subr_kmem.c revision 1.38 1 /* $NetBSD: subr_kmem.c,v 1.38 2011/11/20 22:58:31 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * allocator of kernel wired memory.
60 *
61 * TODO:
62 * - worth to have "intrsafe" version? maybe..
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.38 2011/11/20 22:58:31 christos Exp $");
67
68 #include <sys/param.h>
69 #include <sys/callback.h>
70 #include <sys/kmem.h>
71 #include <sys/vmem.h>
72 #include <sys/debug.h>
73 #include <sys/lockdebug.h>
74 #include <sys/cpu.h>
75
76 #include <uvm/uvm_extern.h>
77 #include <uvm/uvm_map.h>
78 #include <uvm/uvm_kmguard.h>
79
80 #include <lib/libkern/libkern.h>
81
82 #define KMEM_QUANTUM_SIZE (ALIGNBYTES + 1)
83 #define KMEM_QCACHE_MAX (KMEM_QUANTUM_SIZE * 32)
84 #define KMEM_CACHE_COUNT 16
85
86 typedef struct kmem_cache {
87 pool_cache_t kc_cache;
88 struct pool_allocator kc_pa;
89 char kc_name[12];
90 } kmem_cache_t;
91
92 static vmem_t *kmem_arena;
93 static struct callback_entry kmem_kva_reclaim_entry;
94
95 static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
96 static size_t kmem_cache_max;
97 static size_t kmem_cache_min;
98 static size_t kmem_cache_mask;
99 static int kmem_cache_shift;
100
101 #if defined(DEBUG)
102 int kmem_guard_depth = 0;
103 size_t kmem_guard_size;
104 static struct uvm_kmguard kmem_guard;
105 static void *kmem_freecheck;
106 #define KMEM_POISON
107 #define KMEM_REDZONE
108 #define KMEM_SIZE
109 #define KMEM_GUARD
110 #endif /* defined(DEBUG) */
111
112 #if defined(KMEM_POISON)
113 static void kmem_poison_fill(void *, size_t);
114 static void kmem_poison_check(void *, size_t);
115 #else /* defined(KMEM_POISON) */
116 #define kmem_poison_fill(p, sz) /* nothing */
117 #define kmem_poison_check(p, sz) /* nothing */
118 #endif /* defined(KMEM_POISON) */
119
120 #if defined(KMEM_REDZONE)
121 #define REDZONE_SIZE 1
122 #else /* defined(KMEM_REDZONE) */
123 #define REDZONE_SIZE 0
124 #endif /* defined(KMEM_REDZONE) */
125
126 #if defined(KMEM_SIZE)
127 #define SIZE_SIZE (max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
128 static void kmem_size_set(void *, size_t);
129 static void kmem_size_check(const void *, size_t);
130 #else
131 #define SIZE_SIZE 0
132 #define kmem_size_set(p, sz) /* nothing */
133 #define kmem_size_check(p, sz) /* nothing */
134 #endif
135
136 static int kmem_backend_alloc(void *, vmem_size_t, vmem_size_t *,
137 vm_flag_t, vmem_addr_t *);
138 static void kmem_backend_free(void *, vmem_addr_t, vmem_size_t);
139 static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
140
141 CTASSERT(KM_SLEEP == PR_WAITOK);
142 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
143
144 static inline vm_flag_t
145 kmf_to_vmf(km_flag_t kmflags)
146 {
147 vm_flag_t vmflags;
148
149 KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
150 KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
151
152 vmflags = 0;
153 if ((kmflags & KM_SLEEP) != 0) {
154 vmflags |= VM_SLEEP;
155 }
156 if ((kmflags & KM_NOSLEEP) != 0) {
157 vmflags |= VM_NOSLEEP;
158 }
159
160 return vmflags;
161 }
162
163 static void *
164 kmem_poolpage_alloc(struct pool *pool, int prflags)
165 {
166 vmem_addr_t addr;
167 int rc;
168
169 rc = vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
170 kmf_to_vmf(prflags) | VM_INSTANTFIT, &addr);
171 return (rc == 0) ? (void *)addr : NULL;
172
173 }
174
175 static void
176 kmem_poolpage_free(struct pool *pool, void *addr)
177 {
178
179 vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
180 }
181
182 /* ---- kmem API */
183
184 /*
185 * kmem_alloc: allocate wired memory.
186 *
187 * => must not be called from interrupt context.
188 */
189
190 void *
191 kmem_alloc(size_t size, km_flag_t kmflags)
192 {
193 kmem_cache_t *kc;
194 uint8_t *p;
195
196 KASSERT(!cpu_intr_p());
197 KASSERT(!cpu_softintr_p());
198 KASSERT(size > 0);
199
200 #ifdef KMEM_GUARD
201 if (size <= kmem_guard_size) {
202 return uvm_kmguard_alloc(&kmem_guard, size,
203 (kmflags & KM_SLEEP) != 0);
204 }
205 #endif
206
207 size += REDZONE_SIZE + SIZE_SIZE;
208 if (size >= kmem_cache_min && size <= kmem_cache_max) {
209 kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
210 KASSERT(size <= kc->kc_pa.pa_pagesz);
211 kmflags &= (KM_SLEEP | KM_NOSLEEP);
212 p = pool_cache_get(kc->kc_cache, kmflags);
213 } else {
214 vmem_addr_t addr;
215
216 if (vmem_alloc(kmem_arena, size,
217 kmf_to_vmf(kmflags) | VM_INSTANTFIT, &addr) == 0)
218 p = (void *)addr;
219 else
220 p = NULL;
221 }
222 if (__predict_true(p != NULL)) {
223 kmem_poison_check(p, kmem_roundup_size(size));
224 FREECHECK_OUT(&kmem_freecheck, p);
225 kmem_size_set(p, size);
226 p = (uint8_t *)p + SIZE_SIZE;
227 }
228 return p;
229 }
230
231 /*
232 * kmem_zalloc: allocate wired memory.
233 *
234 * => must not be called from interrupt context.
235 */
236
237 void *
238 kmem_zalloc(size_t size, km_flag_t kmflags)
239 {
240 void *p;
241
242 p = kmem_alloc(size, kmflags);
243 if (p != NULL) {
244 memset(p, 0, size);
245 }
246 return p;
247 }
248
249 /*
250 * kmem_free: free wired memory allocated by kmem_alloc.
251 *
252 * => must not be called from interrupt context.
253 */
254
255 void
256 kmem_free(void *p, size_t size)
257 {
258 kmem_cache_t *kc;
259
260 KASSERT(!cpu_intr_p());
261 KASSERT(!cpu_softintr_p());
262 KASSERT(p != NULL);
263 KASSERT(size > 0);
264
265 #ifdef KMEM_GUARD
266 if (size <= kmem_guard_size) {
267 uvm_kmguard_free(&kmem_guard, size, p);
268 return;
269 }
270 #endif
271 size += SIZE_SIZE;
272 p = (uint8_t *)p - SIZE_SIZE;
273 kmem_size_check(p, size + REDZONE_SIZE);
274 FREECHECK_IN(&kmem_freecheck, p);
275 LOCKDEBUG_MEM_CHECK(p, size);
276 kmem_poison_check((char *)p + size,
277 kmem_roundup_size(size + REDZONE_SIZE) - size);
278 kmem_poison_fill(p, size);
279 size += REDZONE_SIZE;
280 if (size >= kmem_cache_min && size <= kmem_cache_max) {
281 kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
282 KASSERT(size <= kc->kc_pa.pa_pagesz);
283 pool_cache_put(kc->kc_cache, p);
284 } else {
285 vmem_free(kmem_arena, (vmem_addr_t)p, size);
286 }
287 }
288
289
290 void
291 kmem_init(void)
292 {
293 kmem_cache_t *kc;
294 size_t sz;
295 int i;
296
297 #ifdef KMEM_GUARD
298 uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
299 kernel_map);
300 #endif
301
302 kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
303 kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
304 VM_SLEEP, IPL_NONE);
305 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
306 &kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
307
308 /*
309 * kmem caches start at twice the size of the largest vmem qcache
310 * and end at PAGE_SIZE or earlier. assert that KMEM_QCACHE_MAX
311 * is a power of two.
312 */
313 KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
314 KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
315 kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
316 kmem_cache_min = 1 << kmem_cache_shift;
317 kmem_cache_mask = kmem_cache_min - 1;
318 for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
319 sz = i << kmem_cache_shift;
320 if (sz > PAGE_SIZE) {
321 break;
322 }
323 kmem_cache_max = sz;
324 kc = &kmem_cache[i];
325 kc->kc_pa.pa_pagesz = sz;
326 kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
327 kc->kc_pa.pa_free = kmem_poolpage_free;
328 sprintf(kc->kc_name, "kmem-%zu", sz);
329 kc->kc_cache = pool_cache_init(sz,
330 KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
331 kc->kc_name, &kc->kc_pa, IPL_NONE,
332 NULL, NULL, NULL);
333 KASSERT(kc->kc_cache != NULL);
334 }
335 }
336
337 size_t
338 kmem_roundup_size(size_t size)
339 {
340
341 return vmem_roundup_size(kmem_arena, size);
342 }
343
344 /* ---- uvm glue */
345
346 static int
347 kmem_backend_alloc(void *dummy, vmem_size_t size, vmem_size_t *resultsize,
348 vm_flag_t vmflags, vmem_addr_t *addrp)
349 {
350 uvm_flag_t uflags;
351 vaddr_t va;
352
353 KASSERT(dummy == NULL);
354 KASSERT(size != 0);
355 KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
356 KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
357
358 if ((vmflags & VM_NOSLEEP) != 0) {
359 uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
360 } else {
361 uflags = UVM_KMF_WAITVA;
362 }
363 *resultsize = size = round_page(size);
364 va = uvm_km_alloc(kernel_map, size, 0,
365 uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
366 if (va == 0)
367 return ENOMEM;
368 kmem_poison_fill((void *)va, size);
369 *addrp = (vmem_addr_t)va;
370 return 0;
371 }
372
373 static void
374 kmem_backend_free(void *dummy, vmem_addr_t addr, vmem_size_t size)
375 {
376
377 KASSERT(dummy == NULL);
378 KASSERT(addr != 0);
379 KASSERT(size != 0);
380 KASSERT(size == round_page(size));
381
382 kmem_poison_check((void *)addr, size);
383 uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
384 }
385
386 static int
387 kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
388 {
389 vmem_t *vm = obj;
390
391 vmem_reap(vm);
392 return CALLBACK_CHAIN_CONTINUE;
393 }
394
395 /* ---- debug */
396
397 #if defined(KMEM_POISON)
398
399 #if defined(_LP64)
400 #define PRIME 0x9e37fffffffc0001UL
401 #else /* defined(_LP64) */
402 #define PRIME 0x9e3779b1
403 #endif /* defined(_LP64) */
404
405 static inline uint8_t
406 kmem_poison_pattern(const void *p)
407 {
408
409 return (uint8_t)((((uintptr_t)p) * PRIME)
410 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
411 }
412
413 static void
414 kmem_poison_fill(void *p, size_t sz)
415 {
416 uint8_t *cp;
417 const uint8_t *ep;
418
419 cp = p;
420 ep = cp + sz;
421 while (cp < ep) {
422 *cp = kmem_poison_pattern(cp);
423 cp++;
424 }
425 }
426
427 static void
428 kmem_poison_check(void *p, size_t sz)
429 {
430 uint8_t *cp;
431 const uint8_t *ep;
432
433 cp = p;
434 ep = cp + sz;
435 while (cp < ep) {
436 const uint8_t expected = kmem_poison_pattern(cp);
437
438 if (*cp != expected) {
439 panic("%s: %p: 0x%02x != 0x%02x\n",
440 __func__, cp, *cp, expected);
441 }
442 cp++;
443 }
444 }
445
446 #endif /* defined(KMEM_POISON) */
447
448 #if defined(KMEM_SIZE)
449 static void
450 kmem_size_set(void *p, size_t sz)
451 {
452
453 memcpy(p, &sz, sizeof(sz));
454 }
455
456 static void
457 kmem_size_check(const void *p, size_t sz)
458 {
459 size_t psz;
460
461 memcpy(&psz, p, sizeof(psz));
462 if (psz != sz) {
463 panic("kmem_free(%p, %zu) != allocated size %zu",
464 (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
465 }
466 }
467 #endif /* defined(KMEM_SIZE) */
468
469 /*
470 * Used to dynamically allocate string with kmem accordingly to format.
471 */
472 char *
473 kmem_asprintf(const char *fmt, ...)
474 {
475 int size, len;
476 va_list va;
477 char *str;
478
479 va_start(va, fmt);
480 len = vsnprintf(NULL, 0, fmt, va);
481 va_end(va);
482
483 str = kmem_alloc(len + 1, KM_SLEEP);
484
485 va_start(va, fmt);
486 size = vsnprintf(str, len + 1, fmt, va);
487 va_end(va);
488
489 KASSERT(size == len);
490
491 return str;
492 }
493