subr_kmem.c revision 1.80 1 1.80 maxv /* $NetBSD: subr_kmem.c,v 1.80 2020/05/14 17:01:34 maxv Exp $ */
2 1.1 yamt
3 1.76 maxv /*
4 1.78 ad * Copyright (c) 2009-2020 The NetBSD Foundation, Inc.
5 1.23 ad * All rights reserved.
6 1.23 ad *
7 1.23 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.61 maxv * by Andrew Doran and Maxime Villard.
9 1.23 ad *
10 1.23 ad * Redistribution and use in source and binary forms, with or without
11 1.23 ad * modification, are permitted provided that the following conditions
12 1.23 ad * are met:
13 1.23 ad * 1. Redistributions of source code must retain the above copyright
14 1.23 ad * notice, this list of conditions and the following disclaimer.
15 1.23 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.23 ad * notice, this list of conditions and the following disclaimer in the
17 1.23 ad * documentation and/or other materials provided with the distribution.
18 1.23 ad *
19 1.23 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.23 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.23 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.23 ad */
31 1.23 ad
32 1.76 maxv /*
33 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
34 1.1 yamt * All rights reserved.
35 1.1 yamt *
36 1.1 yamt * Redistribution and use in source and binary forms, with or without
37 1.1 yamt * modification, are permitted provided that the following conditions
38 1.1 yamt * are met:
39 1.1 yamt * 1. Redistributions of source code must retain the above copyright
40 1.1 yamt * notice, this list of conditions and the following disclaimer.
41 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 yamt * notice, this list of conditions and the following disclaimer in the
43 1.1 yamt * documentation and/or other materials provided with the distribution.
44 1.1 yamt *
45 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 yamt * SUCH DAMAGE.
56 1.1 yamt */
57 1.1 yamt
58 1.1 yamt /*
59 1.55 maxv * Allocator of kernel wired memory. This allocator has some debug features
60 1.55 maxv * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 1.50 yamt */
62 1.50 yamt
63 1.50 yamt /*
64 1.55 maxv * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 1.79 ad * Append to each allocation a fixed-sized footer and record the exact
66 1.79 ad * user-requested allocation size in it. When freeing, compare it with
67 1.79 ad * kmem_free's "size" argument.
68 1.60 maxv *
69 1.76 maxv * This option is enabled on DIAGNOSTIC.
70 1.50 yamt *
71 1.79 ad * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK| |
72 1.79 ad * +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+
73 1.79 ad * | | | | | | | | |/////|U|
74 1.79 ad * | | | | | | | | |/HSZ/|U|
75 1.79 ad * | | | | | | | | |/////|U|
76 1.79 ad * +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+
77 1.79 ad * | Buffer usable by the caller (requested size) |Size |Unused
78 1.60 maxv */
79 1.60 maxv
80 1.1 yamt #include <sys/cdefs.h>
81 1.80 maxv __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.80 2020/05/14 17:01:34 maxv Exp $");
82 1.63 christos
83 1.63 christos #ifdef _KERNEL_OPT
84 1.63 christos #include "opt_kmem.h"
85 1.63 christos #endif
86 1.1 yamt
87 1.1 yamt #include <sys/param.h>
88 1.6 yamt #include <sys/callback.h>
89 1.1 yamt #include <sys/kmem.h>
90 1.39 para #include <sys/pool.h>
91 1.13 ad #include <sys/debug.h>
92 1.17 ad #include <sys/lockdebug.h>
93 1.23 ad #include <sys/cpu.h>
94 1.69 maxv #include <sys/asan.h>
95 1.77 maxv #include <sys/msan.h>
96 1.69 maxv
97 1.6 yamt #include <uvm/uvm_extern.h>
98 1.6 yamt #include <uvm/uvm_map.h>
99 1.6 yamt
100 1.1 yamt #include <lib/libkern/libkern.h>
101 1.1 yamt
102 1.46 para struct kmem_cache_info {
103 1.40 rmind size_t kc_size;
104 1.40 rmind const char * kc_name;
105 1.46 para };
106 1.46 para
107 1.46 para static const struct kmem_cache_info kmem_cache_sizes[] = {
108 1.78 ad { 8, "kmem-00008" },
109 1.78 ad { 16, "kmem-00016" },
110 1.78 ad { 24, "kmem-00024" },
111 1.78 ad { 32, "kmem-00032" },
112 1.78 ad { 40, "kmem-00040" },
113 1.78 ad { 48, "kmem-00048" },
114 1.78 ad { 56, "kmem-00056" },
115 1.78 ad { 64, "kmem-00064" },
116 1.78 ad { 80, "kmem-00080" },
117 1.78 ad { 96, "kmem-00096" },
118 1.78 ad { 112, "kmem-00112" },
119 1.78 ad { 128, "kmem-00128" },
120 1.78 ad { 160, "kmem-00160" },
121 1.78 ad { 192, "kmem-00192" },
122 1.78 ad { 224, "kmem-00224" },
123 1.78 ad { 256, "kmem-00256" },
124 1.78 ad { 320, "kmem-00320" },
125 1.78 ad { 384, "kmem-00384" },
126 1.78 ad { 448, "kmem-00448" },
127 1.78 ad { 512, "kmem-00512" },
128 1.78 ad { 768, "kmem-00768" },
129 1.78 ad { 1024, "kmem-01024" },
130 1.46 para { 0, NULL }
131 1.46 para };
132 1.46 para
133 1.46 para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
134 1.78 ad { 2048, "kmem-02048" },
135 1.78 ad { 4096, "kmem-04096" },
136 1.78 ad { 8192, "kmem-08192" },
137 1.46 para { 16384, "kmem-16384" },
138 1.39 para { 0, NULL }
139 1.39 para };
140 1.1 yamt
141 1.39 para /*
142 1.40 rmind * KMEM_ALIGN is the smallest guaranteed alignment and also the
143 1.46 para * smallest allocateable quantum.
144 1.46 para * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
145 1.39 para */
146 1.40 rmind #define KMEM_ALIGN 8
147 1.40 rmind #define KMEM_SHIFT 3
148 1.46 para #define KMEM_MAXSIZE 1024
149 1.40 rmind #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
150 1.1 yamt
151 1.40 rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
152 1.40 rmind static size_t kmem_cache_maxidx __read_mostly;
153 1.23 ad
154 1.46 para #define KMEM_BIG_ALIGN 2048
155 1.46 para #define KMEM_BIG_SHIFT 11
156 1.46 para #define KMEM_BIG_MAXSIZE 16384
157 1.46 para #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
158 1.46 para
159 1.46 para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
160 1.46 para static size_t kmem_cache_big_maxidx __read_mostly;
161 1.46 para
162 1.53 maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
163 1.57 maxv #define KMEM_SIZE
164 1.67 maxv #endif
165 1.53 maxv
166 1.45 martin #if defined(DEBUG) && defined(_HARDKERNEL)
167 1.61 maxv static void *kmem_freecheck;
168 1.67 maxv #endif
169 1.4 yamt
170 1.23 ad #if defined(KMEM_SIZE)
171 1.79 ad #define SIZE_SIZE sizeof(size_t)
172 1.23 ad static void kmem_size_set(void *, size_t);
173 1.39 para static void kmem_size_check(void *, size_t);
174 1.23 ad #else
175 1.23 ad #define SIZE_SIZE 0
176 1.23 ad #define kmem_size_set(p, sz) /* nothing */
177 1.23 ad #define kmem_size_check(p, sz) /* nothing */
178 1.23 ad #endif
179 1.23 ad
180 1.32 skrll CTASSERT(KM_SLEEP == PR_WAITOK);
181 1.32 skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
182 1.32 skrll
183 1.46 para /*
184 1.46 para * kmem_intr_alloc: allocate wired memory.
185 1.46 para */
186 1.39 para void *
187 1.50 yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
188 1.1 yamt {
189 1.71 christos #ifdef KASAN
190 1.70 maxv const size_t origsize = requested_size;
191 1.71 christos #endif
192 1.40 rmind size_t allocsz, index;
193 1.50 yamt size_t size;
194 1.39 para pool_cache_t pc;
195 1.39 para uint8_t *p;
196 1.1 yamt
197 1.50 yamt KASSERT(requested_size > 0);
198 1.1 yamt
199 1.65 riastrad KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
200 1.65 riastrad KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
201 1.65 riastrad
202 1.69 maxv kasan_add_redzone(&requested_size);
203 1.50 yamt size = kmem_roundup_size(requested_size);
204 1.54 maxv allocsz = size + SIZE_SIZE;
205 1.54 maxv
206 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
207 1.46 para < kmem_cache_maxidx) {
208 1.46 para pc = kmem_cache[index];
209 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
210 1.55 maxv < kmem_cache_big_maxidx) {
211 1.46 para pc = kmem_cache_big[index];
212 1.48 uebayasi } else {
213 1.40 rmind int ret = uvm_km_kmem_alloc(kmem_va_arena,
214 1.43 para (vsize_t)round_page(size),
215 1.39 para ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
216 1.39 para | VM_INSTANTFIT, (vmem_addr_t *)&p);
217 1.46 para if (ret) {
218 1.46 para return NULL;
219 1.46 para }
220 1.46 para FREECHECK_OUT(&kmem_freecheck, p);
221 1.46 para return p;
222 1.1 yamt }
223 1.1 yamt
224 1.39 para p = pool_cache_get(pc, kmflags);
225 1.39 para
226 1.39 para if (__predict_true(p != NULL)) {
227 1.39 para FREECHECK_OUT(&kmem_freecheck, p);
228 1.50 yamt kmem_size_set(p, requested_size);
229 1.75 maxv kasan_mark(p, origsize, size, KASAN_KMEM_REDZONE);
230 1.68 maxv return p;
231 1.39 para }
232 1.47 para return p;
233 1.1 yamt }
234 1.1 yamt
235 1.46 para /*
236 1.46 para * kmem_intr_zalloc: allocate zeroed wired memory.
237 1.46 para */
238 1.39 para void *
239 1.39 para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
240 1.23 ad {
241 1.39 para void *p;
242 1.23 ad
243 1.39 para p = kmem_intr_alloc(size, kmflags);
244 1.39 para if (p != NULL) {
245 1.39 para memset(p, 0, size);
246 1.39 para }
247 1.39 para return p;
248 1.23 ad }
249 1.23 ad
250 1.46 para /*
251 1.46 para * kmem_intr_free: free wired memory allocated by kmem_alloc.
252 1.46 para */
253 1.39 para void
254 1.50 yamt kmem_intr_free(void *p, size_t requested_size)
255 1.23 ad {
256 1.40 rmind size_t allocsz, index;
257 1.50 yamt size_t size;
258 1.39 para pool_cache_t pc;
259 1.23 ad
260 1.39 para KASSERT(p != NULL);
261 1.80 maxv if (__predict_false(requested_size == 0)) {
262 1.80 maxv panic("%s: zero size with pointer %p", __func__, p);
263 1.80 maxv }
264 1.39 para
265 1.69 maxv kasan_add_redzone(&requested_size);
266 1.50 yamt size = kmem_roundup_size(requested_size);
267 1.54 maxv allocsz = size + SIZE_SIZE;
268 1.54 maxv
269 1.46 para if ((index = ((allocsz -1) >> KMEM_SHIFT))
270 1.46 para < kmem_cache_maxidx) {
271 1.46 para pc = kmem_cache[index];
272 1.46 para } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
273 1.55 maxv < kmem_cache_big_maxidx) {
274 1.46 para pc = kmem_cache_big[index];
275 1.46 para } else {
276 1.46 para FREECHECK_IN(&kmem_freecheck, p);
277 1.39 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
278 1.43 para round_page(size));
279 1.39 para return;
280 1.39 para }
281 1.39 para
282 1.75 maxv kasan_mark(p, size, size, 0);
283 1.70 maxv
284 1.50 yamt kmem_size_check(p, requested_size);
285 1.39 para FREECHECK_IN(&kmem_freecheck, p);
286 1.46 para LOCKDEBUG_MEM_CHECK(p, size);
287 1.39 para
288 1.39 para pool_cache_put(pc, p);
289 1.23 ad }
290 1.23 ad
291 1.76 maxv /* -------------------------------- Kmem API -------------------------------- */
292 1.1 yamt
293 1.1 yamt /*
294 1.1 yamt * kmem_alloc: allocate wired memory.
295 1.1 yamt * => must not be called from interrupt context.
296 1.1 yamt */
297 1.1 yamt void *
298 1.1 yamt kmem_alloc(size_t size, km_flag_t kmflags)
299 1.1 yamt {
300 1.62 chs void *v;
301 1.62 chs
302 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
303 1.40 rmind "kmem(9) should not be used from the interrupt context");
304 1.62 chs v = kmem_intr_alloc(size, kmflags);
305 1.77 maxv if (__predict_true(v != NULL)) {
306 1.77 maxv kmsan_mark(v, size, KMSAN_STATE_UNINIT);
307 1.77 maxv kmsan_orig(v, size, KMSAN_TYPE_KMEM, __RET_ADDR);
308 1.77 maxv }
309 1.62 chs KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
310 1.62 chs return v;
311 1.1 yamt }
312 1.1 yamt
313 1.1 yamt /*
314 1.39 para * kmem_zalloc: allocate zeroed wired memory.
315 1.2 yamt * => must not be called from interrupt context.
316 1.2 yamt */
317 1.2 yamt void *
318 1.2 yamt kmem_zalloc(size_t size, km_flag_t kmflags)
319 1.2 yamt {
320 1.62 chs void *v;
321 1.62 chs
322 1.40 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
323 1.40 rmind "kmem(9) should not be used from the interrupt context");
324 1.62 chs v = kmem_intr_zalloc(size, kmflags);
325 1.62 chs KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
326 1.62 chs return v;
327 1.2 yamt }
328 1.2 yamt
329 1.2 yamt /*
330 1.1 yamt * kmem_free: free wired memory allocated by kmem_alloc.
331 1.1 yamt * => must not be called from interrupt context.
332 1.1 yamt */
333 1.1 yamt void
334 1.1 yamt kmem_free(void *p, size_t size)
335 1.1 yamt {
336 1.23 ad KASSERT(!cpu_intr_p());
337 1.27 ad KASSERT(!cpu_softintr_p());
338 1.39 para kmem_intr_free(p, size);
339 1.77 maxv kmsan_mark(p, size, KMSAN_STATE_INITED);
340 1.1 yamt }
341 1.1 yamt
342 1.46 para static size_t
343 1.39 para kmem_create_caches(const struct kmem_cache_info *array,
344 1.46 para pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
345 1.1 yamt {
346 1.46 para size_t maxidx = 0;
347 1.46 para size_t table_unit = (1 << shift);
348 1.39 para size_t size = table_unit;
349 1.23 ad int i;
350 1.1 yamt
351 1.39 para for (i = 0; array[i].kc_size != 0 ; i++) {
352 1.40 rmind const char *name = array[i].kc_name;
353 1.39 para size_t cache_size = array[i].kc_size;
354 1.46 para struct pool_allocator *pa;
355 1.74 maxv int flags = 0;
356 1.40 rmind pool_cache_t pc;
357 1.39 para size_t align;
358 1.39 para
359 1.39 para /* check if we reached the requested size */
360 1.46 para if (cache_size > maxsize || cache_size > PAGE_SIZE) {
361 1.23 ad break;
362 1.40 rmind }
363 1.78 ad
364 1.78 ad /*
365 1.78 ad * Exclude caches with size not a factor or multiple of the
366 1.78 ad * coherency unit.
367 1.78 ad */
368 1.78 ad if (cache_size < COHERENCY_UNIT) {
369 1.78 ad if (COHERENCY_UNIT % cache_size > 0) {
370 1.78 ad continue;
371 1.78 ad }
372 1.78 ad flags |= PR_NOTOUCH;
373 1.78 ad align = KMEM_ALIGN;
374 1.78 ad } else if ((cache_size & (PAGE_SIZE - 1)) == 0) {
375 1.78 ad align = PAGE_SIZE;
376 1.78 ad } else {
377 1.78 ad if ((cache_size % COHERENCY_UNIT) > 0) {
378 1.78 ad continue;
379 1.78 ad }
380 1.78 ad align = COHERENCY_UNIT;
381 1.46 para }
382 1.46 para
383 1.46 para if ((cache_size >> shift) > maxidx) {
384 1.46 para maxidx = cache_size >> shift;
385 1.40 rmind }
386 1.1 yamt
387 1.46 para pa = &pool_allocator_kmem;
388 1.39 para pc = pool_cache_init(cache_size, align, 0, flags,
389 1.46 para name, pa, ipl, NULL, NULL, NULL);
390 1.1 yamt
391 1.39 para while (size <= cache_size) {
392 1.46 para alloc_table[(size - 1) >> shift] = pc;
393 1.39 para size += table_unit;
394 1.39 para }
395 1.1 yamt }
396 1.46 para return maxidx;
397 1.1 yamt }
398 1.1 yamt
399 1.39 para void
400 1.39 para kmem_init(void)
401 1.1 yamt {
402 1.46 para kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
403 1.46 para kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
404 1.55 maxv kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
405 1.46 para kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
406 1.1 yamt }
407 1.4 yamt
408 1.39 para size_t
409 1.39 para kmem_roundup_size(size_t size)
410 1.7 yamt {
411 1.61 maxv return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
412 1.61 maxv }
413 1.7 yamt
414 1.61 maxv /*
415 1.61 maxv * Used to dynamically allocate string with kmem accordingly to format.
416 1.61 maxv */
417 1.61 maxv char *
418 1.61 maxv kmem_asprintf(const char *fmt, ...)
419 1.61 maxv {
420 1.61 maxv int size __diagused, len;
421 1.61 maxv va_list va;
422 1.61 maxv char *str;
423 1.61 maxv
424 1.61 maxv va_start(va, fmt);
425 1.61 maxv len = vsnprintf(NULL, 0, fmt, va);
426 1.61 maxv va_end(va);
427 1.61 maxv
428 1.61 maxv str = kmem_alloc(len + 1, KM_SLEEP);
429 1.61 maxv
430 1.61 maxv va_start(va, fmt);
431 1.61 maxv size = vsnprintf(str, len + 1, fmt, va);
432 1.61 maxv va_end(va);
433 1.61 maxv
434 1.61 maxv KASSERT(size == len);
435 1.61 maxv
436 1.61 maxv return str;
437 1.7 yamt }
438 1.7 yamt
439 1.64 christos char *
440 1.64 christos kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
441 1.64 christos {
442 1.64 christos size_t len = strlen(str) + 1;
443 1.64 christos char *ptr = kmem_alloc(len, flags);
444 1.64 christos if (ptr == NULL)
445 1.64 christos return NULL;
446 1.64 christos
447 1.64 christos if (lenp)
448 1.64 christos *lenp = len;
449 1.64 christos memcpy(ptr, str, len);
450 1.64 christos return ptr;
451 1.64 christos }
452 1.64 christos
453 1.66 christos char *
454 1.66 christos kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
455 1.66 christos {
456 1.66 christos KASSERT(str != NULL);
457 1.66 christos KASSERT(maxlen != 0);
458 1.66 christos
459 1.66 christos size_t len = strnlen(str, maxlen);
460 1.66 christos char *ptr = kmem_alloc(len + 1, flags);
461 1.66 christos if (ptr == NULL)
462 1.66 christos return NULL;
463 1.66 christos
464 1.66 christos memcpy(ptr, str, len);
465 1.66 christos ptr[len] = '\0';
466 1.66 christos
467 1.66 christos return ptr;
468 1.66 christos }
469 1.66 christos
470 1.64 christos void
471 1.64 christos kmem_strfree(char *str)
472 1.64 christos {
473 1.64 christos if (str == NULL)
474 1.64 christos return;
475 1.64 christos
476 1.64 christos kmem_free(str, strlen(str) + 1);
477 1.64 christos }
478 1.64 christos
479 1.76 maxv /* --------------------------- DEBUG / DIAGNOSTIC --------------------------- */
480 1.4 yamt
481 1.23 ad #if defined(KMEM_SIZE)
482 1.23 ad static void
483 1.23 ad kmem_size_set(void *p, size_t sz)
484 1.23 ad {
485 1.79 ad memcpy((size_t *)((uintptr_t)p + sz), &sz, sizeof(size_t));
486 1.23 ad }
487 1.23 ad
488 1.23 ad static void
489 1.39 para kmem_size_check(void *p, size_t sz)
490 1.23 ad {
491 1.57 maxv size_t hsz;
492 1.23 ad
493 1.79 ad memcpy(&hsz, (size_t *)((uintptr_t)p + sz), sizeof(size_t));
494 1.57 maxv
495 1.57 maxv if (hsz != sz) {
496 1.79 ad panic("kmem_free(%p, %zu) != allocated size %zu; overwrote?",
497 1.79 ad p, sz, hsz);
498 1.23 ad }
499 1.73 maxv
500 1.79 ad memset((size_t *)((uintptr_t)p + sz), 0xff, sizeof(size_t));
501 1.23 ad }
502 1.54 maxv #endif /* defined(KMEM_SIZE) */
503