Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.36.2.2
      1 /*	$NetBSD: subr_kmem.c,v 1.36.2.2 2012/10/30 17:22:33 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * allocator of kernel wired memory.
     60  *
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.36.2.2 2012/10/30 17:22:33 yamt Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/callback.h>
     68 #include <sys/kmem.h>
     69 #include <sys/pool.h>
     70 #include <sys/debug.h>
     71 #include <sys/lockdebug.h>
     72 #include <sys/cpu.h>
     73 
     74 #include <uvm/uvm_extern.h>
     75 #include <uvm/uvm_map.h>
     76 #include <uvm/uvm_kmguard.h>
     77 
     78 #include <lib/libkern/libkern.h>
     79 
     80 struct kmem_cache_info {
     81 	size_t		kc_size;
     82 	const char *	kc_name;
     83 };
     84 
     85 static const struct kmem_cache_info kmem_cache_sizes[] = {
     86 	{  8, "kmem-8" },
     87 	{ 16, "kmem-16" },
     88 	{ 24, "kmem-24" },
     89 	{ 32, "kmem-32" },
     90 	{ 40, "kmem-40" },
     91 	{ 48, "kmem-48" },
     92 	{ 56, "kmem-56" },
     93 	{ 64, "kmem-64" },
     94 	{ 80, "kmem-80" },
     95 	{ 96, "kmem-96" },
     96 	{ 112, "kmem-112" },
     97 	{ 128, "kmem-128" },
     98 	{ 160, "kmem-160" },
     99 	{ 192, "kmem-192" },
    100 	{ 224, "kmem-224" },
    101 	{ 256, "kmem-256" },
    102 	{ 320, "kmem-320" },
    103 	{ 384, "kmem-384" },
    104 	{ 448, "kmem-448" },
    105 	{ 512, "kmem-512" },
    106 	{ 768, "kmem-768" },
    107 	{ 1024, "kmem-1024" },
    108 	{ 0, NULL }
    109 };
    110 
    111 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    112 	{ 2048, "kmem-2048" },
    113 	{ 4096, "kmem-4096" },
    114 	{ 8192, "kmem-8192" },
    115 	{ 16384, "kmem-16384" },
    116 	{ 0, NULL }
    117 };
    118 
    119 /*
    120  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    121  * smallest allocateable quantum.
    122  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    123  */
    124 #define	KMEM_ALIGN		8
    125 #define	KMEM_SHIFT		3
    126 #define	KMEM_MAXSIZE		1024
    127 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    128 
    129 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    130 static size_t kmem_cache_maxidx __read_mostly;
    131 
    132 #define	KMEM_BIG_ALIGN		2048
    133 #define	KMEM_BIG_SHIFT		11
    134 #define	KMEM_BIG_MAXSIZE	16384
    135 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    136 
    137 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    138 static size_t kmem_cache_big_maxidx __read_mostly;
    139 
    140 
    141 #if defined(DEBUG) && defined(_HARDKERNEL)
    142 #ifndef KMEM_GUARD_DEPTH
    143 #define KMEM_GUARD_DEPTH 0
    144 #endif
    145 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    146 size_t kmem_guard_size;
    147 static struct uvm_kmguard kmem_guard;
    148 static void *kmem_freecheck;
    149 #define	KMEM_POISON
    150 #define	KMEM_REDZONE
    151 #define	KMEM_SIZE
    152 #define	KMEM_GUARD
    153 #endif /* defined(DEBUG) */
    154 
    155 #if defined(KMEM_POISON)
    156 static int kmem_poison_ctor(void *, void *, int);
    157 static void kmem_poison_fill(void *, size_t);
    158 static void kmem_poison_check(void *, size_t);
    159 #else /* defined(KMEM_POISON) */
    160 #define	kmem_poison_fill(p, sz)		/* nothing */
    161 #define	kmem_poison_check(p, sz)	/* nothing */
    162 #endif /* defined(KMEM_POISON) */
    163 
    164 #if defined(KMEM_REDZONE)
    165 #define	REDZONE_SIZE	1
    166 #else /* defined(KMEM_REDZONE) */
    167 #define	REDZONE_SIZE	0
    168 #endif /* defined(KMEM_REDZONE) */
    169 
    170 #if defined(KMEM_SIZE)
    171 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    172 static void kmem_size_set(void *, size_t);
    173 static void kmem_size_check(void *, size_t);
    174 #else
    175 #define	SIZE_SIZE	0
    176 #define	kmem_size_set(p, sz)	/* nothing */
    177 #define	kmem_size_check(p, sz)	/* nothing */
    178 #endif
    179 
    180 CTASSERT(KM_SLEEP == PR_WAITOK);
    181 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    182 
    183 /*
    184  * kmem_intr_alloc: allocate wired memory.
    185  */
    186 
    187 void *
    188 kmem_intr_alloc(size_t size, km_flag_t kmflags)
    189 {
    190 	size_t allocsz, index;
    191 	pool_cache_t pc;
    192 	uint8_t *p;
    193 
    194 	KASSERT(size > 0);
    195 
    196 #ifdef KMEM_GUARD
    197 	if (size <= kmem_guard_size) {
    198 		return uvm_kmguard_alloc(&kmem_guard, size,
    199 		    (kmflags & KM_SLEEP) != 0);
    200 	}
    201 #endif
    202 	size = kmem_roundup_size(size);
    203 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    204 
    205 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    206 	    < kmem_cache_maxidx) {
    207 		pc = kmem_cache[index];
    208 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    209             < kmem_cache_big_maxidx) {
    210 		pc = kmem_cache_big[index];
    211 	} else {
    212 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    213 		    (vsize_t)round_page(size),
    214 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    215 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    216 		if (ret) {
    217 			return NULL;
    218 		}
    219 		FREECHECK_OUT(&kmem_freecheck, p);
    220 		return p;
    221 	}
    222 
    223 	p = pool_cache_get(pc, kmflags);
    224 
    225 	if (__predict_true(p != NULL)) {
    226 		kmem_poison_check(p, size);
    227 		FREECHECK_OUT(&kmem_freecheck, p);
    228 		kmem_size_set(p, size);
    229 	}
    230 	return p + SIZE_SIZE;
    231 }
    232 
    233 /*
    234  * kmem_intr_zalloc: allocate zeroed wired memory.
    235  */
    236 
    237 void *
    238 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    239 {
    240 	void *p;
    241 
    242 	p = kmem_intr_alloc(size, kmflags);
    243 	if (p != NULL) {
    244 		memset(p, 0, size);
    245 	}
    246 	return p;
    247 }
    248 
    249 /*
    250  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    251  */
    252 
    253 void
    254 kmem_intr_free(void *p, size_t size)
    255 {
    256 	size_t allocsz, index;
    257 	pool_cache_t pc;
    258 
    259 	KASSERT(p != NULL);
    260 	KASSERT(size > 0);
    261 
    262 #ifdef KMEM_GUARD
    263 	if (size <= kmem_guard_size) {
    264 		uvm_kmguard_free(&kmem_guard, size, p);
    265 		return;
    266 	}
    267 #endif
    268 	size = kmem_roundup_size(size);
    269 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    270 
    271 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    272 	    < kmem_cache_maxidx) {
    273 		pc = kmem_cache[index];
    274 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    275             < kmem_cache_big_maxidx) {
    276 		pc = kmem_cache_big[index];
    277 	} else {
    278 		FREECHECK_IN(&kmem_freecheck, p);
    279 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    280 		    round_page(size));
    281 		return;
    282 	}
    283 
    284 	p = (uint8_t *)p - SIZE_SIZE;
    285 	kmem_size_check(p, size);
    286 	FREECHECK_IN(&kmem_freecheck, p);
    287 	LOCKDEBUG_MEM_CHECK(p, size);
    288 	kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
    289       	    allocsz - (SIZE_SIZE + size));
    290 	kmem_poison_fill(p, allocsz);
    291 
    292 	pool_cache_put(pc, p);
    293 }
    294 
    295 /* ---- kmem API */
    296 
    297 /*
    298  * kmem_alloc: allocate wired memory.
    299  * => must not be called from interrupt context.
    300  */
    301 
    302 void *
    303 kmem_alloc(size_t size, km_flag_t kmflags)
    304 {
    305 
    306 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    307 	    "kmem(9) should not be used from the interrupt context");
    308 	return kmem_intr_alloc(size, kmflags);
    309 }
    310 
    311 /*
    312  * kmem_zalloc: allocate zeroed wired memory.
    313  * => must not be called from interrupt context.
    314  */
    315 
    316 void *
    317 kmem_zalloc(size_t size, km_flag_t kmflags)
    318 {
    319 
    320 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    321 	    "kmem(9) should not be used from the interrupt context");
    322 	return kmem_intr_zalloc(size, kmflags);
    323 }
    324 
    325 /*
    326  * kmem_free: free wired memory allocated by kmem_alloc.
    327  * => must not be called from interrupt context.
    328  */
    329 
    330 void
    331 kmem_free(void *p, size_t size)
    332 {
    333 
    334 	KASSERT(!cpu_intr_p());
    335 	KASSERT(!cpu_softintr_p());
    336 	kmem_intr_free(p, size);
    337 }
    338 
    339 static size_t
    340 kmem_create_caches(const struct kmem_cache_info *array,
    341     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    342 {
    343 	size_t maxidx = 0;
    344 	size_t table_unit = (1 << shift);
    345 	size_t size = table_unit;
    346 	int i;
    347 
    348 	for (i = 0; array[i].kc_size != 0 ; i++) {
    349 		const char *name = array[i].kc_name;
    350 		size_t cache_size = array[i].kc_size;
    351 		struct pool_allocator *pa;
    352 		int flags = PR_NOALIGN;
    353 		pool_cache_t pc;
    354 		size_t align;
    355 
    356 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    357 			align = CACHE_LINE_SIZE;
    358 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    359 			align = PAGE_SIZE;
    360 		else
    361 			align = KMEM_ALIGN;
    362 
    363 		if (cache_size < CACHE_LINE_SIZE)
    364 			flags |= PR_NOTOUCH;
    365 
    366 		/* check if we reached the requested size */
    367 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    368 			break;
    369 		}
    370 		if ((cache_size >> shift) > maxidx) {
    371 			maxidx = cache_size >> shift;
    372 		}
    373 
    374 		if ((cache_size >> shift) > maxidx) {
    375 			maxidx = cache_size >> shift;
    376 		}
    377 
    378 		pa = &pool_allocator_kmem;
    379 #if defined(KMEM_POISON)
    380 		pc = pool_cache_init(cache_size, align, 0, flags,
    381 		    name, pa, ipl,kmem_poison_ctor,
    382 		    NULL, (void *)cache_size);
    383 #else /* defined(KMEM_POISON) */
    384 		pc = pool_cache_init(cache_size, align, 0, flags,
    385 		    name, pa, ipl, NULL, NULL, NULL);
    386 #endif /* defined(KMEM_POISON) */
    387 
    388 		while (size <= cache_size) {
    389 			alloc_table[(size - 1) >> shift] = pc;
    390 			size += table_unit;
    391 		}
    392 	}
    393 	return maxidx;
    394 }
    395 
    396 void
    397 kmem_init(void)
    398 {
    399 
    400 #ifdef KMEM_GUARD
    401 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    402 	    kmem_va_arena);
    403 #endif
    404 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    405 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    406        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    407 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    408 }
    409 
    410 size_t
    411 kmem_roundup_size(size_t size)
    412 {
    413 
    414 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    415 }
    416 
    417 /* ---- debug */
    418 
    419 #if defined(KMEM_POISON)
    420 
    421 #if defined(_LP64)
    422 #define PRIME 0x9e37fffffffc0000UL
    423 #else /* defined(_LP64) */
    424 #define PRIME 0x9e3779b1
    425 #endif /* defined(_LP64) */
    426 
    427 static inline uint8_t
    428 kmem_poison_pattern(const void *p)
    429 {
    430 
    431 	return (uint8_t)(((uintptr_t)p) * PRIME
    432 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    433 }
    434 
    435 static int
    436 kmem_poison_ctor(void *arg, void *obj, int flag)
    437 {
    438 	size_t sz = (size_t)arg;
    439 
    440 	kmem_poison_fill(obj, sz);
    441 
    442 	return 0;
    443 }
    444 
    445 static void
    446 kmem_poison_fill(void *p, size_t sz)
    447 {
    448 	uint8_t *cp;
    449 	const uint8_t *ep;
    450 
    451 	cp = p;
    452 	ep = cp + sz;
    453 	while (cp < ep) {
    454 		*cp = kmem_poison_pattern(cp);
    455 		cp++;
    456 	}
    457 }
    458 
    459 static void
    460 kmem_poison_check(void *p, size_t sz)
    461 {
    462 	uint8_t *cp;
    463 	const uint8_t *ep;
    464 
    465 	cp = p;
    466 	ep = cp + sz;
    467 	while (cp < ep) {
    468 		const uint8_t expected = kmem_poison_pattern(cp);
    469 
    470 		if (*cp != expected) {
    471 			panic("%s: %p: 0x%02x != 0x%02x\n",
    472 			   __func__, cp, *cp, expected);
    473 		}
    474 		cp++;
    475 	}
    476 }
    477 
    478 #endif /* defined(KMEM_POISON) */
    479 
    480 #if defined(KMEM_SIZE)
    481 static void
    482 kmem_size_set(void *p, size_t sz)
    483 {
    484 
    485 	memcpy(p, &sz, sizeof(sz));
    486 }
    487 
    488 static void
    489 kmem_size_check(void *p, size_t sz)
    490 {
    491 	size_t psz;
    492 
    493 	memcpy(&psz, p, sizeof(psz));
    494 	if (psz != sz) {
    495 		panic("kmem_free(%p, %zu) != allocated size %zu",
    496 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    497 	}
    498 }
    499 #endif	/* defined(KMEM_SIZE) */
    500 
    501 /*
    502  * Used to dynamically allocate string with kmem accordingly to format.
    503  */
    504 char *
    505 kmem_asprintf(const char *fmt, ...)
    506 {
    507 	int size, len;
    508 	va_list va;
    509 	char *str;
    510 
    511 	va_start(va, fmt);
    512 	len = vsnprintf(NULL, 0, fmt, va);
    513 	va_end(va);
    514 
    515 	str = kmem_alloc(len + 1, KM_SLEEP);
    516 
    517 	va_start(va, fmt);
    518 	size = vsnprintf(str, len + 1, fmt, va);
    519 	va_end(va);
    520 
    521 	KASSERT(size == len);
    522 
    523 	return str;
    524 }
    525