the allocated size. Any
578 1.61 maxv * difference with what is given at free triggers a panic.
579 1.61 maxv * 3. Underflow, at free. If an underflow occurs, the kmem header will be
580 1.61 maxv * modified, and 2. will trigger a panic.
581 1.61 maxv * 4. Use-after-free. When freeing, the memory is unmapped, and depending
582 1.61 maxv * on the value of kmem_guard_depth, the kernel will more or less delay
583 1.61 maxv * the recycling of that memory. Which means that any ulterior read/write
584 1.61 maxv * access to the memory will trigger a page fault, given it hasn't been
585 1.61 maxv * recycled yet.
586 1.61 maxv */
587 1.61 maxv
588 1.61 maxv #include <sys/atomic.h>
589 1.61 maxv #include <uvm/uvm.h>
590 1.61 maxv
591 1.61 maxv static bool
592 1.61 maxv kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
593 1.61 maxv {
594 1.61 maxv vaddr_t va;
595 1.61 maxv
596 1.61 maxv /* If not enabled, we have nothing to do. */
597 1.61 maxv if (depth == 0) {
598 1.61 maxv return false;
599 1.61 maxv }
600 1.61 maxv depth = roundup(depth, PAGE_SIZE / sizeof(void *));
601 1.61 maxv KASSERT(depth != 0);
602 1.61 maxv
603 1.61 maxv /*
604 1.61 maxv * Allocate fifo.
605 1.61 maxv */
606 1.61 maxv va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
607 1.61 maxv UVM_KMF_WIRED | UVM_KMF_ZERO);
608 1.61 maxv if (va == 0) {
609 1.61 maxv return false;
610 1.61 maxv }
611 1.61 maxv
612 1.61 maxv /*
613 1.61 maxv * Init object.
614 1.61 maxv */
615 1.61 maxv kg->kg_vmem = vm;
616 1.61 maxv kg->kg_fifo = (void *)va;
617 1.61 maxv kg->kg_depth = depth;
618 1.61 maxv kg->kg_rotor = 0;
619 1.61 maxv
620 1.61 maxv printf("kmem_guard(%p): depth %d\n", kg, depth);
621 1.61 maxv return true;
622 1.61 maxv }
623 1.61 maxv
624 1.61 maxv static void *
625 1.61 maxv kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
626 1.61 maxv {
627 1.61 maxv struct vm_page *pg;
628 1.61 maxv vm_flag_t flags;
629 1.61 maxv vmem_addr_t va;
630 1.61 maxv vaddr_t loopva;
631 1.61 maxv vsize_t loopsize;
632 1.61 maxv size_t size;
633 1.61 maxv void **p;
634 1.61 maxv
635 1.61 maxv /*
636 1.61 maxv * Compute the size: take the kmem header into account, and add a guard
637 1.61 maxv * page at the end.
638 1.61 maxv */
639 1.61 maxv size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
640 1.61 maxv
641 1.61 maxv /* Allocate pages of kernel VA, but do not map anything in yet. */
642 1.61 maxv flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
643 1.61 maxv if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
644 1.61 maxv return NULL;
645 1.61 maxv }
646 1.61 maxv
647 1.61 maxv loopva = va;
648 1.61 maxv loopsize = size - PAGE_SIZE;
649 1.61 maxv
650 1.61 maxv while (loopsize) {
651 1.61 maxv pg = uvm_pagealloc(NULL, loopva, NULL, 0);
652 1.61 maxv if (__predict_false(pg == NULL)) {
653 1.61 maxv if (waitok) {
654 1.61 maxv uvm_wait("kmem_guard");
655 1.61 maxv continue;
656 1.61 maxv } else {
657 1.61 maxv uvm_km_pgremove_intrsafe(kernel_map, va,
658 1.61 maxv va + size);
659 1.61 maxv vmem_free(kg->kg_vmem, va, size);
660 1.61 maxv return NULL;
661 1.61 maxv }
662 1.61 maxv }
663 1.61 maxv
664 1.61 maxv pg->flags &= ~PG_BUSY; /* new page */
665 1.61 maxv UVM_PAGE_OWN(pg, NULL);
666 1.61 maxv pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
667 1.61 maxv VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
668 1.61 maxv
669 1.61 maxv loopva += PAGE_SIZE;
670 1.61 maxv loopsize -= PAGE_SIZE;
671 1.61 maxv }
672 1.61 maxv
673 1.61 maxv pmap_update(pmap_kernel());
674 1.61 maxv
675 1.61 maxv /*
676 1.61 maxv * Offset the returned pointer so that the unmapped guard page sits
677 1.61 maxv * immediately after the returned object.
678 1.61 maxv */
679 1.61 maxv p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
680 1.61 maxv kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
681 1.61 maxv return (void *)p;
682 1.61 maxv }
683 1.61 maxv
684 1.61 maxv static void
685 1.61 maxv kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
686 1.33 haad {
687 1.61 maxv vaddr_t va;
688 1.61 maxv u_int rotor;
689 1.61 maxv size_t size;
690 1.61 maxv uint8_t *ptr;
691 1.48 uebayasi
692 1.61 maxv ptr = (uint8_t *)p - SIZE_SIZE;
693 1.61 maxv kmem_size_check(ptr, requested_size);
694 1.61 maxv va = trunc_page((vaddr_t)ptr);
695 1.61 maxv size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
696 1.33 haad
697 1.61 maxv KASSERT(pmap_extract(pmap_kernel(), va, NULL));
698 1.61 maxv KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
699 1.33 haad
700 1.61 maxv /*
701 1.61 maxv * Unmap and free the pages. The last one is never allocated.
702 1.61 maxv */
703 1.61 maxv uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
704 1.61 maxv pmap_update(pmap_kernel());
705 1.38 christos
706 1.61 maxv #if 0
707 1.61 maxv /*
708 1.61 maxv * XXX: Here, we need to atomically register the va and its size in the
709 1.61 maxv * fifo.
710 1.61 maxv */
711 1.33 haad
712 1.61 maxv /*
713 1.61 maxv * Put the VA allocation into the list and swap an old one out to free.
714 1.61 maxv * This behaves mostly like a fifo.
715 1.61 maxv */
716 1.61 maxv rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
717 1.61 maxv va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
718 1.61 maxv if (va != 0) {
719 1.61 maxv vmem_free(kg->kg_vmem, va, size);
720 1.61 maxv }
721 1.61 maxv #else
722 1.61 maxv (void)rotor;
723 1.61 maxv vmem_free(kg->kg_vmem, va, size);
724 1.61 maxv #endif
725 1.33 haad }
726 1.61 maxv
727 1.61 maxv #endif /* defined(KMEM_GUARD) */
728