subr_kmem.c revision 1.74 1 1.74 maxv /* $NetBSD: subr_kmem.c,v 1.74 2019/03/26 20:05:18 maxv Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.61 maxv * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.61 maxv * by Andrew Doran and Maxime Villard.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.23 ad /*-
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.55 maxv * Allocator of kernel wired memory. This allocator has some debug features
60 1.55 maxv * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 1.50 yamt */
62 1.50 yamt
63 1.50 yamt /*
64 1.55 maxv * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 1.57 maxv * Prefix each allocations with a fixed-sized, aligned header and record
66 1.57 maxv * the exact user-requested allocation size in it. When freeing, compare
67 1.57 maxv * it with kmem_free's "size" argument.
68 1.60 maxv *
69 1.67 maxv * This option enabled on DIAGNOSTIC.
70 1.50 yamt *
71 1.67 maxv * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
72 1.67 maxv * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
73 1.67 maxv * |/////| | | | | | | | | |U|
74 1.67 maxv * |/HSZ/| | | | | | | | | |U|
75 1.67 maxv * |/////| | | | | | | | | |U|
76 1.67 maxv * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
77 1.67 maxv * |Size | Buffer usable by the caller (requested size) |Unused\
78 1.60 maxv */
79 1.60 maxv
80 1.60 maxv /*
81 1.50 yamt * KMEM_GUARD
82 1.61 maxv * A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
83 1.61 maxv * in. See the comment below for what kind of bugs it tries to detect. Even
84 1.61 maxv * if compiled in, it's disabled by default because it's very expensive.
85 1.61 maxv * You can enable it on boot by:
86 1.55 maxv * boot -d
87 1.55 maxv * db> w kmem_guard_depth 0t30000
88 1.55 maxv * db> c
89 1.1 yamt *
90 1.55 maxv * The default value of kmem_guard_depth is 0, which means disabled.
91 1.55 maxv * It can be changed by KMEM_GUARD_DEPTH kernel config option.
92 1.1 yamt */
93 1.1 yamt
94 1.1 yamt #include <sys/cdefs.h>
95 1.74 maxv __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.74 2019/03/26 20:05:18 maxv Exp $");
96 1.63 christos
97 1.63 christos #ifdef _KERNEL_OPT
98 1.63 christos #include "opt_kmem.h"
99 1.63 christos #endif
100 1.1 yamt
101 1.1 yamt #include <sys/param.h>
102 1.6 yamt #include <sys/callback.h>
103 1.1 yamt #include <sys/kmem.h>
104 1.39 para #include <sys/pool.h>
105 1.13 ad #include <sys/debug.h>
106 1.17 ad #include <sys/lockdebug.h>
107 1.23 ad #include <sys/cpu.h>
108 1.69 maxv #include <sys/asan.h>
109 1.69 maxv
110 1.6 yamt #include <uvm/uvm_extern.h>
111 1.6 yamt #include <uvm/uvm_map.h>
112 1.6 yamt
113 1.1 yamt #include <lib/libkern/libkern.h>
114 1.1 yamt
115 1.46 para struct kmem_cache_info {
116 1.40 rmind size_t kc_size;
117 1.40 rmind const char * kc_name;
118 1.46 para };
119 1.46 para
120 1.46 para static const struct kmem_cache_info kmem_cache_sizes[] = {
121 1.39 para { 8, "kmem-8" },
122 1.39 para { 16, "kmem-16" },
123 1.39 para { 24, "kmem-24" },
124 1.39 para { 32, "kmem-32" },
125 1.39 para { 40, "kmem-40" },
126 1.39 para { 48, "kmem-48" },
127 1.39 para { 56, "kmem-56" },
128 1.39 para { 64, "kmem-64" },
129 1.39 para { 80, "kmem-80" },
130 1.39 para { 96, "kmem-96" },
131 1.39 para { 112, "kmem-112" },
132 1.39 para { 128, "kmem-128" },
133 1.39 para { 160, "kmem-160" },
134 1.39 para { 192, "kmem-192" },
135 1.39 para { 224, "kmem-224" },
136 1.39 para { 256, "kmem-256" },
137 1.39 para { 320, "kmem-320" },
138 1.39 para { 384, "kmem-384" },
139 1.39 para { 448, "kmem-448" },
140 1.39 para { 512, "kmem-512" },
141 1.39 para { 768, "kmem-768" },
142 1.39 para { 1024, "kmem-1024" },
143 1.46 para { 0, NULL }
144 1.46 para };
145 1.46 para
146 1.46 para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
147 1.39 para { 2048, "kmem-2048" },
148 1.39 para { 4096, "kmem-4096" },
149 1.46 para { 8192, "kmem-8192" },
150 1.46 para { 16384, "kmem-16384" },
151 1.39 para { 0, NULL }
152 1.39 para };
153 1.1 yamt
154 1.39 para /*
155 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
156 1.46 para * smallest allocateable quantum.
157 1.46 para * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
158 1.39 para */
159 1.40 rmind #define KMEM_ALIGN 8
160 1.40 rmind #define KMEM_SHIFT 3
161 1.46 para #define KMEM_MAXSIZE 1024
162 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
163 1.1 yamt
164 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
165 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
166 1.23 ad
167 1.46 para #define KMEM_BIG_ALIGN 2048
168 1.46 para #define KMEM_BIG_SHIFT 11
169 1.46 para #define KMEM_BIG_MAXSIZE 16384
170 1.46 para #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
171 1.46 para
172 1.46 para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
173 1.46 para static size_t kmem_cache_big_maxidx __read_mostly;
174 1.46 para
175 1.53 maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
176 1.57 maxv #define KMEM_SIZE
177 1.67 maxv #endif
178 1.53 maxv
179 1.45 martin #if defined(DEBUG) && defined(_HARDKERNEL)
180 1.61 maxv #define KMEM_SIZE
181 1.27 ad #define KMEM_GUARD
182 1.61 maxv static void *kmem_freecheck;
183 1.67 maxv #endif
184 1.4 yamt
185 1.23 ad #if defined(KMEM_SIZE)
186 1.57 maxv struct kmem_header {
187 1.57 maxv size_t size;
188 1.57 maxv } __aligned(KMEM_ALIGN);
189 1.57 maxv #define SIZE_SIZE sizeof(struct kmem_header)
190 1.23 ad static void kmem_size_set(void *, size_t);
191 1.39 para static void kmem_size_check(void *, size_t);
192 1.23 ad #else
193 1.23 ad #define SIZE_SIZE 0
194 1.23 ad #define kmem_size_set(p, sz) /* nothing */
195 1.23 ad #define kmem_size_check(p, sz) /* nothing */
196 1.23 ad #endif
197 1.23 ad
198 1.52 maxv #if defined(KMEM_GUARD)
199 1.52 maxv #ifndef KMEM_GUARD_DEPTH
200 1.52 maxv #define KMEM_GUARD_DEPTH 0
201 1.52 maxv #endif
202 1.61 maxv struct kmem_guard {
203 1.61 maxv u_int kg_depth;
204 1.61 maxv intptr_t * kg_fifo;
205 1.61 maxv u_int kg_rotor;
206 1.61 maxv vmem_t * kg_vmem;
207 1.61 maxv };
208 1.67 maxv static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
209 1.61 maxv static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
210 1.61 maxv static void kmem_guard_free(struct kmem_guard *, size_t, void *);
211 1.52 maxv int kmem_guard_depth = KMEM_GUARD_DEPTH;
212 1.61 maxv static bool kmem_guard_enabled;
213 1.61 maxv static struct kmem_guard kmem_guard;
214 1.52 maxv #endif /* defined(KMEM_GUARD) */
215 1.52 maxv
216 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
217 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
218 1.32 skrll
219 1.46 para /*
220 1.46 para * kmem_intr_alloc: allocate wired memory.
221 1.46 para */
222 1.46 para
223 1.39 para void *
224 1.50 yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
225 1.1 yamt {
226 1.71 christos #ifdef KASAN
227 1.70 maxv const size_t origsize = requested_size;
228 1.71 christos #endif
229 1.40 rmind size_t allocsz, index;
230 1.50 yamt size_t size;
231 1.39 para pool_cache_t pc;
232 1.39 para uint8_t *p;
233 1.1 yamt
234 1.50 yamt KASSERT(requested_size > 0);
235 1.1 yamt
236 1.65 riastrad KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
237 1.65 riastrad KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
238 1.65 riastrad
239 1.39 para #ifdef KMEM_GUARD
240 1.61 maxv if (kmem_guard_enabled) {
241 1.61 maxv return kmem_guard_alloc(&kmem_guard, requested_size,
242 1.39 para (kmflags & KM_SLEEP) != 0);
243 1.1 yamt }
244 1.39 para #endif
245 1.67 maxv
246 1.69 maxv kasan_add_redzone(&requested_size);
247 1.50 yamt size = kmem_roundup_size(requested_size);
248 1.54 maxv allocsz = size + SIZE_SIZE;
249 1.54 maxv
250 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
251 1.46 para < kmem_cache_maxidx) {
252 1.46 para pc = kmem_cache[index];
253 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
254 1.55 maxv < kmem_cache_big_maxidx) {
255 1.46 para pc = kmem_cache_big[index];
256 1.48 uebayasi } else {
257 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
258 1.43 para (vsize_t)round_page(size),
259 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
260 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
261 1.46 para if (ret) {
262 1.46 para return NULL;
263 1.46 para }
264 1.46 para FREECHECK_OUT(&kmem_freecheck, p);
265 1.46 para return p;
266 1.1 yamt }
267 1.1 yamt
268 1.39 para p = pool_cache_get(pc, kmflags);
269 1.39 para
270 1.39 para if (__predict_true(p != NULL)) {
271 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
272 1.50 yamt kmem_size_set(p, requested_size);
273 1.68 maxv p += SIZE_SIZE;
274 1.72 maxv kasan_mark(p, origsize, size);
275 1.68 maxv return p;
276 1.39 para }
277 1.47 para return p;
278 1.1 yamt }
279 1.1 yamt
280 1.46 para /*
281 1.46 para * kmem_intr_zalloc: allocate zeroed wired memory.
282 1.46 para */
283 1.46 para
284 1.39 para void *
285 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
286 1.23 ad {
287 1.39 para void *p;
288 1.23 ad
289 1.39 para p = kmem_intr_alloc(size, kmflags);
290 1.39 para if (p != NULL) {
291 1.39 para memset(p, 0, size);
292 1.39 para }
293 1.39 para return p;
294 1.23 ad }
295 1.23 ad
296 1.46 para /*
297 1.46 para * kmem_intr_free: free wired memory allocated by kmem_alloc.
298 1.46 para */
299 1.46 para
300 1.39 para void
301 1.50 yamt kmem_intr_free(void *p, size_t requested_size)
302 1.23 ad {
303 1.40 rmind size_t allocsz, index;
304 1.50 yamt size_t size;
305 1.39 para pool_cache_t pc;
306 1.23 ad
307 1.39 para KASSERT(p != NULL);
308 1.50 yamt KASSERT(requested_size > 0);
309 1.39 para
310 1.39 para #ifdef KMEM_GUARD
311 1.61 maxv if (kmem_guard_enabled) {
312 1.61 maxv kmem_guard_free(&kmem_guard, requested_size, p);
313 1.39 para return;
314 1.39 para }
315 1.39 para #endif
316 1.54 maxv
317 1.69 maxv kasan_add_redzone(&requested_size);
318 1.50 yamt size = kmem_roundup_size(requested_size);
319 1.54 maxv allocsz = size + SIZE_SIZE;
320 1.54 maxv
321 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
322 1.46 para < kmem_cache_maxidx) {
323 1.46 para pc = kmem_cache[index];
324 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
325 1.55 maxv < kmem_cache_big_maxidx) {
326 1.46 para pc = kmem_cache_big[index];
327 1.46 para } else {
328 1.46 para FREECHECK_IN(&kmem_freecheck, p);
329 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
330 1.43 para round_page(size));
331 1.39 para return;
332 1.39 para }
333 1.39 para
334 1.72 maxv kasan_mark(p, size, size);
335 1.70 maxv
336 1.46 para p = (uint8_t *)p - SIZE_SIZE;
337 1.50 yamt kmem_size_check(p, requested_size);
338 1.39 para FREECHECK_IN(&kmem_freecheck, p);
339 1.46 para LOCKDEBUG_MEM_CHECK(p, size);
340 1.39 para
341 1.39 para pool_cache_put(pc, p);
342 1.23 ad }
343 1.23 ad
344 1.1 yamt /* ---- kmem API */
345 1.1 yamt
346 1.1 yamt /*
347 1.1 yamt * kmem_alloc: allocate wired memory.
348 1.1 yamt * => must not be called from interrupt context.
349 1.1 yamt */
350 1.1 yamt
351 1.1 yamt void *
352 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
353 1.1 yamt {
354 1.62 chs void *v;
355 1.62 chs
356 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
357 1.40 rmind "kmem(9) should not be used from the interrupt context");
358 1.62 chs v = kmem_intr_alloc(size, kmflags);
359 1.62 chs KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
360 1.62 chs return v;
361 1.1 yamt }
362 1.1 yamt
363 1.1 yamt /*
364 1.39 para * kmem_zalloc: allocate zeroed wired memory.
365 1.2 yamt * => must not be called from interrupt context.
366 1.2 yamt */
367 1.2 yamt
368 1.2 yamt void *
369 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
370 1.2 yamt {
371 1.62 chs void *v;
372 1.62 chs
373 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
374 1.40 rmind "kmem(9) should not be used from the interrupt context");
375 1.62 chs v = kmem_intr_zalloc(size, kmflags);
376 1.62 chs KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
377 1.62 chs return v;
378 1.2 yamt }
379 1.2 yamt
380 1.2 yamt /*
381 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
382 1.1 yamt * => must not be called from interrupt context.
383 1.1 yamt */
384 1.1 yamt
385 1.1 yamt void
386 1.1 yamt kmem_free(void *p, size_t size)
387 1.1 yamt {
388 1.23 ad KASSERT(!cpu_intr_p());
389 1.27 ad KASSERT(!cpu_softintr_p());
390 1.39 para kmem_intr_free(p, size);
391 1.1 yamt }
392 1.1 yamt
393 1.46 para static size_t
394 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
395 1.46 para pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
396 1.1 yamt {
397 1.46 para size_t maxidx = 0;
398 1.46 para size_t table_unit = (1 << shift);
399 1.39 para size_t size = table_unit;
400 1.23 ad int i;
401 1.1 yamt
402 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
403 1.40 rmind const char *name = array[i].kc_name;
404 1.39 para size_t cache_size = array[i].kc_size;
405 1.46 para struct pool_allocator *pa;
406 1.74 maxv int flags = 0;
407 1.40 rmind pool_cache_t pc;
408 1.39 para size_t align;
409 1.39 para
410 1.39 para if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
411 1.39 para align = CACHE_LINE_SIZE;
412 1.39 para else if ((cache_size & (PAGE_SIZE - 1)) == 0)
413 1.39 para align = PAGE_SIZE;
414 1.39 para else
415 1.39 para align = KMEM_ALIGN;
416 1.39 para
417 1.39 para if (cache_size < CACHE_LINE_SIZE)
418 1.39 para flags |= PR_NOTOUCH;
419 1.27 ad
420 1.39 para /* check if we reached the requested size */
421 1.46 para if (cache_size > maxsize || cache_size > PAGE_SIZE) {
422 1.23 ad break;
423 1.40 rmind }
424 1.46 para if ((cache_size >> shift) > maxidx) {
425 1.46 para maxidx = cache_size >> shift;
426 1.46 para }
427 1.46 para
428 1.46 para if ((cache_size >> shift) > maxidx) {
429 1.46 para maxidx = cache_size >> shift;
430 1.40 rmind }
431 1.1 yamt
432 1.46 para pa = &pool_allocator_kmem;
433 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
434 1.46 para name, pa, ipl, NULL, NULL, NULL);
435 1.1 yamt
436 1.39 para while (size <= cache_size) {
437 1.46 para alloc_table[(size - 1) >> shift] = pc;
438 1.39 para size += table_unit;
439 1.39 para }
440 1.1 yamt }
441 1.46 para return maxidx;
442 1.1 yamt }
443 1.1 yamt
444 1.39 para void
445 1.39 para kmem_init(void)
446 1.1 yamt {
447 1.39 para #ifdef KMEM_GUARD
448 1.61 maxv kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
449 1.42 rmind kmem_va_arena);
450 1.39 para #endif
451 1.46 para kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
452 1.46 para kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
453 1.55 maxv kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
454 1.46 para kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
455 1.1 yamt }
456 1.4 yamt
457 1.39 para size_t
458 1.39 para kmem_roundup_size(size_t size)
459 1.7 yamt {
460 1.61 maxv return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
461 1.61 maxv }
462 1.7 yamt
463 1.61 maxv /*
464 1.61 maxv * Used to dynamically allocate string with kmem accordingly to format.
465 1.61 maxv */
466 1.61 maxv char *
467 1.61 maxv kmem_asprintf(const char *fmt, ...)
468 1.61 maxv {
469 1.61 maxv int size __diagused, len;
470 1.61 maxv va_list va;
471 1.61 maxv char *str;
472 1.61 maxv
473 1.61 maxv va_start(va, fmt);
474 1.61 maxv len = vsnprintf(NULL, 0, fmt, va);
475 1.61 maxv va_end(va);
476 1.61 maxv
477 1.61 maxv str = kmem_alloc(len + 1, KM_SLEEP);
478 1.61 maxv
479 1.61 maxv va_start(va, fmt);
480 1.61 maxv size = vsnprintf(str, len + 1, fmt, va);
481 1.61 maxv va_end(va);
482 1.61 maxv
483 1.61 maxv KASSERT(size == len);
484 1.61 maxv
485 1.61 maxv return str;
486 1.7 yamt }
487 1.7 yamt
488 1.64 christos char *
489 1.64 christos kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
490 1.64 christos {
491 1.64 christos size_t len = strlen(str) + 1;
492 1.64 christos char *ptr = kmem_alloc(len, flags);
493 1.64 christos if (ptr == NULL)
494 1.64 christos return NULL;
495 1.64 christos
496 1.64 christos if (lenp)
497 1.64 christos *lenp = len;
498 1.64 christos memcpy(ptr, str, len);
499 1.64 christos return ptr;
500 1.64 christos }
501 1.64 christos
502 1.66 christos char *
503 1.66 christos kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
504 1.66 christos {
505 1.66 christos KASSERT(str != NULL);
506 1.66 christos KASSERT(maxlen != 0);
507 1.66 christos
508 1.66 christos size_t len = strnlen(str, maxlen);
509 1.66 christos char *ptr = kmem_alloc(len + 1, flags);
510 1.66 christos if (ptr == NULL)
511 1.66 christos return NULL;
512 1.66 christos
513 1.66 christos memcpy(ptr, str, len);
514 1.66 christos ptr[len] = '\0';
515 1.66 christos
516 1.66 christos return ptr;
517 1.66 christos }
518 1.66 christos
519 1.64 christos void
520 1.64 christos kmem_strfree(char *str)
521 1.64 christos {
522 1.64 christos if (str == NULL)
523 1.64 christos return;
524 1.64 christos
525 1.64 christos kmem_free(str, strlen(str) + 1);
526 1.64 christos }
527 1.64 christos
528 1.54 maxv /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
529 1.4 yamt
530 1.23 ad #if defined(KMEM_SIZE)
531 1.23 ad static void
532 1.23 ad kmem_size_set(void *p, size_t sz)
533 1.23 ad {
534 1.57 maxv struct kmem_header *hd;
535 1.57 maxv hd = (struct kmem_header *)p;
536 1.57 maxv hd->size = sz;
537 1.23 ad }
538 1.23 ad
539 1.23 ad static void
540 1.39 para kmem_size_check(void *p, size_t sz)
541 1.23 ad {
542 1.57 maxv struct kmem_header *hd;
543 1.57 maxv size_t hsz;
544 1.23 ad
545 1.57 maxv hd = (struct kmem_header *)p;
546 1.57 maxv hsz = hd->size;
547 1.57 maxv
548 1.57 maxv if (hsz != sz) {
549 1.23 ad panic("kmem_free(%p, %zu) != allocated size %zu",
550 1.57 maxv (const uint8_t *)p + SIZE_SIZE, sz, hsz);
551 1.23 ad }
552 1.73 maxv
553 1.73 maxv hd->size = -1;
554 1.23 ad }
555 1.54 maxv #endif /* defined(KMEM_SIZE) */
556 1.54 maxv
557 1.61 maxv #if defined(KMEM_GUARD)
558 1.33 haad /*
559 1.61 maxv * The ultimate memory allocator for debugging, baby. It tries to catch:
560 1.61 maxv *
561 1.61 maxv * 1. Overflow, in realtime. A guard page sits immediately after the
562 1.61 maxv * requested area; a read/write overflow therefore triggers a page
563 1.61 maxv * fault.
564 1.61 maxv * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
565 1.61 maxv * just before the requested area, and holds the allocated size. Any
566 1.61 maxv * difference with what is given at free triggers a panic.
567 1.61 maxv * 3. Underflow, at free. If an underflow occurs, the kmem header will be
568 1.61 maxv * modified, and 2. will trigger a panic.
569 1.61 maxv * 4. Use-after-free. When freeing, the memory is unmapped, and depending
570 1.61 maxv * on the value of kmem_guard_depth, the kernel will more or less delay
571 1.61 maxv * the recycling of that memory. Which means that any ulterior read/write
572 1.61 maxv * access to the memory will trigger a page fault, given it hasn't been
573 1.61 maxv * recycled yet.
574 1.61 maxv */
575 1.61 maxv
576 1.61 maxv #include <sys/atomic.h>
577 1.61 maxv #include <uvm/uvm.h>
578 1.61 maxv
579 1.61 maxv static bool
580 1.61 maxv kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
581 1.61 maxv {
582 1.61 maxv vaddr_t va;
583 1.61 maxv
584 1.61 maxv /* If not enabled, we have nothing to do. */
585 1.61 maxv if (depth == 0) {
586 1.61 maxv return false;
587 1.61 maxv }
588 1.61 maxv depth = roundup(depth, PAGE_SIZE / sizeof(void *));
589 1.61 maxv KASSERT(depth != 0);
590 1.61 maxv
591 1.61 maxv /*
592 1.61 maxv * Allocate fifo.
593 1.61 maxv */
594 1.61 maxv va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
595 1.61 maxv UVM_KMF_WIRED | UVM_KMF_ZERO);
596 1.61 maxv if (va == 0) {
597 1.61 maxv return false;
598 1.61 maxv }
599 1.61 maxv
600 1.61 maxv /*
601 1.61 maxv * Init object.
602 1.61 maxv */
603 1.61 maxv kg->kg_vmem = vm;
604 1.61 maxv kg->kg_fifo = (void *)va;
605 1.61 maxv kg->kg_depth = depth;
606 1.61 maxv kg->kg_rotor = 0;
607 1.61 maxv
608 1.61 maxv printf("kmem_guard(%p): depth %d\n", kg, depth);
609 1.61 maxv return true;
610 1.61 maxv }
611 1.61 maxv
612 1.61 maxv static void *
613 1.61 maxv kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
614 1.61 maxv {
615 1.61 maxv struct vm_page *pg;
616 1.61 maxv vm_flag_t flags;
617 1.61 maxv vmem_addr_t va;
618 1.61 maxv vaddr_t loopva;
619 1.61 maxv vsize_t loopsize;
620 1.61 maxv size_t size;
621 1.61 maxv void **p;
622 1.61 maxv
623 1.61 maxv /*
624 1.61 maxv * Compute the size: take the kmem header into account, and add a guard
625 1.61 maxv * page at the end.
626 1.61 maxv */
627 1.61 maxv size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
628 1.61 maxv
629 1.61 maxv /* Allocate pages of kernel VA, but do not map anything in yet. */
630 1.61 maxv flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
631 1.61 maxv if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
632 1.61 maxv return NULL;
633 1.61 maxv }
634 1.61 maxv
635 1.61 maxv loopva = va;
636 1.61 maxv loopsize = size - PAGE_SIZE;
637 1.61 maxv
638 1.61 maxv while (loopsize) {
639 1.61 maxv pg = uvm_pagealloc(NULL, loopva, NULL, 0);
640 1.61 maxv if (__predict_false(pg == NULL)) {
641 1.61 maxv if (waitok) {
642 1.61 maxv uvm_wait("kmem_guard");
643 1.61 maxv continue;
644 1.61 maxv } else {
645 1.61 maxv uvm_km_pgremove_intrsafe(kernel_map, va,
646 1.61 maxv va + size);
647 1.61 maxv vmem_free(kg->kg_vmem, va, size);
648 1.61 maxv return NULL;
649 1.61 maxv }
650 1.61 maxv }
651 1.61 maxv
652 1.61 maxv pg->flags &= ~PG_BUSY; /* new page */
653 1.61 maxv UVM_PAGE_OWN(pg, NULL);
654 1.61 maxv pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
655 1.61 maxv VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
656 1.61 maxv
657 1.61 maxv loopva += PAGE_SIZE;
658 1.61 maxv loopsize -= PAGE_SIZE;
659 1.61 maxv }
660 1.61 maxv
661 1.61 maxv pmap_update(pmap_kernel());
662 1.61 maxv
663 1.61 maxv /*
664 1.61 maxv * Offset the returned pointer so that the unmapped guard page sits
665 1.61 maxv * immediately after the returned object.
666 1.61 maxv */
667 1.61 maxv p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
668 1.61 maxv kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
669 1.61 maxv return (void *)p;
670 1.61 maxv }
671 1.61 maxv
672 1.61 maxv static void
673 1.61 maxv kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
674 1.33 haad {
675 1.61 maxv vaddr_t va;
676 1.61 maxv u_int rotor;
677 1.61 maxv size_t size;
678 1.61 maxv uint8_t *ptr;
679 1.48 uebayasi
680 1.61 maxv ptr = (uint8_t *)p - SIZE_SIZE;
681 1.61 maxv kmem_size_check(ptr, requested_size);
682 1.61 maxv va = trunc_page((vaddr_t)ptr);
683 1.61 maxv size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
684 1.33 haad
685 1.61 maxv KASSERT(pmap_extract(pmap_kernel(), va, NULL));
686 1.61 maxv KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
687 1.33 haad
688 1.61 maxv /*
689 1.61 maxv * Unmap and free the pages. The last one is never allocated.
690 1.61 maxv */
691 1.61 maxv uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
692 1.61 maxv pmap_update(pmap_kernel());
693 1.38 christos
694 1.61 maxv #if 0
695 1.61 maxv /*
696 1.61 maxv * XXX: Here, we need to atomically register the va and its size in the
697 1.61 maxv * fifo.
698 1.61 maxv */
699 1.33 haad
700 1.61 maxv /*
701 1.61 maxv * Put the VA allocation into the list and swap an old one out to free.
702 1.61 maxv * This behaves mostly like a fifo.
703 1.61 maxv */
704 1.61 maxv rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
705 1.61 maxv va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
706 1.61 maxv if (va != 0) {
707 1.61 maxv vmem_free(kg->kg_vmem, va, size);
708 1.61 maxv }
709 1.61 maxv #else
710 1.61 maxv (void)rotor;
711 1.61 maxv vmem_free(kg->kg_vmem, va, size);
712 1.61 maxv #endif
713 1.33 haad }
714 1.61 maxv
715 1.61 maxv #endif /* defined(KMEM_GUARD) */
716