subr_kmem.c revision 1.27 1 /* $NetBSD: subr_kmem.c,v 1.27 2009/03/29 10:51:53 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * allocator of kernel wired memory.
60 *
61 * TODO:
62 * - worth to have "intrsafe" version? maybe..
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.27 2009/03/29 10:51:53 ad Exp $");
67
68 #include <sys/param.h>
69 #include <sys/callback.h>
70 #include <sys/kmem.h>
71 #include <sys/vmem.h>
72 #include <sys/debug.h>
73 #include <sys/lockdebug.h>
74 #include <sys/cpu.h>
75
76 #include <uvm/uvm_extern.h>
77 #include <uvm/uvm_map.h>
78 #include <uvm/uvm_kmguard.h>
79
80 #include <lib/libkern/libkern.h>
81
82 #define KMEM_QUANTUM_SIZE (ALIGNBYTES + 1)
83 #define KMEM_QCACHE_MAX (KMEM_QUANTUM_SIZE * 32)
84 #define KMEM_CACHE_COUNT 16
85
86 typedef struct kmem_cache {
87 pool_cache_t kc_cache;
88 struct pool_allocator kc_pa;
89 char kc_name[12];
90 } kmem_cache_t;
91
92 static vmem_t *kmem_arena;
93 static struct callback_entry kmem_kva_reclaim_entry;
94
95 static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
96 static size_t kmem_cache_max;
97 static size_t kmem_cache_min;
98 static size_t kmem_cache_mask;
99 static int kmem_cache_shift;
100
101 #if defined(DEBUG)
102 int kmem_guard_depth;
103 size_t kmem_guard_size;
104 static struct uvm_kmguard kmem_guard;
105 static void *kmem_freecheck;
106 #define KMEM_POISON
107 #define KMEM_REDZONE
108 #define KMEM_SIZE
109 #define KMEM_GUARD
110 #endif /* defined(DEBUG) */
111
112 #if defined(KMEM_POISON)
113 static void kmem_poison_fill(void *, size_t);
114 static void kmem_poison_check(void *, size_t);
115 #else /* defined(KMEM_POISON) */
116 #define kmem_poison_fill(p, sz) /* nothing */
117 #define kmem_poison_check(p, sz) /* nothing */
118 #endif /* defined(KMEM_POISON) */
119
120 #if defined(KMEM_REDZONE)
121 #define REDZONE_SIZE 1
122 #else /* defined(KMEM_REDZONE) */
123 #define REDZONE_SIZE 0
124 #endif /* defined(KMEM_REDZONE) */
125
126 #if defined(KMEM_SIZE)
127 #define SIZE_SIZE (max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
128 static void kmem_size_set(void *, size_t);
129 static void kmem_size_check(void *, size_t);
130 #else
131 #define SIZE_SIZE 0
132 #define kmem_size_set(p, sz) /* nothing */
133 #define kmem_size_check(p, sz) /* nothing */
134 #endif
135
136 static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
137 vm_flag_t);
138 static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
139 static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
140
141 static inline vm_flag_t
142 kmf_to_vmf(km_flag_t kmflags)
143 {
144 vm_flag_t vmflags;
145
146 KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
147 KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
148
149 vmflags = 0;
150 if ((kmflags & KM_SLEEP) != 0) {
151 vmflags |= VM_SLEEP;
152 }
153 if ((kmflags & KM_NOSLEEP) != 0) {
154 vmflags |= VM_NOSLEEP;
155 }
156
157 return vmflags;
158 }
159
160 static void *
161 kmem_poolpage_alloc(struct pool *pool, int prflags)
162 {
163
164 KASSERT(KM_SLEEP == PR_WAITOK);
165 KASSERT(KM_NOSLEEP == PR_NOWAIT);
166
167 return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
168 kmf_to_vmf(prflags) | VM_INSTANTFIT);
169
170 }
171
172 static void
173 kmem_poolpage_free(struct pool *pool, void *addr)
174 {
175
176 vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
177 }
178
179 /* ---- kmem API */
180
181 /*
182 * kmem_alloc: allocate wired memory.
183 *
184 * => must not be called from interrupt context.
185 */
186
187 void *
188 kmem_alloc(size_t size, km_flag_t kmflags)
189 {
190 kmem_cache_t *kc;
191 uint8_t *p;
192
193 KASSERT(!cpu_intr_p());
194 KASSERT(!cpu_softintr_p());
195 KASSERT(size > 0);
196
197 #ifdef KMEM_GUARD
198 if (size <= kmem_guard_size) {
199 return uvm_kmguard_alloc(&kmem_guard, size,
200 (kmflags & KM_SLEEP) != 0);
201 }
202 #endif
203
204 size += REDZONE_SIZE + SIZE_SIZE;
205 if (size >= kmem_cache_min && size <= kmem_cache_max) {
206 kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
207 KASSERT(size <= kc->kc_pa.pa_pagesz);
208 KASSERT(KM_SLEEP == PR_WAITOK);
209 KASSERT(KM_NOSLEEP == PR_NOWAIT);
210 kmflags &= (KM_SLEEP | KM_NOSLEEP);
211 p = pool_cache_get(kc->kc_cache, kmflags);
212 } else {
213 p = (void *)vmem_alloc(kmem_arena, size,
214 kmf_to_vmf(kmflags) | VM_INSTANTFIT);
215 }
216 if (__predict_true(p != NULL)) {
217 kmem_poison_check(p, kmem_roundup_size(size));
218 FREECHECK_OUT(&kmem_freecheck, p);
219 kmem_size_set(p, size);
220 p = (uint8_t *)p + SIZE_SIZE;
221 }
222 return p;
223 }
224
225 /*
226 * kmem_zalloc: allocate wired memory.
227 *
228 * => must not be called from interrupt context.
229 */
230
231 void *
232 kmem_zalloc(size_t size, km_flag_t kmflags)
233 {
234 void *p;
235
236 p = kmem_alloc(size, kmflags);
237 if (p != NULL) {
238 memset(p, 0, size);
239 }
240 return p;
241 }
242
243 /*
244 * kmem_free: free wired memory allocated by kmem_alloc.
245 *
246 * => must not be called from interrupt context.
247 */
248
249 void
250 kmem_free(void *p, size_t size)
251 {
252 kmem_cache_t *kc;
253
254 KASSERT(!cpu_intr_p());
255 KASSERT(!cpu_softintr_p());
256 KASSERT(size > 0);
257
258 size += SIZE_SIZE;
259 p = (uint8_t *)p - SIZE_SIZE;
260 kmem_size_check(p, size + REDZONE_SIZE);
261
262 #ifdef KMEM_GUARD
263 if (size <= kmem_guard_size) {
264 uvm_kmguard_free(&kmem_guard, size, p);
265 return;
266 }
267 #endif
268
269 FREECHECK_IN(&kmem_freecheck, p);
270 LOCKDEBUG_MEM_CHECK(p, size);
271 kmem_poison_check((char *)p + size,
272 kmem_roundup_size(size + REDZONE_SIZE) - size);
273 kmem_poison_fill(p, size);
274 size += REDZONE_SIZE;
275 if (size >= kmem_cache_min && size <= kmem_cache_max) {
276 kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
277 KASSERT(size <= kc->kc_pa.pa_pagesz);
278 pool_cache_put(kc->kc_cache, p);
279 } else {
280 vmem_free(kmem_arena, (vmem_addr_t)p, size);
281 }
282 }
283
284
285 void
286 kmem_init(void)
287 {
288 kmem_cache_t *kc;
289 size_t sz;
290 int i;
291
292 #ifdef KMEM_GUARD
293 uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
294 kernel_map);
295 #endif
296
297 kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
298 kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
299 VM_SLEEP, IPL_NONE);
300 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
301 &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
302
303 /*
304 * kmem caches start at twice the size of the largest vmem qcache
305 * and end at PAGE_SIZE or earlier. assert that KMEM_QCACHE_MAX
306 * is a power of two.
307 */
308 KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
309 KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
310 kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
311 kmem_cache_min = 1 << kmem_cache_shift;
312 kmem_cache_mask = kmem_cache_min - 1;
313 for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
314 sz = i << kmem_cache_shift;
315 if (sz > PAGE_SIZE) {
316 break;
317 }
318 kmem_cache_max = sz;
319 kc = &kmem_cache[i];
320 kc->kc_pa.pa_pagesz = sz;
321 kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
322 kc->kc_pa.pa_free = kmem_poolpage_free;
323 sprintf(kc->kc_name, "kmem-%zu", sz);
324 kc->kc_cache = pool_cache_init(sz,
325 KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
326 kc->kc_name, &kc->kc_pa, IPL_NONE,
327 NULL, NULL, NULL);
328 KASSERT(kc->kc_cache != NULL);
329 }
330 }
331
332 size_t
333 kmem_roundup_size(size_t size)
334 {
335
336 return vmem_roundup_size(kmem_arena, size);
337 }
338
339 /* ---- uvm glue */
340
341 static vmem_addr_t
342 kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
343 vm_flag_t vmflags)
344 {
345 uvm_flag_t uflags;
346 vaddr_t va;
347
348 KASSERT(dummy == NULL);
349 KASSERT(size != 0);
350 KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
351 KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
352
353 if ((vmflags & VM_NOSLEEP) != 0) {
354 uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
355 } else {
356 uflags = UVM_KMF_WAITVA;
357 }
358 *resultsize = size = round_page(size);
359 va = uvm_km_alloc(kernel_map, size, 0,
360 uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
361 if (va != 0) {
362 kmem_poison_fill((void *)va, size);
363 }
364 return (vmem_addr_t)va;
365 }
366
367 static void
368 kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
369 {
370
371 KASSERT(dummy == NULL);
372 KASSERT(addr != 0);
373 KASSERT(size != 0);
374 KASSERT(size == round_page(size));
375
376 kmem_poison_check((void *)addr, size);
377 uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
378 }
379
380 static int
381 kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
382 {
383 vmem_t *vm = obj;
384
385 vmem_reap(vm);
386 return CALLBACK_CHAIN_CONTINUE;
387 }
388
389 /* ---- debug */
390
391 #if defined(KMEM_POISON)
392
393 #if defined(_LP64)
394 #define PRIME 0x9e37fffffffc0001UL
395 #else /* defined(_LP64) */
396 #define PRIME 0x9e3779b1
397 #endif /* defined(_LP64) */
398
399 static inline uint8_t
400 kmem_poison_pattern(const void *p)
401 {
402
403 return (uint8_t)((((uintptr_t)p) * PRIME)
404 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
405 }
406
407 static void
408 kmem_poison_fill(void *p, size_t sz)
409 {
410 uint8_t *cp;
411 const uint8_t *ep;
412
413 cp = p;
414 ep = cp + sz;
415 while (cp < ep) {
416 *cp = kmem_poison_pattern(cp);
417 cp++;
418 }
419 }
420
421 static void
422 kmem_poison_check(void *p, size_t sz)
423 {
424 uint8_t *cp;
425 const uint8_t *ep;
426
427 cp = p;
428 ep = cp + sz;
429 while (cp < ep) {
430 const uint8_t expected = kmem_poison_pattern(cp);
431
432 if (*cp != expected) {
433 panic("%s: %p: 0x%02x != 0x%02x\n",
434 __func__, cp, *cp, expected);
435 }
436 cp++;
437 }
438 }
439
440 #endif /* defined(KMEM_POISON) */
441
442 #if defined(KMEM_SIZE)
443 static void
444 kmem_size_set(void *p, size_t sz)
445 {
446
447 memcpy(p, &sz, sizeof(sz));
448 }
449
450 static void
451 kmem_size_check(void *p, size_t sz)
452 {
453 size_t psz;
454
455 memcpy(&psz, p, sizeof(psz));
456 if (psz != sz) {
457 panic("kmem_free(%p, %zu) != allocated size %zu",
458 (uint8_t*)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
459 }
460 }
461 #endif /* defined(KMEM_SIZE) */
462