Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.45
      1 /*	$NetBSD: subr_kmem.c,v 1.45 2012/04/15 19:07:40 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * allocator of kernel wired memory.
     60  *
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.45 2012/04/15 19:07:40 martin Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/callback.h>
     68 #include <sys/kmem.h>
     69 #include <sys/pool.h>
     70 #include <sys/debug.h>
     71 #include <sys/lockdebug.h>
     72 #include <sys/cpu.h>
     73 
     74 #include <uvm/uvm_extern.h>
     75 #include <uvm/uvm_map.h>
     76 #include <uvm/uvm_kmguard.h>
     77 
     78 #include <lib/libkern/libkern.h>
     79 
     80 static const struct kmem_cache_info {
     81 	size_t		kc_size;
     82 	const char *	kc_name;
     83 } kmem_cache_sizes[] = {
     84 	{  8, "kmem-8" },
     85 	{ 16, "kmem-16" },
     86 	{ 24, "kmem-24" },
     87 	{ 32, "kmem-32" },
     88 	{ 40, "kmem-40" },
     89 	{ 48, "kmem-48" },
     90 	{ 56, "kmem-56" },
     91 	{ 64, "kmem-64" },
     92 	{ 80, "kmem-80" },
     93 	{ 96, "kmem-96" },
     94 	{ 112, "kmem-112" },
     95 	{ 128, "kmem-128" },
     96 	{ 160, "kmem-160" },
     97 	{ 192, "kmem-192" },
     98 	{ 224, "kmem-224" },
     99 	{ 256, "kmem-256" },
    100 	{ 320, "kmem-320" },
    101 	{ 384, "kmem-384" },
    102 	{ 448, "kmem-448" },
    103 	{ 512, "kmem-512" },
    104 	{ 768, "kmem-768" },
    105 	{ 1024, "kmem-1024" },
    106 	{ 2048, "kmem-2048" },
    107 	{ 4096, "kmem-4096" },
    108 	{ 0, NULL }
    109 };
    110 
    111 /*
    112  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    113  * smallest allocateable quantum.  Every cache size is a multiply
    114  * of CACHE_LINE_SIZE and gets CACHE_LINE_SIZE alignment.
    115  */
    116 #define	KMEM_ALIGN		8
    117 #define	KMEM_SHIFT		3
    118 #define	KMEM_MAXSIZE		4096
    119 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    120 
    121 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    122 static size_t kmem_cache_maxidx __read_mostly;
    123 
    124 #if defined(DEBUG) && defined(_HARDKERNEL)
    125 #ifndef KMEM_GUARD_DEPTH
    126 #define KMEM_GUARD_DEPTH 0
    127 #endif
    128 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    129 size_t kmem_guard_size;
    130 static struct uvm_kmguard kmem_guard;
    131 static void *kmem_freecheck;
    132 #define	KMEM_POISON
    133 #define	KMEM_REDZONE
    134 #define	KMEM_SIZE
    135 #define	KMEM_GUARD
    136 #endif /* defined(DEBUG) */
    137 
    138 #if defined(KMEM_POISON)
    139 static int kmem_poison_ctor(void *, void *, int);
    140 static void kmem_poison_fill(void *, size_t);
    141 static void kmem_poison_check(void *, size_t);
    142 #else /* defined(KMEM_POISON) */
    143 #define	kmem_poison_fill(p, sz)		/* nothing */
    144 #define	kmem_poison_check(p, sz)	/* nothing */
    145 #endif /* defined(KMEM_POISON) */
    146 
    147 #if defined(KMEM_REDZONE)
    148 #define	REDZONE_SIZE	1
    149 #else /* defined(KMEM_REDZONE) */
    150 #define	REDZONE_SIZE	0
    151 #endif /* defined(KMEM_REDZONE) */
    152 
    153 #if defined(KMEM_SIZE)
    154 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    155 static void kmem_size_set(void *, size_t);
    156 static void kmem_size_check(void *, size_t);
    157 #else
    158 #define	SIZE_SIZE	0
    159 #define	kmem_size_set(p, sz)	/* nothing */
    160 #define	kmem_size_check(p, sz)	/* nothing */
    161 #endif
    162 
    163 CTASSERT(KM_SLEEP == PR_WAITOK);
    164 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    165 
    166 void *
    167 kmem_intr_alloc(size_t size, km_flag_t kmflags)
    168 {
    169 	size_t allocsz, index;
    170 	pool_cache_t pc;
    171 	uint8_t *p;
    172 
    173 	KASSERT(size > 0);
    174 
    175 #ifdef KMEM_GUARD
    176 	if (size <= kmem_guard_size) {
    177 		return uvm_kmguard_alloc(&kmem_guard, size,
    178 		    (kmflags & KM_SLEEP) != 0);
    179 	}
    180 #endif
    181 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
    182 	index = (allocsz - 1) >> KMEM_SHIFT;
    183 
    184 	if (index >= kmem_cache_maxidx) {
    185 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    186 		    (vsize_t)round_page(size),
    187 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    188 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    189 		return ret ? NULL : p;
    190 	}
    191 
    192 	pc = kmem_cache[index];
    193 	p = pool_cache_get(pc, kmflags);
    194 
    195 	if (__predict_true(p != NULL)) {
    196 		kmem_poison_check(p, kmem_roundup_size(size));
    197 		FREECHECK_OUT(&kmem_freecheck, p);
    198 		kmem_size_set(p, allocsz);
    199 	}
    200 	return p;
    201 }
    202 
    203 void *
    204 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    205 {
    206 	void *p;
    207 
    208 	p = kmem_intr_alloc(size, kmflags);
    209 	if (p != NULL) {
    210 		memset(p, 0, size);
    211 	}
    212 	return p;
    213 }
    214 
    215 void
    216 kmem_intr_free(void *p, size_t size)
    217 {
    218 	size_t allocsz, index;
    219 	pool_cache_t pc;
    220 
    221 	KASSERT(p != NULL);
    222 	KASSERT(size > 0);
    223 
    224 #ifdef KMEM_GUARD
    225 	if (size <= kmem_guard_size) {
    226 		uvm_kmguard_free(&kmem_guard, size, p);
    227 		return;
    228 	}
    229 #endif
    230 	allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
    231 	index = (allocsz - 1) >> KMEM_SHIFT;
    232 
    233 	if (index >= kmem_cache_maxidx) {
    234 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    235 		    round_page(size));
    236 		return;
    237 	}
    238 
    239 	kmem_size_check(p, allocsz);
    240 	FREECHECK_IN(&kmem_freecheck, p);
    241 	LOCKDEBUG_MEM_CHECK(p, allocsz - (REDZONE_SIZE + SIZE_SIZE));
    242 	kmem_poison_check((uint8_t *)p + size, allocsz - size - SIZE_SIZE);
    243 	kmem_poison_fill(p, allocsz);
    244 
    245 	pc = kmem_cache[index];
    246 	pool_cache_put(pc, p);
    247 }
    248 
    249 /* ---- kmem API */
    250 
    251 /*
    252  * kmem_alloc: allocate wired memory.
    253  * => must not be called from interrupt context.
    254  */
    255 
    256 void *
    257 kmem_alloc(size_t size, km_flag_t kmflags)
    258 {
    259 
    260 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    261 	    "kmem(9) should not be used from the interrupt context");
    262 	return kmem_intr_alloc(size, kmflags);
    263 }
    264 
    265 /*
    266  * kmem_zalloc: allocate zeroed wired memory.
    267  * => must not be called from interrupt context.
    268  */
    269 
    270 void *
    271 kmem_zalloc(size_t size, km_flag_t kmflags)
    272 {
    273 
    274 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    275 	    "kmem(9) should not be used from the interrupt context");
    276 	return kmem_intr_zalloc(size, kmflags);
    277 }
    278 
    279 /*
    280  * kmem_free: free wired memory allocated by kmem_alloc.
    281  * => must not be called from interrupt context.
    282  */
    283 
    284 void
    285 kmem_free(void *p, size_t size)
    286 {
    287 
    288 	KASSERT(!cpu_intr_p());
    289 	KASSERT(!cpu_softintr_p());
    290 	kmem_intr_free(p, size);
    291 }
    292 
    293 static void
    294 kmem_create_caches(const struct kmem_cache_info *array,
    295     pool_cache_t alloc_table[], size_t maxsize)
    296 {
    297 	size_t table_unit = (1 << KMEM_SHIFT);
    298 	size_t size = table_unit;
    299 	int i;
    300 
    301 	for (i = 0; array[i].kc_size != 0 ; i++) {
    302 		const char *name = array[i].kc_name;
    303 		size_t cache_size = array[i].kc_size;
    304 		int flags = PR_NOALIGN;
    305 		pool_cache_t pc;
    306 		size_t align;
    307 
    308 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    309 			align = CACHE_LINE_SIZE;
    310 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    311 			align = PAGE_SIZE;
    312 		else
    313 			align = KMEM_ALIGN;
    314 
    315 		if (cache_size < CACHE_LINE_SIZE)
    316 			flags |= PR_NOTOUCH;
    317 
    318 		/* check if we reached the requested size */
    319 		if (cache_size > maxsize) {
    320 			break;
    321 		}
    322 		if ((cache_size >> KMEM_SHIFT) > kmem_cache_maxidx) {
    323 			kmem_cache_maxidx = cache_size >> KMEM_SHIFT;
    324 		}
    325 
    326 #if defined(KMEM_POISON)
    327 		pc = pool_cache_init(cache_size, align, 0, flags,
    328 		    name, &pool_allocator_kmem, IPL_VM, kmem_poison_ctor,
    329 		    NULL, (void *)cache_size);
    330 #else /* defined(KMEM_POISON) */
    331 		pc = pool_cache_init(cache_size, align, 0, flags,
    332 		    name, &pool_allocator_kmem, IPL_VM, NULL, NULL, NULL);
    333 #endif /* defined(KMEM_POISON) */
    334 
    335 		while (size <= cache_size) {
    336 			alloc_table[(size - 1) >> KMEM_SHIFT] = pc;
    337 			size += table_unit;
    338 		}
    339 	}
    340 }
    341 
    342 void
    343 kmem_init(void)
    344 {
    345 
    346 #ifdef KMEM_GUARD
    347 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    348 	    kmem_va_arena);
    349 #endif
    350 	kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE);
    351 }
    352 
    353 size_t
    354 kmem_roundup_size(size_t size)
    355 {
    356 
    357 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    358 }
    359 
    360 /* ---- debug */
    361 
    362 #if defined(KMEM_POISON)
    363 
    364 #if defined(_LP64)
    365 #define PRIME 0x9e37fffffffc0000UL
    366 #else /* defined(_LP64) */
    367 #define PRIME 0x9e3779b1
    368 #endif /* defined(_LP64) */
    369 
    370 static inline uint8_t
    371 kmem_poison_pattern(const void *p)
    372 {
    373 
    374 	return (uint8_t)(((uintptr_t)p) * PRIME
    375 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    376 }
    377 
    378 static int
    379 kmem_poison_ctor(void *arg, void *obj, int flag)
    380 {
    381 	size_t sz = (size_t)arg;
    382 
    383 	kmem_poison_fill(obj, sz);
    384 
    385 	return 0;
    386 }
    387 
    388 static void
    389 kmem_poison_fill(void *p, size_t sz)
    390 {
    391 	uint8_t *cp;
    392 	const uint8_t *ep;
    393 
    394 	cp = p;
    395 	ep = cp + sz;
    396 	while (cp < ep) {
    397 		*cp = kmem_poison_pattern(cp);
    398 		cp++;
    399 	}
    400 }
    401 
    402 static void
    403 kmem_poison_check(void *p, size_t sz)
    404 {
    405 	uint8_t *cp;
    406 	const uint8_t *ep;
    407 
    408 	cp = p;
    409 	ep = cp + sz;
    410 	while (cp < ep) {
    411 		const uint8_t expected = kmem_poison_pattern(cp);
    412 
    413 		if (*cp != expected) {
    414 			panic("%s: %p: 0x%02x != 0x%02x\n",
    415 			   __func__, cp, *cp, expected);
    416 		}
    417 		cp++;
    418 	}
    419 }
    420 
    421 #endif /* defined(KMEM_POISON) */
    422 
    423 #if defined(KMEM_SIZE)
    424 static void
    425 kmem_size_set(void *p, size_t sz)
    426 {
    427 	void *szp;
    428 
    429 	szp = (uint8_t *)p + sz - SIZE_SIZE;
    430 	memcpy(szp, &sz, sizeof(sz));
    431 }
    432 
    433 static void
    434 kmem_size_check(void *p, size_t sz)
    435 {
    436 	uint8_t *szp;
    437 	size_t psz;
    438 
    439 	szp = (uint8_t *)p + sz - SIZE_SIZE;
    440 	memcpy(&psz, szp, sizeof(psz));
    441 	if (psz != sz) {
    442 		panic("kmem_free(%p, %zu) != allocated size %zu",
    443 		    (const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
    444 	}
    445 }
    446 #endif	/* defined(KMEM_SIZE) */
    447 
    448 /*
    449  * Used to dynamically allocate string with kmem accordingly to format.
    450  */
    451 char *
    452 kmem_asprintf(const char *fmt, ...)
    453 {
    454 	int size, len;
    455 	va_list va;
    456 	char *str;
    457 
    458 	va_start(va, fmt);
    459 	len = vsnprintf(NULL, 0, fmt, va);
    460 	va_end(va);
    461 
    462 	str = kmem_alloc(len + 1, KM_SLEEP);
    463 
    464 	va_start(va, fmt);
    465 	size = vsnprintf(str, len + 1, fmt, va);
    466 	va_end(va);
    467 
    468 	KASSERT(size == len);
    469 
    470 	return str;
    471 }
    472