Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.84
      1  1.84  riastrad /*	$NetBSD: subr_kmem.c,v 1.84 2022/03/12 22:20:34 riastradh Exp $	*/
      2   1.1      yamt 
      3  1.76      maxv /*
      4  1.78        ad  * Copyright (c) 2009-2020 The NetBSD Foundation, Inc.
      5  1.23        ad  * All rights reserved.
      6  1.23        ad  *
      7  1.23        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.61      maxv  * by Andrew Doran and Maxime Villard.
      9  1.23        ad  *
     10  1.23        ad  * Redistribution and use in source and binary forms, with or without
     11  1.23        ad  * modification, are permitted provided that the following conditions
     12  1.23        ad  * are met:
     13  1.23        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.23        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.23        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.23        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.23        ad  *    documentation and/or other materials provided with the distribution.
     18  1.23        ad  *
     19  1.23        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.23        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.23        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.23        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.23        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.23        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.23        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.23        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.23        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.23        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.23        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.23        ad  */
     31  1.23        ad 
     32  1.76      maxv /*
     33   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
     34   1.1      yamt  * All rights reserved.
     35   1.1      yamt  *
     36   1.1      yamt  * Redistribution and use in source and binary forms, with or without
     37   1.1      yamt  * modification, are permitted provided that the following conditions
     38   1.1      yamt  * are met:
     39   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     40   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     41   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     44   1.1      yamt  *
     45   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55   1.1      yamt  * SUCH DAMAGE.
     56   1.1      yamt  */
     57   1.1      yamt 
     58   1.1      yamt /*
     59  1.55      maxv  * Allocator of kernel wired memory. This allocator has some debug features
     60  1.55      maxv  * enabled with "option DIAGNOSTIC" and "option DEBUG".
     61  1.50      yamt  */
     62  1.50      yamt 
     63  1.50      yamt /*
     64  1.55      maxv  * KMEM_SIZE: detect alloc/free size mismatch bugs.
     65  1.79        ad  *	Append to each allocation a fixed-sized footer and record the exact
     66  1.79        ad  *	user-requested allocation size in it.  When freeing, compare it with
     67  1.79        ad  *	kmem_free's "size" argument.
     68  1.60      maxv  *
     69  1.76      maxv  * This option is enabled on DIAGNOSTIC.
     70  1.50      yamt  *
     71  1.79        ad  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK| |
     72  1.79        ad  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+
     73  1.79        ad  *  |     |     |     |     |     |     |     |     |/////|U|
     74  1.79        ad  *  |     |     |     |     |     |     |     |     |/HSZ/|U|
     75  1.79        ad  *  |     |     |     |     |     |     |     |     |/////|U|
     76  1.79        ad  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+
     77  1.79        ad  *  | Buffer usable by the caller (requested size)  |Size |Unused
     78  1.60      maxv  */
     79  1.60      maxv 
     80   1.1      yamt #include <sys/cdefs.h>
     81  1.84  riastrad __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.84 2022/03/12 22:20:34 riastradh Exp $");
     82  1.63  christos 
     83  1.63  christos #ifdef _KERNEL_OPT
     84  1.63  christos #include "opt_kmem.h"
     85  1.63  christos #endif
     86   1.1      yamt 
     87   1.1      yamt #include <sys/param.h>
     88   1.6      yamt #include <sys/callback.h>
     89   1.1      yamt #include <sys/kmem.h>
     90  1.39      para #include <sys/pool.h>
     91  1.13        ad #include <sys/debug.h>
     92  1.17        ad #include <sys/lockdebug.h>
     93  1.23        ad #include <sys/cpu.h>
     94  1.69      maxv #include <sys/asan.h>
     95  1.77      maxv #include <sys/msan.h>
     96  1.69      maxv 
     97   1.6      yamt #include <uvm/uvm_extern.h>
     98   1.6      yamt #include <uvm/uvm_map.h>
     99   1.6      yamt 
    100   1.1      yamt #include <lib/libkern/libkern.h>
    101   1.1      yamt 
    102  1.46      para struct kmem_cache_info {
    103  1.40     rmind 	size_t		kc_size;
    104  1.40     rmind 	const char *	kc_name;
    105  1.46      para };
    106  1.46      para 
    107  1.46      para static const struct kmem_cache_info kmem_cache_sizes[] = {
    108  1.78        ad 	{  8, "kmem-00008" },
    109  1.78        ad 	{ 16, "kmem-00016" },
    110  1.78        ad 	{ 24, "kmem-00024" },
    111  1.78        ad 	{ 32, "kmem-00032" },
    112  1.78        ad 	{ 40, "kmem-00040" },
    113  1.78        ad 	{ 48, "kmem-00048" },
    114  1.78        ad 	{ 56, "kmem-00056" },
    115  1.78        ad 	{ 64, "kmem-00064" },
    116  1.78        ad 	{ 80, "kmem-00080" },
    117  1.78        ad 	{ 96, "kmem-00096" },
    118  1.78        ad 	{ 112, "kmem-00112" },
    119  1.78        ad 	{ 128, "kmem-00128" },
    120  1.78        ad 	{ 160, "kmem-00160" },
    121  1.78        ad 	{ 192, "kmem-00192" },
    122  1.78        ad 	{ 224, "kmem-00224" },
    123  1.78        ad 	{ 256, "kmem-00256" },
    124  1.78        ad 	{ 320, "kmem-00320" },
    125  1.78        ad 	{ 384, "kmem-00384" },
    126  1.78        ad 	{ 448, "kmem-00448" },
    127  1.78        ad 	{ 512, "kmem-00512" },
    128  1.78        ad 	{ 768, "kmem-00768" },
    129  1.78        ad 	{ 1024, "kmem-01024" },
    130  1.46      para 	{ 0, NULL }
    131  1.46      para };
    132  1.46      para 
    133  1.46      para static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    134  1.78        ad 	{ 2048, "kmem-02048" },
    135  1.78        ad 	{ 4096, "kmem-04096" },
    136  1.78        ad 	{ 8192, "kmem-08192" },
    137  1.46      para 	{ 16384, "kmem-16384" },
    138  1.39      para 	{ 0, NULL }
    139  1.39      para };
    140   1.1      yamt 
    141  1.39      para /*
    142  1.40     rmind  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    143  1.46      para  * smallest allocateable quantum.
    144  1.46      para  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    145  1.39      para  */
    146  1.40     rmind #define	KMEM_ALIGN		8
    147  1.40     rmind #define	KMEM_SHIFT		3
    148  1.46      para #define	KMEM_MAXSIZE		1024
    149  1.40     rmind #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    150   1.1      yamt 
    151  1.40     rmind static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    152  1.40     rmind static size_t kmem_cache_maxidx __read_mostly;
    153  1.23        ad 
    154  1.46      para #define	KMEM_BIG_ALIGN		2048
    155  1.46      para #define	KMEM_BIG_SHIFT		11
    156  1.46      para #define	KMEM_BIG_MAXSIZE	16384
    157  1.46      para #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    158  1.46      para 
    159  1.46      para static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    160  1.46      para static size_t kmem_cache_big_maxidx __read_mostly;
    161  1.46      para 
    162  1.53      maxv #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
    163  1.57      maxv #define	KMEM_SIZE
    164  1.67      maxv #endif
    165  1.53      maxv 
    166  1.45    martin #if defined(DEBUG) && defined(_HARDKERNEL)
    167  1.61      maxv static void *kmem_freecheck;
    168  1.67      maxv #endif
    169   1.4      yamt 
    170  1.23        ad #if defined(KMEM_SIZE)
    171  1.79        ad #define	SIZE_SIZE	sizeof(size_t)
    172  1.23        ad static void kmem_size_set(void *, size_t);
    173  1.39      para static void kmem_size_check(void *, size_t);
    174  1.23        ad #else
    175  1.23        ad #define	SIZE_SIZE	0
    176  1.23        ad #define	kmem_size_set(p, sz)	/* nothing */
    177  1.23        ad #define	kmem_size_check(p, sz)	/* nothing */
    178  1.23        ad #endif
    179  1.23        ad 
    180  1.32     skrll CTASSERT(KM_SLEEP == PR_WAITOK);
    181  1.32     skrll CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    182  1.32     skrll 
    183  1.46      para /*
    184  1.46      para  * kmem_intr_alloc: allocate wired memory.
    185  1.46      para  */
    186  1.39      para void *
    187  1.50      yamt kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    188   1.1      yamt {
    189  1.71  christos #ifdef KASAN
    190  1.70      maxv 	const size_t origsize = requested_size;
    191  1.71  christos #endif
    192  1.40     rmind 	size_t allocsz, index;
    193  1.50      yamt 	size_t size;
    194  1.39      para 	pool_cache_t pc;
    195  1.39      para 	uint8_t *p;
    196   1.1      yamt 
    197  1.50      yamt 	KASSERT(requested_size > 0);
    198   1.1      yamt 
    199  1.65  riastrad 	KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
    200  1.65  riastrad 	KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
    201  1.65  riastrad 
    202  1.69      maxv 	kasan_add_redzone(&requested_size);
    203  1.50      yamt 	size = kmem_roundup_size(requested_size);
    204  1.54      maxv 	allocsz = size + SIZE_SIZE;
    205  1.54      maxv 
    206  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    207  1.46      para 	    < kmem_cache_maxidx) {
    208  1.46      para 		pc = kmem_cache[index];
    209  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    210  1.55      maxv 	    < kmem_cache_big_maxidx) {
    211  1.46      para 		pc = kmem_cache_big[index];
    212  1.48  uebayasi 	} else {
    213  1.40     rmind 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    214  1.43      para 		    (vsize_t)round_page(size),
    215  1.39      para 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    216  1.39      para 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    217  1.46      para 		if (ret) {
    218  1.46      para 			return NULL;
    219  1.46      para 		}
    220  1.46      para 		FREECHECK_OUT(&kmem_freecheck, p);
    221  1.46      para 		return p;
    222   1.1      yamt 	}
    223   1.1      yamt 
    224  1.39      para 	p = pool_cache_get(pc, kmflags);
    225  1.39      para 
    226  1.39      para 	if (__predict_true(p != NULL)) {
    227  1.39      para 		FREECHECK_OUT(&kmem_freecheck, p);
    228  1.50      yamt 		kmem_size_set(p, requested_size);
    229  1.75      maxv 		kasan_mark(p, origsize, size, KASAN_KMEM_REDZONE);
    230  1.68      maxv 		return p;
    231  1.39      para 	}
    232  1.47      para 	return p;
    233   1.1      yamt }
    234   1.1      yamt 
    235  1.46      para /*
    236  1.46      para  * kmem_intr_zalloc: allocate zeroed wired memory.
    237  1.46      para  */
    238  1.39      para void *
    239  1.39      para kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    240  1.23        ad {
    241  1.39      para 	void *p;
    242  1.23        ad 
    243  1.39      para 	p = kmem_intr_alloc(size, kmflags);
    244  1.39      para 	if (p != NULL) {
    245  1.39      para 		memset(p, 0, size);
    246  1.39      para 	}
    247  1.39      para 	return p;
    248  1.23        ad }
    249  1.23        ad 
    250  1.46      para /*
    251  1.46      para  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    252  1.46      para  */
    253  1.39      para void
    254  1.50      yamt kmem_intr_free(void *p, size_t requested_size)
    255  1.23        ad {
    256  1.40     rmind 	size_t allocsz, index;
    257  1.50      yamt 	size_t size;
    258  1.39      para 	pool_cache_t pc;
    259  1.23        ad 
    260  1.39      para 	KASSERT(p != NULL);
    261  1.84  riastrad 	KASSERTMSG(requested_size > 0, "kmem_intr_free(%p, 0)", p);
    262  1.39      para 
    263  1.69      maxv 	kasan_add_redzone(&requested_size);
    264  1.50      yamt 	size = kmem_roundup_size(requested_size);
    265  1.54      maxv 	allocsz = size + SIZE_SIZE;
    266  1.54      maxv 
    267  1.46      para 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    268  1.46      para 	    < kmem_cache_maxidx) {
    269  1.46      para 		pc = kmem_cache[index];
    270  1.46      para 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    271  1.55      maxv 	    < kmem_cache_big_maxidx) {
    272  1.46      para 		pc = kmem_cache_big[index];
    273  1.46      para 	} else {
    274  1.46      para 		FREECHECK_IN(&kmem_freecheck, p);
    275  1.39      para 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    276  1.43      para 		    round_page(size));
    277  1.39      para 		return;
    278  1.39      para 	}
    279  1.39      para 
    280  1.75      maxv 	kasan_mark(p, size, size, 0);
    281  1.70      maxv 
    282  1.50      yamt 	kmem_size_check(p, requested_size);
    283  1.39      para 	FREECHECK_IN(&kmem_freecheck, p);
    284  1.46      para 	LOCKDEBUG_MEM_CHECK(p, size);
    285  1.39      para 
    286  1.39      para 	pool_cache_put(pc, p);
    287  1.23        ad }
    288  1.23        ad 
    289  1.76      maxv /* -------------------------------- Kmem API -------------------------------- */
    290   1.1      yamt 
    291   1.1      yamt /*
    292   1.1      yamt  * kmem_alloc: allocate wired memory.
    293   1.1      yamt  * => must not be called from interrupt context.
    294   1.1      yamt  */
    295   1.1      yamt void *
    296   1.1      yamt kmem_alloc(size_t size, km_flag_t kmflags)
    297   1.1      yamt {
    298  1.62       chs 	void *v;
    299  1.62       chs 
    300  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    301  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    302  1.62       chs 	v = kmem_intr_alloc(size, kmflags);
    303  1.77      maxv 	if (__predict_true(v != NULL)) {
    304  1.77      maxv 		kmsan_mark(v, size, KMSAN_STATE_UNINIT);
    305  1.77      maxv 		kmsan_orig(v, size, KMSAN_TYPE_KMEM, __RET_ADDR);
    306  1.77      maxv 	}
    307  1.62       chs 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    308  1.62       chs 	return v;
    309   1.1      yamt }
    310   1.1      yamt 
    311   1.1      yamt /*
    312  1.39      para  * kmem_zalloc: allocate zeroed wired memory.
    313   1.2      yamt  * => must not be called from interrupt context.
    314   1.2      yamt  */
    315   1.2      yamt void *
    316   1.2      yamt kmem_zalloc(size_t size, km_flag_t kmflags)
    317   1.2      yamt {
    318  1.62       chs 	void *v;
    319  1.62       chs 
    320  1.40     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    321  1.40     rmind 	    "kmem(9) should not be used from the interrupt context");
    322  1.62       chs 	v = kmem_intr_zalloc(size, kmflags);
    323  1.62       chs 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
    324  1.62       chs 	return v;
    325   1.2      yamt }
    326   1.2      yamt 
    327   1.2      yamt /*
    328   1.1      yamt  * kmem_free: free wired memory allocated by kmem_alloc.
    329   1.1      yamt  * => must not be called from interrupt context.
    330   1.1      yamt  */
    331   1.1      yamt void
    332   1.1      yamt kmem_free(void *p, size_t size)
    333   1.1      yamt {
    334  1.23        ad 	KASSERT(!cpu_intr_p());
    335  1.27        ad 	KASSERT(!cpu_softintr_p());
    336  1.39      para 	kmem_intr_free(p, size);
    337  1.77      maxv 	kmsan_mark(p, size, KMSAN_STATE_INITED);
    338   1.1      yamt }
    339   1.1      yamt 
    340  1.46      para static size_t
    341  1.39      para kmem_create_caches(const struct kmem_cache_info *array,
    342  1.46      para     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    343   1.1      yamt {
    344  1.46      para 	size_t maxidx = 0;
    345  1.46      para 	size_t table_unit = (1 << shift);
    346  1.39      para 	size_t size = table_unit;
    347  1.23        ad 	int i;
    348   1.1      yamt 
    349  1.39      para 	for (i = 0; array[i].kc_size != 0 ; i++) {
    350  1.40     rmind 		const char *name = array[i].kc_name;
    351  1.39      para 		size_t cache_size = array[i].kc_size;
    352  1.46      para 		struct pool_allocator *pa;
    353  1.74      maxv 		int flags = 0;
    354  1.40     rmind 		pool_cache_t pc;
    355  1.39      para 		size_t align;
    356  1.39      para 
    357  1.39      para 		/* check if we reached the requested size */
    358  1.46      para 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    359  1.23        ad 			break;
    360  1.40     rmind 		}
    361  1.78        ad 
    362  1.78        ad 		/*
    363  1.78        ad 		 * Exclude caches with size not a factor or multiple of the
    364  1.78        ad 		 * coherency unit.
    365  1.78        ad 		 */
    366  1.78        ad 		if (cache_size < COHERENCY_UNIT) {
    367  1.78        ad 			if (COHERENCY_UNIT % cache_size > 0) {
    368  1.78        ad 			    	continue;
    369  1.78        ad 			}
    370  1.78        ad 			flags |= PR_NOTOUCH;
    371  1.78        ad 			align = KMEM_ALIGN;
    372  1.78        ad 		} else if ((cache_size & (PAGE_SIZE - 1)) == 0) {
    373  1.78        ad 			align = PAGE_SIZE;
    374  1.78        ad 		} else {
    375  1.78        ad 			if ((cache_size % COHERENCY_UNIT) > 0) {
    376  1.78        ad 				continue;
    377  1.78        ad 			}
    378  1.78        ad 			align = COHERENCY_UNIT;
    379  1.46      para 		}
    380  1.46      para 
    381  1.46      para 		if ((cache_size >> shift) > maxidx) {
    382  1.46      para 			maxidx = cache_size >> shift;
    383  1.40     rmind 		}
    384   1.1      yamt 
    385  1.46      para 		pa = &pool_allocator_kmem;
    386  1.39      para 		pc = pool_cache_init(cache_size, align, 0, flags,
    387  1.46      para 		    name, pa, ipl, NULL, NULL, NULL);
    388   1.1      yamt 
    389  1.39      para 		while (size <= cache_size) {
    390  1.46      para 			alloc_table[(size - 1) >> shift] = pc;
    391  1.39      para 			size += table_unit;
    392  1.39      para 		}
    393   1.1      yamt 	}
    394  1.46      para 	return maxidx;
    395   1.1      yamt }
    396   1.1      yamt 
    397  1.39      para void
    398  1.39      para kmem_init(void)
    399   1.1      yamt {
    400  1.46      para 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    401  1.46      para 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    402  1.55      maxv 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    403  1.46      para 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    404   1.1      yamt }
    405   1.4      yamt 
    406  1.39      para size_t
    407  1.39      para kmem_roundup_size(size_t size)
    408   1.7      yamt {
    409  1.61      maxv 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    410  1.61      maxv }
    411   1.7      yamt 
    412  1.61      maxv /*
    413  1.61      maxv  * Used to dynamically allocate string with kmem accordingly to format.
    414  1.61      maxv  */
    415  1.61      maxv char *
    416  1.61      maxv kmem_asprintf(const char *fmt, ...)
    417  1.61      maxv {
    418  1.61      maxv 	int size __diagused, len;
    419  1.61      maxv 	va_list va;
    420  1.61      maxv 	char *str;
    421  1.61      maxv 
    422  1.61      maxv 	va_start(va, fmt);
    423  1.61      maxv 	len = vsnprintf(NULL, 0, fmt, va);
    424  1.61      maxv 	va_end(va);
    425  1.61      maxv 
    426  1.61      maxv 	str = kmem_alloc(len + 1, KM_SLEEP);
    427  1.61      maxv 
    428  1.61      maxv 	va_start(va, fmt);
    429  1.61      maxv 	size = vsnprintf(str, len + 1, fmt, va);
    430  1.61      maxv 	va_end(va);
    431  1.61      maxv 
    432  1.61      maxv 	KASSERT(size == len);
    433  1.61      maxv 
    434  1.61      maxv 	return str;
    435   1.7      yamt }
    436   1.7      yamt 
    437  1.64  christos char *
    438  1.64  christos kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
    439  1.64  christos {
    440  1.64  christos 	size_t len = strlen(str) + 1;
    441  1.64  christos 	char *ptr = kmem_alloc(len, flags);
    442  1.64  christos 	if (ptr == NULL)
    443  1.64  christos 		return NULL;
    444  1.64  christos 
    445  1.64  christos 	if (lenp)
    446  1.64  christos 		*lenp = len;
    447  1.64  christos 	memcpy(ptr, str, len);
    448  1.64  christos 	return ptr;
    449  1.64  christos }
    450  1.64  christos 
    451  1.66  christos char *
    452  1.66  christos kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
    453  1.66  christos {
    454  1.66  christos 	KASSERT(str != NULL);
    455  1.66  christos 	KASSERT(maxlen != 0);
    456  1.66  christos 
    457  1.66  christos 	size_t len = strnlen(str, maxlen);
    458  1.66  christos 	char *ptr = kmem_alloc(len + 1, flags);
    459  1.66  christos 	if (ptr == NULL)
    460  1.66  christos 		return NULL;
    461  1.66  christos 
    462  1.66  christos 	memcpy(ptr, str, len);
    463  1.66  christos 	ptr[len] = '\0';
    464  1.66  christos 
    465  1.66  christos 	return ptr;
    466  1.66  christos }
    467  1.66  christos 
    468  1.64  christos void
    469  1.64  christos kmem_strfree(char *str)
    470  1.64  christos {
    471  1.64  christos 	if (str == NULL)
    472  1.64  christos 		return;
    473  1.64  christos 
    474  1.64  christos 	kmem_free(str, strlen(str) + 1);
    475  1.64  christos }
    476  1.64  christos 
    477  1.81   thorpej /*
    478  1.81   thorpej  * Utility routine to maybe-allocate a temporary buffer if the size
    479  1.81   thorpej  * is larger than we're willing to put on the stack.
    480  1.81   thorpej  */
    481  1.81   thorpej void *
    482  1.81   thorpej kmem_tmpbuf_alloc(size_t size, void *stackbuf, size_t stackbufsize,
    483  1.81   thorpej     km_flag_t flags)
    484  1.81   thorpej {
    485  1.81   thorpej 	if (size <= stackbufsize) {
    486  1.81   thorpej 		return stackbuf;
    487  1.81   thorpej 	}
    488  1.81   thorpej 
    489  1.81   thorpej 	return kmem_alloc(size, flags);
    490  1.81   thorpej }
    491  1.81   thorpej 
    492  1.81   thorpej void
    493  1.81   thorpej kmem_tmpbuf_free(void *buf, size_t size, void *stackbuf)
    494  1.81   thorpej {
    495  1.81   thorpej 	if (buf != stackbuf) {
    496  1.81   thorpej 		kmem_free(buf, size);
    497  1.81   thorpej 	}
    498  1.81   thorpej }
    499  1.81   thorpej 
    500  1.76      maxv /* --------------------------- DEBUG / DIAGNOSTIC --------------------------- */
    501   1.4      yamt 
    502  1.23        ad #if defined(KMEM_SIZE)
    503  1.23        ad static void
    504  1.23        ad kmem_size_set(void *p, size_t sz)
    505  1.23        ad {
    506  1.82     joerg 	memcpy((char *)p + sz, &sz, sizeof(size_t));
    507  1.23        ad }
    508  1.23        ad 
    509  1.23        ad static void
    510  1.39      para kmem_size_check(void *p, size_t sz)
    511  1.23        ad {
    512  1.57      maxv 	size_t hsz;
    513  1.23        ad 
    514  1.82     joerg 	memcpy(&hsz, (char *)p + sz, sizeof(size_t));
    515  1.57      maxv 
    516  1.57      maxv 	if (hsz != sz) {
    517  1.79        ad 		panic("kmem_free(%p, %zu) != allocated size %zu; overwrote?",
    518  1.79        ad 		    p, sz, hsz);
    519  1.23        ad 	}
    520  1.73      maxv 
    521  1.82     joerg 	memset((char *)p + sz, 0xff, sizeof(size_t));
    522  1.23        ad }
    523  1.54      maxv #endif /* defined(KMEM_SIZE) */
    524