subr_kmem.c revision 1.42.2.2 1 /* $NetBSD: subr_kmem.c,v 1.42.2.2 2012/08/12 14:45:31 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * allocator of kernel wired memory.
60 *
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.42.2.2 2012/08/12 14:45:31 martin Exp $");
65
66 #include <sys/param.h>
67 #include <sys/callback.h>
68 #include <sys/kmem.h>
69 #include <sys/pool.h>
70 #include <sys/debug.h>
71 #include <sys/lockdebug.h>
72 #include <sys/cpu.h>
73
74 #include <uvm/uvm_extern.h>
75 #include <uvm/uvm_map.h>
76 #include <uvm/uvm_kmguard.h>
77
78 #include <lib/libkern/libkern.h>
79
80 struct kmem_cache_info {
81 size_t kc_size;
82 const char * kc_name;
83 };
84
85 static const struct kmem_cache_info kmem_cache_sizes[] = {
86 { 8, "kmem-8" },
87 { 16, "kmem-16" },
88 { 24, "kmem-24" },
89 { 32, "kmem-32" },
90 { 40, "kmem-40" },
91 { 48, "kmem-48" },
92 { 56, "kmem-56" },
93 { 64, "kmem-64" },
94 { 80, "kmem-80" },
95 { 96, "kmem-96" },
96 { 112, "kmem-112" },
97 { 128, "kmem-128" },
98 { 160, "kmem-160" },
99 { 192, "kmem-192" },
100 { 224, "kmem-224" },
101 { 256, "kmem-256" },
102 { 320, "kmem-320" },
103 { 384, "kmem-384" },
104 { 448, "kmem-448" },
105 { 512, "kmem-512" },
106 { 768, "kmem-768" },
107 { 1024, "kmem-1024" },
108 { 0, NULL }
109 };
110
111 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
112 { 2048, "kmem-2048" },
113 { 4096, "kmem-4096" },
114 { 8192, "kmem-8192" },
115 { 16384, "kmem-16384" },
116 { 0, NULL }
117 };
118
119 /*
120 * KMEM_ALIGN is the smallest guaranteed alignment and also the
121 * smallest allocateable quantum.
122 * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
123 */
124 #define KMEM_ALIGN 8
125 #define KMEM_SHIFT 3
126 #define KMEM_MAXSIZE 1024
127 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
128
129 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
130 static size_t kmem_cache_maxidx __read_mostly;
131
132 #define KMEM_BIG_ALIGN 2048
133 #define KMEM_BIG_SHIFT 11
134 #define KMEM_BIG_MAXSIZE 16384
135 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
136
137 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
138 static size_t kmem_cache_big_maxidx __read_mostly;
139
140
141 #if defined(DEBUG)
142 int kmem_guard_depth = 0;
143 size_t kmem_guard_size;
144 static struct uvm_kmguard kmem_guard;
145 static void *kmem_freecheck;
146 #define KMEM_POISON
147 #define KMEM_REDZONE
148 #define KMEM_SIZE
149 #define KMEM_GUARD
150 #endif /* defined(DEBUG) */
151
152 #if defined(KMEM_POISON)
153 static int kmem_poison_ctor(void *, void *, int);
154 static void kmem_poison_fill(void *, size_t);
155 static void kmem_poison_check(void *, size_t);
156 #else /* defined(KMEM_POISON) */
157 #define kmem_poison_fill(p, sz) /* nothing */
158 #define kmem_poison_check(p, sz) /* nothing */
159 #endif /* defined(KMEM_POISON) */
160
161 #if defined(KMEM_REDZONE)
162 #define REDZONE_SIZE 1
163 #else /* defined(KMEM_REDZONE) */
164 #define REDZONE_SIZE 0
165 #endif /* defined(KMEM_REDZONE) */
166
167 #if defined(KMEM_SIZE)
168 #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
169 static void kmem_size_set(void *, size_t);
170 static void kmem_size_check(void *, size_t);
171 #else
172 #define SIZE_SIZE 0
173 #define kmem_size_set(p, sz) /* nothing */
174 #define kmem_size_check(p, sz) /* nothing */
175 #endif
176
177 CTASSERT(KM_SLEEP == PR_WAITOK);
178 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
179
180 /*
181 * kmem_intr_alloc: allocate wired memory.
182 */
183
184 void *
185 kmem_intr_alloc(size_t size, km_flag_t kmflags)
186 {
187 size_t allocsz, index;
188 pool_cache_t pc;
189 uint8_t *p;
190
191 KASSERT(size > 0);
192
193 #ifdef KMEM_GUARD
194 if (size <= kmem_guard_size) {
195 return uvm_kmguard_alloc(&kmem_guard, size,
196 (kmflags & KM_SLEEP) != 0);
197 }
198 #endif
199 size = kmem_roundup_size(size);
200 allocsz = size + REDZONE_SIZE + SIZE_SIZE;
201
202 if ((index = ((allocsz -1) >> KMEM_SHIFT))
203 < kmem_cache_maxidx) {
204 pc = kmem_cache[index];
205 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
206 < kmem_cache_big_maxidx) {
207 pc = kmem_cache_big[index];
208 } else {
209 int ret = uvm_km_kmem_alloc(kmem_va_arena,
210 (vsize_t)round_page(size),
211 ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
212 | VM_INSTANTFIT, (vmem_addr_t *)&p);
213 if (ret) {
214 return NULL;
215 }
216 FREECHECK_OUT(&kmem_freecheck, p);
217 return p;
218 }
219
220 p = pool_cache_get(pc, kmflags);
221
222 if (__predict_true(p != NULL)) {
223 kmem_poison_check(p, size);
224 FREECHECK_OUT(&kmem_freecheck, p);
225 kmem_size_set(p, size);
226 }
227 return p + SIZE_SIZE;
228 }
229
230 /*
231 * kmem_intr_zalloc: allocate zeroed wired memory.
232 */
233
234 void *
235 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
236 {
237 void *p;
238
239 p = kmem_intr_alloc(size, kmflags);
240 if (p != NULL) {
241 memset(p, 0, size);
242 }
243 return p;
244 }
245
246 /*
247 * kmem_intr_free: free wired memory allocated by kmem_alloc.
248 */
249
250 void
251 kmem_intr_free(void *p, size_t size)
252 {
253 size_t allocsz, index;
254 pool_cache_t pc;
255
256 KASSERT(p != NULL);
257 KASSERT(size > 0);
258
259 #ifdef KMEM_GUARD
260 if (size <= kmem_guard_size) {
261 uvm_kmguard_free(&kmem_guard, size, p);
262 return;
263 }
264 #endif
265 size = kmem_roundup_size(size);
266 allocsz = size + REDZONE_SIZE + SIZE_SIZE;
267
268 if ((index = ((allocsz -1) >> KMEM_SHIFT))
269 < kmem_cache_maxidx) {
270 pc = kmem_cache[index];
271 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
272 < kmem_cache_big_maxidx) {
273 pc = kmem_cache_big[index];
274 } else {
275 FREECHECK_IN(&kmem_freecheck, p);
276 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
277 round_page(size));
278 return;
279 }
280
281 p = (uint8_t *)p - SIZE_SIZE;
282 kmem_size_check(p, size);
283 FREECHECK_IN(&kmem_freecheck, p);
284 LOCKDEBUG_MEM_CHECK(p, size);
285 kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
286 allocsz - (SIZE_SIZE + size));
287 kmem_poison_fill(p, allocsz);
288
289 pool_cache_put(pc, p);
290 }
291
292 /* ---- kmem API */
293
294 /*
295 * kmem_alloc: allocate wired memory.
296 * => must not be called from interrupt context.
297 */
298
299 void *
300 kmem_alloc(size_t size, km_flag_t kmflags)
301 {
302
303 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
304 "kmem(9) should not be used from the interrupt context");
305 return kmem_intr_alloc(size, kmflags);
306 }
307
308 /*
309 * kmem_zalloc: allocate zeroed wired memory.
310 * => must not be called from interrupt context.
311 */
312
313 void *
314 kmem_zalloc(size_t size, km_flag_t kmflags)
315 {
316
317 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
318 "kmem(9) should not be used from the interrupt context");
319 return kmem_intr_zalloc(size, kmflags);
320 }
321
322 /*
323 * kmem_free: free wired memory allocated by kmem_alloc.
324 * => must not be called from interrupt context.
325 */
326
327 void
328 kmem_free(void *p, size_t size)
329 {
330
331 KASSERT(!cpu_intr_p());
332 KASSERT(!cpu_softintr_p());
333 kmem_intr_free(p, size);
334 }
335
336 static size_t
337 kmem_create_caches(const struct kmem_cache_info *array,
338 pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
339 {
340 size_t maxidx = 0;
341 size_t table_unit = (1 << shift);
342 size_t size = table_unit;
343 int i;
344
345 for (i = 0; array[i].kc_size != 0 ; i++) {
346 const char *name = array[i].kc_name;
347 size_t cache_size = array[i].kc_size;
348 struct pool_allocator *pa;
349 int flags = PR_NOALIGN;
350 pool_cache_t pc;
351 size_t align;
352
353 if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
354 align = CACHE_LINE_SIZE;
355 else if ((cache_size & (PAGE_SIZE - 1)) == 0)
356 align = PAGE_SIZE;
357 else
358 align = KMEM_ALIGN;
359
360 if (cache_size < CACHE_LINE_SIZE)
361 flags |= PR_NOTOUCH;
362
363 /* check if we reached the requested size */
364 if (cache_size > maxsize || cache_size > PAGE_SIZE) {
365 break;
366 }
367 if ((cache_size >> shift) > maxidx) {
368 maxidx = cache_size >> shift;
369 }
370
371 if ((cache_size >> shift) > maxidx) {
372 maxidx = cache_size >> shift;
373 }
374
375 pa = &pool_allocator_kmem;
376 #if defined(KMEM_POISON)
377 pc = pool_cache_init(cache_size, align, 0, flags,
378 name, pa, ipl,kmem_poison_ctor,
379 NULL, (void *)cache_size);
380 #else /* defined(KMEM_POISON) */
381 pc = pool_cache_init(cache_size, align, 0, flags,
382 name, pa, ipl, NULL, NULL, NULL);
383 #endif /* defined(KMEM_POISON) */
384
385 while (size <= cache_size) {
386 alloc_table[(size - 1) >> shift] = pc;
387 size += table_unit;
388 }
389 }
390 return maxidx;
391 }
392
393 void
394 kmem_init(void)
395 {
396
397 #ifdef KMEM_GUARD
398 uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
399 kmem_va_arena);
400 #endif
401 kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
402 kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
403 kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
404 kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
405 }
406
407 size_t
408 kmem_roundup_size(size_t size)
409 {
410
411 return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
412 }
413
414 /* ---- debug */
415
416 #if defined(KMEM_POISON)
417
418 #if defined(_LP64)
419 #define PRIME 0x9e37fffffffc0000UL
420 #else /* defined(_LP64) */
421 #define PRIME 0x9e3779b1
422 #endif /* defined(_LP64) */
423
424 static inline uint8_t
425 kmem_poison_pattern(const void *p)
426 {
427
428 return (uint8_t)(((uintptr_t)p) * PRIME
429 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
430 }
431
432 static int
433 kmem_poison_ctor(void *arg, void *obj, int flag)
434 {
435 size_t sz = (size_t)arg;
436
437 kmem_poison_fill(obj, sz);
438
439 return 0;
440 }
441
442 static void
443 kmem_poison_fill(void *p, size_t sz)
444 {
445 uint8_t *cp;
446 const uint8_t *ep;
447
448 cp = p;
449 ep = cp + sz;
450 while (cp < ep) {
451 *cp = kmem_poison_pattern(cp);
452 cp++;
453 }
454 }
455
456 static void
457 kmem_poison_check(void *p, size_t sz)
458 {
459 uint8_t *cp;
460 const uint8_t *ep;
461
462 cp = p;
463 ep = cp + sz;
464 while (cp < ep) {
465 const uint8_t expected = kmem_poison_pattern(cp);
466
467 if (*cp != expected) {
468 panic("%s: %p: 0x%02x != 0x%02x\n",
469 __func__, cp, *cp, expected);
470 }
471 cp++;
472 }
473 }
474
475 #endif /* defined(KMEM_POISON) */
476
477 #if defined(KMEM_SIZE)
478 static void
479 kmem_size_set(void *p, size_t sz)
480 {
481
482 memcpy(p, &sz, sizeof(sz));
483 }
484
485 static void
486 kmem_size_check(void *p, size_t sz)
487 {
488 size_t psz;
489
490 memcpy(&psz, p, sizeof(psz));
491 if (psz != sz) {
492 panic("kmem_free(%p, %zu) != allocated size %zu",
493 (const uint8_t *)p + SIZE_SIZE, sz, psz);
494 }
495 }
496 #endif /* defined(KMEM_SIZE) */
497
498 /*
499 * Used to dynamically allocate string with kmem accordingly to format.
500 */
501 char *
502 kmem_asprintf(const char *fmt, ...)
503 {
504 int size, len;
505 va_list va;
506 char *str;
507
508 va_start(va, fmt);
509 len = vsnprintf(NULL, 0, fmt, va);
510 va_end(va);
511
512 str = kmem_alloc(len + 1, KM_SLEEP);
513
514 va_start(va, fmt);
515 size = vsnprintf(str, len + 1, fmt, va);
516 va_end(va);
517
518 KASSERT(size == len);
519
520 return str;
521 }
522