subr_kmem.c revision 1.42.2.2.4.1 1 /* $NetBSD: subr_kmem.c,v 1.42.2.2.4.1 2013/04/20 10:16:31 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * allocator of kernel wired memory.
60 *
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.42.2.2.4.1 2013/04/20 10:16:31 bouyer Exp $");
65
66 #include <sys/param.h>
67 #include <sys/callback.h>
68 #include <sys/kmem.h>
69 #include <sys/pool.h>
70 #include <sys/debug.h>
71 #include <sys/lockdebug.h>
72 #include <sys/cpu.h>
73
74 #include <uvm/uvm_extern.h>
75 #include <uvm/uvm_map.h>
76 #include <uvm/uvm_kmguard.h>
77
78 #include <lib/libkern/libkern.h>
79
80 struct kmem_cache_info {
81 size_t kc_size;
82 const char * kc_name;
83 };
84
85 static const struct kmem_cache_info kmem_cache_sizes[] = {
86 { 8, "kmem-8" },
87 { 16, "kmem-16" },
88 { 24, "kmem-24" },
89 { 32, "kmem-32" },
90 { 40, "kmem-40" },
91 { 48, "kmem-48" },
92 { 56, "kmem-56" },
93 { 64, "kmem-64" },
94 { 80, "kmem-80" },
95 { 96, "kmem-96" },
96 { 112, "kmem-112" },
97 { 128, "kmem-128" },
98 { 160, "kmem-160" },
99 { 192, "kmem-192" },
100 { 224, "kmem-224" },
101 { 256, "kmem-256" },
102 { 320, "kmem-320" },
103 { 384, "kmem-384" },
104 { 448, "kmem-448" },
105 { 512, "kmem-512" },
106 { 768, "kmem-768" },
107 { 1024, "kmem-1024" },
108 { 0, NULL }
109 };
110
111 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
112 { 2048, "kmem-2048" },
113 { 4096, "kmem-4096" },
114 { 8192, "kmem-8192" },
115 { 16384, "kmem-16384" },
116 { 0, NULL }
117 };
118
119 /*
120 * KMEM_ALIGN is the smallest guaranteed alignment and also the
121 * smallest allocateable quantum.
122 * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
123 */
124 #define KMEM_ALIGN 8
125 #define KMEM_SHIFT 3
126 #define KMEM_MAXSIZE 1024
127 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
128
129 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
130 static size_t kmem_cache_maxidx __read_mostly;
131
132 #define KMEM_BIG_ALIGN 2048
133 #define KMEM_BIG_SHIFT 11
134 #define KMEM_BIG_MAXSIZE 16384
135 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
136
137 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
138 static size_t kmem_cache_big_maxidx __read_mostly;
139
140
141 #if defined(DEBUG)
142 int kmem_guard_depth = 0;
143 size_t kmem_guard_size;
144 static struct uvm_kmguard kmem_guard;
145 static void *kmem_freecheck;
146 #define KMEM_POISON
147 #define KMEM_REDZONE
148 #define KMEM_SIZE
149 #define KMEM_GUARD
150 #endif /* defined(DEBUG) */
151
152 #if defined(KMEM_POISON)
153 static int kmem_poison_ctor(void *, void *, int);
154 static void kmem_poison_fill(void *, size_t);
155 static void kmem_poison_check(void *, size_t);
156 #else /* defined(KMEM_POISON) */
157 #define kmem_poison_fill(p, sz) /* nothing */
158 #define kmem_poison_check(p, sz) /* nothing */
159 #endif /* defined(KMEM_POISON) */
160
161 #if defined(KMEM_REDZONE)
162 #define REDZONE_SIZE 1
163 #else /* defined(KMEM_REDZONE) */
164 #define REDZONE_SIZE 0
165 #endif /* defined(KMEM_REDZONE) */
166
167 #if defined(KMEM_SIZE)
168 #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
169 static void kmem_size_set(void *, size_t);
170 static void kmem_size_check(void *, size_t);
171 #else
172 #define SIZE_SIZE 0
173 #define kmem_size_set(p, sz) /* nothing */
174 #define kmem_size_check(p, sz) /* nothing */
175 #endif
176
177 CTASSERT(KM_SLEEP == PR_WAITOK);
178 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
179
180 /*
181 * kmem_intr_alloc: allocate wired memory.
182 */
183
184 void *
185 kmem_intr_alloc(size_t size, km_flag_t kmflags)
186 {
187 size_t allocsz, index;
188 pool_cache_t pc;
189 uint8_t *p;
190
191 KASSERT(size > 0);
192
193 #ifdef KMEM_GUARD
194 if (size <= kmem_guard_size) {
195 return uvm_kmguard_alloc(&kmem_guard, size,
196 (kmflags & KM_SLEEP) != 0);
197 }
198 #endif
199 size = kmem_roundup_size(size);
200 allocsz = size + REDZONE_SIZE + SIZE_SIZE;
201
202 if ((index = ((allocsz -1) >> KMEM_SHIFT))
203 < kmem_cache_maxidx) {
204 pc = kmem_cache[index];
205 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
206 < kmem_cache_big_maxidx) {
207 pc = kmem_cache_big[index];
208 } else {
209 int ret = uvm_km_kmem_alloc(kmem_va_arena,
210 (vsize_t)round_page(size),
211 ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
212 | VM_INSTANTFIT, (vmem_addr_t *)&p);
213 if (ret) {
214 return NULL;
215 }
216 FREECHECK_OUT(&kmem_freecheck, p);
217 return p;
218 }
219
220 p = pool_cache_get(pc, kmflags);
221
222 if (__predict_true(p != NULL)) {
223 kmem_poison_check(p, size);
224 FREECHECK_OUT(&kmem_freecheck, p);
225 kmem_size_set(p, size);
226
227 return p + SIZE_SIZE;
228 }
229 return p;
230 }
231
232 /*
233 * kmem_intr_zalloc: allocate zeroed wired memory.
234 */
235
236 void *
237 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
238 {
239 void *p;
240
241 p = kmem_intr_alloc(size, kmflags);
242 if (p != NULL) {
243 memset(p, 0, size);
244 }
245 return p;
246 }
247
248 /*
249 * kmem_intr_free: free wired memory allocated by kmem_alloc.
250 */
251
252 void
253 kmem_intr_free(void *p, size_t size)
254 {
255 size_t allocsz, index;
256 pool_cache_t pc;
257
258 KASSERT(p != NULL);
259 KASSERT(size > 0);
260
261 #ifdef KMEM_GUARD
262 if (size <= kmem_guard_size) {
263 uvm_kmguard_free(&kmem_guard, size, p);
264 return;
265 }
266 #endif
267 size = kmem_roundup_size(size);
268 allocsz = size + REDZONE_SIZE + SIZE_SIZE;
269
270 if ((index = ((allocsz -1) >> KMEM_SHIFT))
271 < kmem_cache_maxidx) {
272 pc = kmem_cache[index];
273 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
274 < kmem_cache_big_maxidx) {
275 pc = kmem_cache_big[index];
276 } else {
277 FREECHECK_IN(&kmem_freecheck, p);
278 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
279 round_page(size));
280 return;
281 }
282
283 p = (uint8_t *)p - SIZE_SIZE;
284 kmem_size_check(p, size);
285 FREECHECK_IN(&kmem_freecheck, p);
286 LOCKDEBUG_MEM_CHECK(p, size);
287 kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
288 allocsz - (SIZE_SIZE + size));
289 kmem_poison_fill(p, allocsz);
290
291 pool_cache_put(pc, p);
292 }
293
294 /* ---- kmem API */
295
296 /*
297 * kmem_alloc: allocate wired memory.
298 * => must not be called from interrupt context.
299 */
300
301 void *
302 kmem_alloc(size_t size, km_flag_t kmflags)
303 {
304
305 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
306 "kmem(9) should not be used from the interrupt context");
307 return kmem_intr_alloc(size, kmflags);
308 }
309
310 /*
311 * kmem_zalloc: allocate zeroed wired memory.
312 * => must not be called from interrupt context.
313 */
314
315 void *
316 kmem_zalloc(size_t size, km_flag_t kmflags)
317 {
318
319 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
320 "kmem(9) should not be used from the interrupt context");
321 return kmem_intr_zalloc(size, kmflags);
322 }
323
324 /*
325 * kmem_free: free wired memory allocated by kmem_alloc.
326 * => must not be called from interrupt context.
327 */
328
329 void
330 kmem_free(void *p, size_t size)
331 {
332
333 KASSERT(!cpu_intr_p());
334 KASSERT(!cpu_softintr_p());
335 kmem_intr_free(p, size);
336 }
337
338 static size_t
339 kmem_create_caches(const struct kmem_cache_info *array,
340 pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
341 {
342 size_t maxidx = 0;
343 size_t table_unit = (1 << shift);
344 size_t size = table_unit;
345 int i;
346
347 for (i = 0; array[i].kc_size != 0 ; i++) {
348 const char *name = array[i].kc_name;
349 size_t cache_size = array[i].kc_size;
350 struct pool_allocator *pa;
351 int flags = PR_NOALIGN;
352 pool_cache_t pc;
353 size_t align;
354
355 if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
356 align = CACHE_LINE_SIZE;
357 else if ((cache_size & (PAGE_SIZE - 1)) == 0)
358 align = PAGE_SIZE;
359 else
360 align = KMEM_ALIGN;
361
362 if (cache_size < CACHE_LINE_SIZE)
363 flags |= PR_NOTOUCH;
364
365 /* check if we reached the requested size */
366 if (cache_size > maxsize || cache_size > PAGE_SIZE) {
367 break;
368 }
369 if ((cache_size >> shift) > maxidx) {
370 maxidx = cache_size >> shift;
371 }
372
373 if ((cache_size >> shift) > maxidx) {
374 maxidx = cache_size >> shift;
375 }
376
377 pa = &pool_allocator_kmem;
378 #if defined(KMEM_POISON)
379 pc = pool_cache_init(cache_size, align, 0, flags,
380 name, pa, ipl,kmem_poison_ctor,
381 NULL, (void *)cache_size);
382 #else /* defined(KMEM_POISON) */
383 pc = pool_cache_init(cache_size, align, 0, flags,
384 name, pa, ipl, NULL, NULL, NULL);
385 #endif /* defined(KMEM_POISON) */
386
387 while (size <= cache_size) {
388 alloc_table[(size - 1) >> shift] = pc;
389 size += table_unit;
390 }
391 }
392 return maxidx;
393 }
394
395 void
396 kmem_init(void)
397 {
398
399 #ifdef KMEM_GUARD
400 uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
401 kmem_va_arena);
402 #endif
403 kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
404 kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
405 kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
406 kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
407 }
408
409 size_t
410 kmem_roundup_size(size_t size)
411 {
412
413 return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
414 }
415
416 /* ---- debug */
417
418 #if defined(KMEM_POISON)
419
420 #if defined(_LP64)
421 #define PRIME 0x9e37fffffffc0000UL
422 #else /* defined(_LP64) */
423 #define PRIME 0x9e3779b1
424 #endif /* defined(_LP64) */
425
426 static inline uint8_t
427 kmem_poison_pattern(const void *p)
428 {
429
430 return (uint8_t)(((uintptr_t)p) * PRIME
431 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
432 }
433
434 static int
435 kmem_poison_ctor(void *arg, void *obj, int flag)
436 {
437 size_t sz = (size_t)arg;
438
439 kmem_poison_fill(obj, sz);
440
441 return 0;
442 }
443
444 static void
445 kmem_poison_fill(void *p, size_t sz)
446 {
447 uint8_t *cp;
448 const uint8_t *ep;
449
450 cp = p;
451 ep = cp + sz;
452 while (cp < ep) {
453 *cp = kmem_poison_pattern(cp);
454 cp++;
455 }
456 }
457
458 static void
459 kmem_poison_check(void *p, size_t sz)
460 {
461 uint8_t *cp;
462 const uint8_t *ep;
463
464 cp = p;
465 ep = cp + sz;
466 while (cp < ep) {
467 const uint8_t expected = kmem_poison_pattern(cp);
468
469 if (*cp != expected) {
470 panic("%s: %p: 0x%02x != 0x%02x\n",
471 __func__, cp, *cp, expected);
472 }
473 cp++;
474 }
475 }
476
477 #endif /* defined(KMEM_POISON) */
478
479 #if defined(KMEM_SIZE)
480 static void
481 kmem_size_set(void *p, size_t sz)
482 {
483
484 memcpy(p, &sz, sizeof(sz));
485 }
486
487 static void
488 kmem_size_check(void *p, size_t sz)
489 {
490 size_t psz;
491
492 memcpy(&psz, p, sizeof(psz));
493 if (psz != sz) {
494 panic("kmem_free(%p, %zu) != allocated size %zu",
495 (const uint8_t *)p + SIZE_SIZE, sz, psz);
496 }
497 }
498 #endif /* defined(KMEM_SIZE) */
499
500 /*
501 * Used to dynamically allocate string with kmem accordingly to format.
502 */
503 char *
504 kmem_asprintf(const char *fmt, ...)
505 {
506 int size, len;
507 va_list va;
508 char *str;
509
510 va_start(va, fmt);
511 len = vsnprintf(NULL, 0, fmt, va);
512 va_end(va);
513
514 str = kmem_alloc(len + 1, KM_SLEEP);
515
516 va_start(va, fmt);
517 size = vsnprintf(str, len + 1, fmt, va);
518 va_end(va);
519
520 KASSERT(size == len);
521
522 return str;
523 }
524