Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.19.10.2
      1 /*	$NetBSD: subr_kmem.c,v 1.19.10.2 2009/06/20 07:20:31 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * allocator of kernel wired memory.
     60  *
     61  * TODO:
     62  * -	worth to have "intrsafe" version?  maybe..
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.19.10.2 2009/06/20 07:20:31 yamt Exp $");
     67 
     68 #include <sys/param.h>
     69 #include <sys/callback.h>
     70 #include <sys/kmem.h>
     71 #include <sys/vmem.h>
     72 #include <sys/debug.h>
     73 #include <sys/lockdebug.h>
     74 #include <sys/cpu.h>
     75 
     76 #include <uvm/uvm_extern.h>
     77 #include <uvm/uvm_map.h>
     78 #include <uvm/uvm_kmguard.h>
     79 
     80 #include <lib/libkern/libkern.h>
     81 
     82 #define	KMEM_QUANTUM_SIZE	(ALIGNBYTES + 1)
     83 #define	KMEM_QCACHE_MAX		(KMEM_QUANTUM_SIZE * 32)
     84 #define	KMEM_CACHE_COUNT	16
     85 
     86 typedef struct kmem_cache {
     87 	pool_cache_t		kc_cache;
     88 	struct pool_allocator	kc_pa;
     89 	char			kc_name[12];
     90 } kmem_cache_t;
     91 
     92 static vmem_t *kmem_arena;
     93 static struct callback_entry kmem_kva_reclaim_entry;
     94 
     95 static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
     96 static size_t kmem_cache_max;
     97 static size_t kmem_cache_min;
     98 static size_t kmem_cache_mask;
     99 static int kmem_cache_shift;
    100 
    101 #if defined(DEBUG)
    102 int kmem_guard_depth;
    103 size_t kmem_guard_size;
    104 static struct uvm_kmguard kmem_guard;
    105 static void *kmem_freecheck;
    106 #define	KMEM_POISON
    107 #define	KMEM_REDZONE
    108 #define	KMEM_SIZE
    109 #define	KMEM_GUARD
    110 #endif /* defined(DEBUG) */
    111 
    112 #if defined(KMEM_POISON)
    113 static void kmem_poison_fill(void *, size_t);
    114 static void kmem_poison_check(void *, size_t);
    115 #else /* defined(KMEM_POISON) */
    116 #define	kmem_poison_fill(p, sz)		/* nothing */
    117 #define	kmem_poison_check(p, sz)	/* nothing */
    118 #endif /* defined(KMEM_POISON) */
    119 
    120 #if defined(KMEM_REDZONE)
    121 #define	REDZONE_SIZE	1
    122 #else /* defined(KMEM_REDZONE) */
    123 #define	REDZONE_SIZE	0
    124 #endif /* defined(KMEM_REDZONE) */
    125 
    126 #if defined(KMEM_SIZE)
    127 #define	SIZE_SIZE	(max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
    128 static void kmem_size_set(void *, size_t);
    129 static void kmem_size_check(void *, size_t);
    130 #else
    131 #define	SIZE_SIZE	0
    132 #define	kmem_size_set(p, sz)	/* nothing */
    133 #define	kmem_size_check(p, sz)	/* nothing */
    134 #endif
    135 
    136 static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
    137     vm_flag_t);
    138 static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
    139 static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
    140 
    141 static inline vm_flag_t
    142 kmf_to_vmf(km_flag_t kmflags)
    143 {
    144 	vm_flag_t vmflags;
    145 
    146 	KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
    147 	KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
    148 
    149 	vmflags = 0;
    150 	if ((kmflags & KM_SLEEP) != 0) {
    151 		vmflags |= VM_SLEEP;
    152 	}
    153 	if ((kmflags & KM_NOSLEEP) != 0) {
    154 		vmflags |= VM_NOSLEEP;
    155 	}
    156 
    157 	return vmflags;
    158 }
    159 
    160 static void *
    161 kmem_poolpage_alloc(struct pool *pool, int prflags)
    162 {
    163 
    164 	KASSERT(KM_SLEEP == PR_WAITOK);
    165 	KASSERT(KM_NOSLEEP == PR_NOWAIT);
    166 
    167 	return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
    168 	    kmf_to_vmf(prflags) | VM_INSTANTFIT);
    169 
    170 }
    171 
    172 static void
    173 kmem_poolpage_free(struct pool *pool, void *addr)
    174 {
    175 
    176 	vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    177 }
    178 
    179 /* ---- kmem API */
    180 
    181 /*
    182  * kmem_alloc: allocate wired memory.
    183  *
    184  * => must not be called from interrupt context.
    185  */
    186 
    187 void *
    188 kmem_alloc(size_t size, km_flag_t kmflags)
    189 {
    190 	kmem_cache_t *kc;
    191 	uint8_t *p;
    192 
    193 	KASSERT(!cpu_intr_p());
    194 	KASSERT(!cpu_softintr_p());
    195 	KASSERT(size > 0);
    196 
    197 #ifdef KMEM_GUARD
    198 	if (size <= kmem_guard_size) {
    199 		return uvm_kmguard_alloc(&kmem_guard, size,
    200 		    (kmflags & KM_SLEEP) != 0);
    201 	}
    202 #endif
    203 
    204 	size += REDZONE_SIZE + SIZE_SIZE;
    205 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
    206 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
    207 		KASSERT(size <= kc->kc_pa.pa_pagesz);
    208 		KASSERT(KM_SLEEP == PR_WAITOK);
    209 		KASSERT(KM_NOSLEEP == PR_NOWAIT);
    210 		kmflags &= (KM_SLEEP | KM_NOSLEEP);
    211 		p = pool_cache_get(kc->kc_cache, kmflags);
    212 	} else {
    213 		p = (void *)vmem_alloc(kmem_arena, size,
    214 		    kmf_to_vmf(kmflags) | VM_INSTANTFIT);
    215 	}
    216 	if (__predict_true(p != NULL)) {
    217 		kmem_poison_check(p, kmem_roundup_size(size));
    218 		FREECHECK_OUT(&kmem_freecheck, p);
    219 		kmem_size_set(p, size);
    220 		p = (uint8_t *)p + SIZE_SIZE;
    221 	}
    222 	return p;
    223 }
    224 
    225 /*
    226  * kmem_zalloc: allocate wired memory.
    227  *
    228  * => must not be called from interrupt context.
    229  */
    230 
    231 void *
    232 kmem_zalloc(size_t size, km_flag_t kmflags)
    233 {
    234 	void *p;
    235 
    236 	p = kmem_alloc(size, kmflags);
    237 	if (p != NULL) {
    238 		memset(p, 0, size);
    239 	}
    240 	return p;
    241 }
    242 
    243 /*
    244  * kmem_free: free wired memory allocated by kmem_alloc.
    245  *
    246  * => must not be called from interrupt context.
    247  */
    248 
    249 void
    250 kmem_free(void *p, size_t size)
    251 {
    252 	kmem_cache_t *kc;
    253 
    254 	KASSERT(!cpu_intr_p());
    255 	KASSERT(!cpu_softintr_p());
    256 	KASSERT(p != NULL);
    257 	KASSERT(size > 0);
    258 
    259 	size += SIZE_SIZE;
    260 	p = (uint8_t *)p - SIZE_SIZE;
    261 	kmem_size_check(p, size + REDZONE_SIZE);
    262 
    263 #ifdef KMEM_GUARD
    264 	if (size <= kmem_guard_size) {
    265 		uvm_kmguard_free(&kmem_guard, size, p);
    266 		return;
    267 	}
    268 #endif
    269 
    270 	FREECHECK_IN(&kmem_freecheck, p);
    271 	LOCKDEBUG_MEM_CHECK(p, size);
    272 	kmem_poison_check((char *)p + size,
    273 	    kmem_roundup_size(size + REDZONE_SIZE) - size);
    274 	kmem_poison_fill(p, size);
    275 	size += REDZONE_SIZE;
    276 	if (size >= kmem_cache_min && size <= kmem_cache_max) {
    277 		kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
    278 		KASSERT(size <= kc->kc_pa.pa_pagesz);
    279 		pool_cache_put(kc->kc_cache, p);
    280 	} else {
    281 		vmem_free(kmem_arena, (vmem_addr_t)p, size);
    282 	}
    283 }
    284 
    285 
    286 void
    287 kmem_init(void)
    288 {
    289 	kmem_cache_t *kc;
    290 	size_t sz;
    291 	int i;
    292 
    293 #ifdef KMEM_GUARD
    294 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    295 	    kernel_map);
    296 #endif
    297 
    298 	kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
    299 	    kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
    300 	    VM_SLEEP, IPL_NONE);
    301 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    302 	    &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
    303 
    304 	/*
    305 	 * kmem caches start at twice the size of the largest vmem qcache
    306 	 * and end at PAGE_SIZE or earlier.  assert that KMEM_QCACHE_MAX
    307 	 * is a power of two.
    308 	 */
    309 	KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
    310 	KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
    311 	kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
    312 	kmem_cache_min = 1 << kmem_cache_shift;
    313 	kmem_cache_mask = kmem_cache_min - 1;
    314 	for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
    315 		sz = i << kmem_cache_shift;
    316 		if (sz > PAGE_SIZE) {
    317 			break;
    318 		}
    319 		kmem_cache_max = sz;
    320 		kc = &kmem_cache[i];
    321 		kc->kc_pa.pa_pagesz = sz;
    322 		kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
    323 		kc->kc_pa.pa_free = kmem_poolpage_free;
    324 		sprintf(kc->kc_name, "kmem-%zu", sz);
    325 		kc->kc_cache = pool_cache_init(sz,
    326 		    KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
    327 		    kc->kc_name, &kc->kc_pa, IPL_NONE,
    328 		    NULL, NULL, NULL);
    329 		KASSERT(kc->kc_cache != NULL);
    330 	}
    331 }
    332 
    333 size_t
    334 kmem_roundup_size(size_t size)
    335 {
    336 
    337 	return vmem_roundup_size(kmem_arena, size);
    338 }
    339 
    340 /* ---- uvm glue */
    341 
    342 static vmem_addr_t
    343 kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
    344     vm_flag_t vmflags)
    345 {
    346 	uvm_flag_t uflags;
    347 	vaddr_t va;
    348 
    349 	KASSERT(dummy == NULL);
    350 	KASSERT(size != 0);
    351 	KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    352 	KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    353 
    354 	if ((vmflags & VM_NOSLEEP) != 0) {
    355 		uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
    356 	} else {
    357 		uflags = UVM_KMF_WAITVA;
    358 	}
    359 	*resultsize = size = round_page(size);
    360 	va = uvm_km_alloc(kernel_map, size, 0,
    361 	    uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
    362 	if (va != 0) {
    363 		kmem_poison_fill((void *)va, size);
    364 	}
    365 	return (vmem_addr_t)va;
    366 }
    367 
    368 static void
    369 kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
    370 {
    371 
    372 	KASSERT(dummy == NULL);
    373 	KASSERT(addr != 0);
    374 	KASSERT(size != 0);
    375 	KASSERT(size == round_page(size));
    376 
    377 	kmem_poison_check((void *)addr, size);
    378 	uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
    379 }
    380 
    381 static int
    382 kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    383 {
    384 	vmem_t *vm = obj;
    385 
    386 	vmem_reap(vm);
    387 	return CALLBACK_CHAIN_CONTINUE;
    388 }
    389 
    390 /* ---- debug */
    391 
    392 #if defined(KMEM_POISON)
    393 
    394 #if defined(_LP64)
    395 #define	PRIME	0x9e37fffffffc0001UL
    396 #else /* defined(_LP64) */
    397 #define	PRIME	0x9e3779b1
    398 #endif /* defined(_LP64) */
    399 
    400 static inline uint8_t
    401 kmem_poison_pattern(const void *p)
    402 {
    403 
    404 	return (uint8_t)((((uintptr_t)p) * PRIME)
    405 	    >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    406 }
    407 
    408 static void
    409 kmem_poison_fill(void *p, size_t sz)
    410 {
    411 	uint8_t *cp;
    412 	const uint8_t *ep;
    413 
    414 	cp = p;
    415 	ep = cp + sz;
    416 	while (cp < ep) {
    417 		*cp = kmem_poison_pattern(cp);
    418 		cp++;
    419 	}
    420 }
    421 
    422 static void
    423 kmem_poison_check(void *p, size_t sz)
    424 {
    425 	uint8_t *cp;
    426 	const uint8_t *ep;
    427 
    428 	cp = p;
    429 	ep = cp + sz;
    430 	while (cp < ep) {
    431 		const uint8_t expected = kmem_poison_pattern(cp);
    432 
    433 		if (*cp != expected) {
    434 			panic("%s: %p: 0x%02x != 0x%02x\n",
    435 			    __func__, cp, *cp, expected);
    436 		}
    437 		cp++;
    438 	}
    439 }
    440 
    441 #endif /* defined(KMEM_POISON) */
    442 
    443 #if defined(KMEM_SIZE)
    444 static void
    445 kmem_size_set(void *p, size_t sz)
    446 {
    447 
    448 	memcpy(p, &sz, sizeof(sz));
    449 }
    450 
    451 static void
    452 kmem_size_check(void *p, size_t sz)
    453 {
    454 	size_t psz;
    455 
    456 	memcpy(&psz, p, sizeof(psz));
    457 	if (psz != sz) {
    458 		panic("kmem_free(%p, %zu) != allocated size %zu",
    459 		    (uint8_t*)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
    460 	}
    461 }
    462 #endif	/* defined(KMEM_SIZE) */
    463