subr_kmem.c revision 1.19.10.3 1 /* $NetBSD: subr_kmem.c,v 1.19.10.3 2010/03/11 15:04:18 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * allocator of kernel wired memory.
60 *
61 * TODO:
62 * - worth to have "intrsafe" version? maybe..
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.19.10.3 2010/03/11 15:04:18 yamt Exp $");
67
68 #include <sys/param.h>
69 #include <sys/callback.h>
70 #include <sys/kmem.h>
71 #include <sys/vmem.h>
72 #include <sys/debug.h>
73 #include <sys/lockdebug.h>
74 #include <sys/cpu.h>
75
76 #include <uvm/uvm_extern.h>
77 #include <uvm/uvm_map.h>
78 #include <uvm/uvm_kmguard.h>
79
80 #include <lib/libkern/libkern.h>
81
82 #include <machine/stdarg.h>
83
84 #define KMEM_QUANTUM_SIZE (ALIGNBYTES + 1)
85 #define KMEM_QCACHE_MAX (KMEM_QUANTUM_SIZE * 32)
86 #define KMEM_CACHE_COUNT 16
87
88 typedef struct kmem_cache {
89 pool_cache_t kc_cache;
90 struct pool_allocator kc_pa;
91 char kc_name[12];
92 } kmem_cache_t;
93
94 static vmem_t *kmem_arena;
95 static struct callback_entry kmem_kva_reclaim_entry;
96
97 static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
98 static size_t kmem_cache_max;
99 static size_t kmem_cache_min;
100 static size_t kmem_cache_mask;
101 static int kmem_cache_shift;
102
103 #if defined(DEBUG)
104 int kmem_guard_depth;
105 size_t kmem_guard_size;
106 static struct uvm_kmguard kmem_guard;
107 static void *kmem_freecheck;
108 #define KMEM_POISON
109 #define KMEM_REDZONE
110 #define KMEM_SIZE
111 #define KMEM_GUARD
112 #endif /* defined(DEBUG) */
113
114 #if defined(KMEM_POISON)
115 static void kmem_poison_fill(void *, size_t);
116 static void kmem_poison_check(void *, size_t);
117 #else /* defined(KMEM_POISON) */
118 #define kmem_poison_fill(p, sz) /* nothing */
119 #define kmem_poison_check(p, sz) /* nothing */
120 #endif /* defined(KMEM_POISON) */
121
122 #if defined(KMEM_REDZONE)
123 #define REDZONE_SIZE 1
124 #else /* defined(KMEM_REDZONE) */
125 #define REDZONE_SIZE 0
126 #endif /* defined(KMEM_REDZONE) */
127
128 #if defined(KMEM_SIZE)
129 #define SIZE_SIZE (max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
130 static void kmem_size_set(void *, size_t);
131 static void kmem_size_check(const void *, size_t);
132 #else
133 #define SIZE_SIZE 0
134 #define kmem_size_set(p, sz) /* nothing */
135 #define kmem_size_check(p, sz) /* nothing */
136 #endif
137
138 static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
139 vm_flag_t);
140 static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
141 static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
142
143 CTASSERT(KM_SLEEP == PR_WAITOK);
144 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
145
146 static inline vm_flag_t
147 kmf_to_vmf(km_flag_t kmflags)
148 {
149 vm_flag_t vmflags;
150
151 KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
152 KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
153
154 vmflags = 0;
155 if ((kmflags & KM_SLEEP) != 0) {
156 vmflags |= VM_SLEEP;
157 }
158 if ((kmflags & KM_NOSLEEP) != 0) {
159 vmflags |= VM_NOSLEEP;
160 }
161
162 return vmflags;
163 }
164
165 static void *
166 kmem_poolpage_alloc(struct pool *pool, int prflags)
167 {
168
169 return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
170 kmf_to_vmf(prflags) | VM_INSTANTFIT);
171
172 }
173
174 static void
175 kmem_poolpage_free(struct pool *pool, void *addr)
176 {
177
178 vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
179 }
180
181 /* ---- kmem API */
182
183 /*
184 * kmem_alloc: allocate wired memory.
185 *
186 * => must not be called from interrupt context.
187 */
188
189 void *
190 kmem_alloc(size_t size, km_flag_t kmflags)
191 {
192 kmem_cache_t *kc;
193 uint8_t *p;
194
195 KASSERT(!cpu_intr_p());
196 KASSERT(!cpu_softintr_p());
197 KASSERT(size > 0);
198
199 #ifdef KMEM_GUARD
200 if (size <= kmem_guard_size) {
201 return uvm_kmguard_alloc(&kmem_guard, size,
202 (kmflags & KM_SLEEP) != 0);
203 }
204 #endif
205
206 size += REDZONE_SIZE + SIZE_SIZE;
207 if (size >= kmem_cache_min && size <= kmem_cache_max) {
208 kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
209 KASSERT(size <= kc->kc_pa.pa_pagesz);
210 kmflags &= (KM_SLEEP | KM_NOSLEEP);
211 p = pool_cache_get(kc->kc_cache, kmflags);
212 } else {
213 p = (void *)vmem_alloc(kmem_arena, size,
214 kmf_to_vmf(kmflags) | VM_INSTANTFIT);
215 }
216 if (__predict_true(p != NULL)) {
217 kmem_poison_check(p, kmem_roundup_size(size));
218 FREECHECK_OUT(&kmem_freecheck, p);
219 kmem_size_set(p, size);
220 p = (uint8_t *)p + SIZE_SIZE;
221 }
222 return p;
223 }
224
225 /*
226 * kmem_zalloc: allocate wired memory.
227 *
228 * => must not be called from interrupt context.
229 */
230
231 void *
232 kmem_zalloc(size_t size, km_flag_t kmflags)
233 {
234 void *p;
235
236 p = kmem_alloc(size, kmflags);
237 if (p != NULL) {
238 memset(p, 0, size);
239 }
240 return p;
241 }
242
243 /*
244 * kmem_free: free wired memory allocated by kmem_alloc.
245 *
246 * => must not be called from interrupt context.
247 */
248
249 void
250 kmem_free(void *p, size_t size)
251 {
252 kmem_cache_t *kc;
253
254 KASSERT(!cpu_intr_p());
255 KASSERT(!cpu_softintr_p());
256 KASSERT(p != NULL);
257 KASSERT(size > 0);
258
259 #ifdef KMEM_GUARD
260 if (size <= kmem_guard_size) {
261 uvm_kmguard_free(&kmem_guard, size, p);
262 return;
263 }
264 #endif
265 size += SIZE_SIZE;
266 p = (uint8_t *)p - SIZE_SIZE;
267 kmem_size_check(p, size + REDZONE_SIZE);
268 FREECHECK_IN(&kmem_freecheck, p);
269 LOCKDEBUG_MEM_CHECK(p, size);
270 kmem_poison_check((char *)p + size,
271 kmem_roundup_size(size + REDZONE_SIZE) - size);
272 kmem_poison_fill(p, size);
273 size += REDZONE_SIZE;
274 if (size >= kmem_cache_min && size <= kmem_cache_max) {
275 kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
276 KASSERT(size <= kc->kc_pa.pa_pagesz);
277 pool_cache_put(kc->kc_cache, p);
278 } else {
279 vmem_free(kmem_arena, (vmem_addr_t)p, size);
280 }
281 }
282
283
284 void
285 kmem_init(void)
286 {
287 kmem_cache_t *kc;
288 size_t sz;
289 int i;
290
291 #ifdef KMEM_GUARD
292 uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
293 kernel_map);
294 #endif
295
296 kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
297 kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
298 VM_SLEEP, IPL_NONE);
299 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
300 &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
301
302 /*
303 * kmem caches start at twice the size of the largest vmem qcache
304 * and end at PAGE_SIZE or earlier. assert that KMEM_QCACHE_MAX
305 * is a power of two.
306 */
307 KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
308 KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
309 kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
310 kmem_cache_min = 1 << kmem_cache_shift;
311 kmem_cache_mask = kmem_cache_min - 1;
312 for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
313 sz = i << kmem_cache_shift;
314 if (sz > PAGE_SIZE) {
315 break;
316 }
317 kmem_cache_max = sz;
318 kc = &kmem_cache[i];
319 kc->kc_pa.pa_pagesz = sz;
320 kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
321 kc->kc_pa.pa_free = kmem_poolpage_free;
322 sprintf(kc->kc_name, "kmem-%zu", sz);
323 kc->kc_cache = pool_cache_init(sz,
324 KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
325 kc->kc_name, &kc->kc_pa, IPL_NONE,
326 NULL, NULL, NULL);
327 KASSERT(kc->kc_cache != NULL);
328 }
329 }
330
331 size_t
332 kmem_roundup_size(size_t size)
333 {
334
335 return vmem_roundup_size(kmem_arena, size);
336 }
337
338 /* ---- uvm glue */
339
340 static vmem_addr_t
341 kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
342 vm_flag_t vmflags)
343 {
344 uvm_flag_t uflags;
345 vaddr_t va;
346
347 KASSERT(dummy == NULL);
348 KASSERT(size != 0);
349 KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
350 KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
351
352 if ((vmflags & VM_NOSLEEP) != 0) {
353 uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
354 } else {
355 uflags = UVM_KMF_WAITVA;
356 }
357 *resultsize = size = round_page(size);
358 va = uvm_km_alloc(kernel_map, size, 0,
359 uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
360 if (va != 0) {
361 kmem_poison_fill((void *)va, size);
362 }
363 return (vmem_addr_t)va;
364 }
365
366 static void
367 kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
368 {
369
370 KASSERT(dummy == NULL);
371 KASSERT(addr != 0);
372 KASSERT(size != 0);
373 KASSERT(size == round_page(size));
374
375 kmem_poison_check((void *)addr, size);
376 uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
377 }
378
379 static int
380 kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
381 {
382 vmem_t *vm = obj;
383
384 vmem_reap(vm);
385 return CALLBACK_CHAIN_CONTINUE;
386 }
387
388 /* ---- debug */
389
390 #if defined(KMEM_POISON)
391
392 #if defined(_LP64)
393 #define PRIME 0x9e37fffffffc0001UL
394 #else /* defined(_LP64) */
395 #define PRIME 0x9e3779b1
396 #endif /* defined(_LP64) */
397
398 static inline uint8_t
399 kmem_poison_pattern(const void *p)
400 {
401
402 return (uint8_t)((((uintptr_t)p) * PRIME)
403 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
404 }
405
406 static void
407 kmem_poison_fill(void *p, size_t sz)
408 {
409 uint8_t *cp;
410 const uint8_t *ep;
411
412 cp = p;
413 ep = cp + sz;
414 while (cp < ep) {
415 *cp = kmem_poison_pattern(cp);
416 cp++;
417 }
418 }
419
420 static void
421 kmem_poison_check(void *p, size_t sz)
422 {
423 uint8_t *cp;
424 const uint8_t *ep;
425
426 cp = p;
427 ep = cp + sz;
428 while (cp < ep) {
429 const uint8_t expected = kmem_poison_pattern(cp);
430
431 if (*cp != expected) {
432 panic("%s: %p: 0x%02x != 0x%02x\n",
433 __func__, cp, *cp, expected);
434 }
435 cp++;
436 }
437 }
438
439 #endif /* defined(KMEM_POISON) */
440
441 #if defined(KMEM_SIZE)
442 static void
443 kmem_size_set(void *p, size_t sz)
444 {
445
446 memcpy(p, &sz, sizeof(sz));
447 }
448
449 static void
450 kmem_size_check(const void *p, size_t sz)
451 {
452 size_t psz;
453
454 memcpy(&psz, p, sizeof(psz));
455 if (psz != sz) {
456 panic("kmem_free(%p, %zu) != allocated size %zu",
457 (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
458 }
459 }
460 #endif /* defined(KMEM_SIZE) */
461
462 /*
463 * Used to dynamically allocate string with kmem accordingly to format.
464 */
465 char *
466 kmem_asprintf(const char *fmt, ...)
467 {
468 int size, str_len;
469 va_list va;
470 char *str;
471 char buf[1];
472
473 va_start(va, fmt);
474 str_len = vsnprintf(buf, sizeof(buf), fmt, va) + 1;
475 va_end(va);
476
477 str = kmem_alloc(str_len, KM_SLEEP);
478
479 if ((size = vsnprintf(str, str_len, fmt, va)) == -1) {
480 kmem_free(str, str_len);
481 return NULL;
482 }
483
484 return str;
485 }
486