subr_kmem.c revision 1.35 1 /* $NetBSD: subr_kmem.c,v 1.35 2011/07/17 20:54:52 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * allocator of kernel wired memory.
60 *
61 * TODO:
62 * - worth to have "intrsafe" version? maybe..
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.35 2011/07/17 20:54:52 joerg Exp $");
67
68 #include <sys/param.h>
69 #include <sys/callback.h>
70 #include <sys/kmem.h>
71 #include <sys/vmem.h>
72 #include <sys/debug.h>
73 #include <sys/lockdebug.h>
74 #include <sys/cpu.h>
75
76 #include <uvm/uvm_extern.h>
77 #include <uvm/uvm_map.h>
78 #include <uvm/uvm_kmguard.h>
79
80 #include <lib/libkern/libkern.h>
81
82 #define KMEM_QUANTUM_SIZE (ALIGNBYTES + 1)
83 #define KMEM_QCACHE_MAX (KMEM_QUANTUM_SIZE * 32)
84 #define KMEM_CACHE_COUNT 16
85
86 typedef struct kmem_cache {
87 pool_cache_t kc_cache;
88 struct pool_allocator kc_pa;
89 char kc_name[12];
90 } kmem_cache_t;
91
92 static vmem_t *kmem_arena;
93 static struct callback_entry kmem_kva_reclaim_entry;
94
95 static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
96 static size_t kmem_cache_max;
97 static size_t kmem_cache_min;
98 static size_t kmem_cache_mask;
99 static int kmem_cache_shift;
100
101 #if defined(DEBUG)
102 int kmem_guard_depth = 0;
103 size_t kmem_guard_size;
104 static struct uvm_kmguard kmem_guard;
105 static void *kmem_freecheck;
106 #define KMEM_POISON
107 #define KMEM_REDZONE
108 #define KMEM_SIZE
109 #define KMEM_GUARD
110 #endif /* defined(DEBUG) */
111
112 #if defined(KMEM_POISON)
113 static void kmem_poison_fill(void *, size_t);
114 static void kmem_poison_check(void *, size_t);
115 #else /* defined(KMEM_POISON) */
116 #define kmem_poison_fill(p, sz) /* nothing */
117 #define kmem_poison_check(p, sz) /* nothing */
118 #endif /* defined(KMEM_POISON) */
119
120 #if defined(KMEM_REDZONE)
121 #define REDZONE_SIZE 1
122 #else /* defined(KMEM_REDZONE) */
123 #define REDZONE_SIZE 0
124 #endif /* defined(KMEM_REDZONE) */
125
126 #if defined(KMEM_SIZE)
127 #define SIZE_SIZE (max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
128 static void kmem_size_set(void *, size_t);
129 static void kmem_size_check(const void *, size_t);
130 #else
131 #define SIZE_SIZE 0
132 #define kmem_size_set(p, sz) /* nothing */
133 #define kmem_size_check(p, sz) /* nothing */
134 #endif
135
136 static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
137 vm_flag_t);
138 static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
139 static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
140
141 CTASSERT(KM_SLEEP == PR_WAITOK);
142 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
143
144 static inline vm_flag_t
145 kmf_to_vmf(km_flag_t kmflags)
146 {
147 vm_flag_t vmflags;
148
149 KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
150 KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
151
152 vmflags = 0;
153 if ((kmflags & KM_SLEEP) != 0) {
154 vmflags |= VM_SLEEP;
155 }
156 if ((kmflags & KM_NOSLEEP) != 0) {
157 vmflags |= VM_NOSLEEP;
158 }
159
160 return vmflags;
161 }
162
163 static void *
164 kmem_poolpage_alloc(struct pool *pool, int prflags)
165 {
166
167 return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
168 kmf_to_vmf(prflags) | VM_INSTANTFIT);
169
170 }
171
172 static void
173 kmem_poolpage_free(struct pool *pool, void *addr)
174 {
175
176 vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
177 }
178
179 /* ---- kmem API */
180
181 /*
182 * kmem_alloc: allocate wired memory.
183 *
184 * => must not be called from interrupt context.
185 */
186
187 void *
188 kmem_alloc(size_t size, km_flag_t kmflags)
189 {
190 kmem_cache_t *kc;
191 uint8_t *p;
192
193 KASSERT(!cpu_intr_p());
194 KASSERT(!cpu_softintr_p());
195 KASSERT(size > 0);
196
197 #ifdef KMEM_GUARD
198 if (size <= kmem_guard_size) {
199 return uvm_kmguard_alloc(&kmem_guard, size,
200 (kmflags & KM_SLEEP) != 0);
201 }
202 #endif
203
204 size += REDZONE_SIZE + SIZE_SIZE;
205 if (size >= kmem_cache_min && size <= kmem_cache_max) {
206 kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
207 KASSERT(size <= kc->kc_pa.pa_pagesz);
208 kmflags &= (KM_SLEEP | KM_NOSLEEP);
209 p = pool_cache_get(kc->kc_cache, kmflags);
210 } else {
211 p = (void *)vmem_alloc(kmem_arena, size,
212 kmf_to_vmf(kmflags) | VM_INSTANTFIT);
213 }
214 if (__predict_true(p != NULL)) {
215 kmem_poison_check(p, kmem_roundup_size(size));
216 FREECHECK_OUT(&kmem_freecheck, p);
217 kmem_size_set(p, size);
218 p = (uint8_t *)p + SIZE_SIZE;
219 }
220 return p;
221 }
222
223 /*
224 * kmem_zalloc: allocate wired memory.
225 *
226 * => must not be called from interrupt context.
227 */
228
229 void *
230 kmem_zalloc(size_t size, km_flag_t kmflags)
231 {
232 void *p;
233
234 p = kmem_alloc(size, kmflags);
235 if (p != NULL) {
236 memset(p, 0, size);
237 }
238 return p;
239 }
240
241 /*
242 * kmem_free: free wired memory allocated by kmem_alloc.
243 *
244 * => must not be called from interrupt context.
245 */
246
247 void
248 kmem_free(void *p, size_t size)
249 {
250 kmem_cache_t *kc;
251
252 KASSERT(!cpu_intr_p());
253 KASSERT(!cpu_softintr_p());
254 KASSERT(p != NULL);
255 KASSERT(size > 0);
256
257 #ifdef KMEM_GUARD
258 if (size <= kmem_guard_size) {
259 uvm_kmguard_free(&kmem_guard, size, p);
260 return;
261 }
262 #endif
263 size += SIZE_SIZE;
264 p = (uint8_t *)p - SIZE_SIZE;
265 kmem_size_check(p, size + REDZONE_SIZE);
266 FREECHECK_IN(&kmem_freecheck, p);
267 LOCKDEBUG_MEM_CHECK(p, size);
268 kmem_poison_check((char *)p + size,
269 kmem_roundup_size(size + REDZONE_SIZE) - size);
270 kmem_poison_fill(p, size);
271 size += REDZONE_SIZE;
272 if (size >= kmem_cache_min && size <= kmem_cache_max) {
273 kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
274 KASSERT(size <= kc->kc_pa.pa_pagesz);
275 pool_cache_put(kc->kc_cache, p);
276 } else {
277 vmem_free(kmem_arena, (vmem_addr_t)p, size);
278 }
279 }
280
281
282 void
283 kmem_init(void)
284 {
285 kmem_cache_t *kc;
286 size_t sz;
287 int i;
288
289 #ifdef KMEM_GUARD
290 uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
291 kernel_map);
292 #endif
293
294 kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
295 kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
296 VM_SLEEP, IPL_NONE);
297 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
298 &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
299
300 /*
301 * kmem caches start at twice the size of the largest vmem qcache
302 * and end at PAGE_SIZE or earlier. assert that KMEM_QCACHE_MAX
303 * is a power of two.
304 */
305 KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
306 KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
307 kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
308 kmem_cache_min = 1 << kmem_cache_shift;
309 kmem_cache_mask = kmem_cache_min - 1;
310 for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
311 sz = i << kmem_cache_shift;
312 if (sz > PAGE_SIZE) {
313 break;
314 }
315 kmem_cache_max = sz;
316 kc = &kmem_cache[i];
317 kc->kc_pa.pa_pagesz = sz;
318 kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
319 kc->kc_pa.pa_free = kmem_poolpage_free;
320 sprintf(kc->kc_name, "kmem-%zu", sz);
321 kc->kc_cache = pool_cache_init(sz,
322 KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
323 kc->kc_name, &kc->kc_pa, IPL_NONE,
324 NULL, NULL, NULL);
325 KASSERT(kc->kc_cache != NULL);
326 }
327 }
328
329 size_t
330 kmem_roundup_size(size_t size)
331 {
332
333 return vmem_roundup_size(kmem_arena, size);
334 }
335
336 /* ---- uvm glue */
337
338 static vmem_addr_t
339 kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
340 vm_flag_t vmflags)
341 {
342 uvm_flag_t uflags;
343 vaddr_t va;
344
345 KASSERT(dummy == NULL);
346 KASSERT(size != 0);
347 KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
348 KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
349
350 if ((vmflags & VM_NOSLEEP) != 0) {
351 uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
352 } else {
353 uflags = UVM_KMF_WAITVA;
354 }
355 *resultsize = size = round_page(size);
356 va = uvm_km_alloc(kernel_map, size, 0,
357 uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
358 if (va != 0) {
359 kmem_poison_fill((void *)va, size);
360 }
361 return (vmem_addr_t)va;
362 }
363
364 static void
365 kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
366 {
367
368 KASSERT(dummy == NULL);
369 KASSERT(addr != 0);
370 KASSERT(size != 0);
371 KASSERT(size == round_page(size));
372
373 kmem_poison_check((void *)addr, size);
374 uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
375 }
376
377 static int
378 kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
379 {
380 vmem_t *vm = obj;
381
382 vmem_reap(vm);
383 return CALLBACK_CHAIN_CONTINUE;
384 }
385
386 /* ---- debug */
387
388 #if defined(KMEM_POISON)
389
390 #if defined(_LP64)
391 #define PRIME 0x9e37fffffffc0001UL
392 #else /* defined(_LP64) */
393 #define PRIME 0x9e3779b1
394 #endif /* defined(_LP64) */
395
396 static inline uint8_t
397 kmem_poison_pattern(const void *p)
398 {
399
400 return (uint8_t)((((uintptr_t)p) * PRIME)
401 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
402 }
403
404 static void
405 kmem_poison_fill(void *p, size_t sz)
406 {
407 uint8_t *cp;
408 const uint8_t *ep;
409
410 cp = p;
411 ep = cp + sz;
412 while (cp < ep) {
413 *cp = kmem_poison_pattern(cp);
414 cp++;
415 }
416 }
417
418 static void
419 kmem_poison_check(void *p, size_t sz)
420 {
421 uint8_t *cp;
422 const uint8_t *ep;
423
424 cp = p;
425 ep = cp + sz;
426 while (cp < ep) {
427 const uint8_t expected = kmem_poison_pattern(cp);
428
429 if (*cp != expected) {
430 panic("%s: %p: 0x%02x != 0x%02x\n",
431 __func__, cp, *cp, expected);
432 }
433 cp++;
434 }
435 }
436
437 #endif /* defined(KMEM_POISON) */
438
439 #if defined(KMEM_SIZE)
440 static void
441 kmem_size_set(void *p, size_t sz)
442 {
443
444 memcpy(p, &sz, sizeof(sz));
445 }
446
447 static void
448 kmem_size_check(const void *p, size_t sz)
449 {
450 size_t psz;
451
452 memcpy(&psz, p, sizeof(psz));
453 if (psz != sz) {
454 panic("kmem_free(%p, %zu) != allocated size %zu",
455 (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
456 }
457 }
458 #endif /* defined(KMEM_SIZE) */
459
460 /*
461 * Used to dynamically allocate string with kmem accordingly to format.
462 */
463 char *
464 kmem_asprintf(const char *fmt, ...)
465 {
466 int size, str_len;
467 va_list va;
468 char *str;
469 char buf[1];
470
471 va_start(va, fmt);
472 str_len = vsnprintf(buf, sizeof(buf), fmt, va) + 1;
473 va_end(va);
474
475 str = kmem_alloc(str_len, KM_SLEEP);
476
477 if ((size = vsnprintf(str, str_len, fmt, va)) == -1) {
478 kmem_free(str, str_len);
479 return NULL;
480 }
481
482 return str;
483 }
484