subr_kmem.c revision 1.46.2.3 1 /* $NetBSD: subr_kmem.c,v 1.46.2.3 2017/12/03 11:38:45 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran and Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c)2006 YAMAMOTO Takashi,
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Allocator of kernel wired memory. This allocator has some debug features
60 * enabled with "option DIAGNOSTIC" and "option DEBUG".
61 */
62
63 /*
64 * KMEM_SIZE: detect alloc/free size mismatch bugs.
65 * Prefix each allocations with a fixed-sized, aligned header and record
66 * the exact user-requested allocation size in it. When freeing, compare
67 * it with kmem_free's "size" argument.
68 *
69 * KMEM_REDZONE: detect overrun bugs.
70 * Add a 2-byte pattern (allocate one more memory chunk if needed) at the
71 * end of each allocated buffer. Check this pattern on kmem_free.
72 *
73 * These options are enabled on DIAGNOSTIC.
74 *
75 * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
76 * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
77 * |/////| | | | | | | | | |*|**|UU|
78 * |/HSZ/| | | | | | | | | |*|**|UU|
79 * |/////| | | | | | | | | |*|**|UU|
80 * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
81 * |Size | Buffer usable by the caller (requested size) |RedZ|Unused\
82 */
83
84 /*
85 * KMEM_POISON: detect modify-after-free bugs.
86 * Fill freed (in the sense of kmem_free) memory with a garbage pattern.
87 * Check the pattern on allocation.
88 *
89 * KMEM_GUARD
90 * A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
91 * in. See the comment below for what kind of bugs it tries to detect. Even
92 * if compiled in, it's disabled by default because it's very expensive.
93 * You can enable it on boot by:
94 * boot -d
95 * db> w kmem_guard_depth 0t30000
96 * db> c
97 *
98 * The default value of kmem_guard_depth is 0, which means disabled.
99 * It can be changed by KMEM_GUARD_DEPTH kernel config option.
100 */
101
102 #include <sys/cdefs.h>
103 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.46.2.3 2017/12/03 11:38:45 jdolecek Exp $");
104
105 #ifdef _KERNEL_OPT
106 #include "opt_kmem.h"
107 #endif
108
109 #include <sys/param.h>
110 #include <sys/callback.h>
111 #include <sys/kmem.h>
112 #include <sys/pool.h>
113 #include <sys/debug.h>
114 #include <sys/lockdebug.h>
115 #include <sys/cpu.h>
116
117 #include <uvm/uvm_extern.h>
118 #include <uvm/uvm_map.h>
119
120 #include <lib/libkern/libkern.h>
121
122 struct kmem_cache_info {
123 size_t kc_size;
124 const char * kc_name;
125 };
126
127 static const struct kmem_cache_info kmem_cache_sizes[] = {
128 { 8, "kmem-8" },
129 { 16, "kmem-16" },
130 { 24, "kmem-24" },
131 { 32, "kmem-32" },
132 { 40, "kmem-40" },
133 { 48, "kmem-48" },
134 { 56, "kmem-56" },
135 { 64, "kmem-64" },
136 { 80, "kmem-80" },
137 { 96, "kmem-96" },
138 { 112, "kmem-112" },
139 { 128, "kmem-128" },
140 { 160, "kmem-160" },
141 { 192, "kmem-192" },
142 { 224, "kmem-224" },
143 { 256, "kmem-256" },
144 { 320, "kmem-320" },
145 { 384, "kmem-384" },
146 { 448, "kmem-448" },
147 { 512, "kmem-512" },
148 { 768, "kmem-768" },
149 { 1024, "kmem-1024" },
150 { 0, NULL }
151 };
152
153 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
154 { 2048, "kmem-2048" },
155 { 4096, "kmem-4096" },
156 { 8192, "kmem-8192" },
157 { 16384, "kmem-16384" },
158 { 0, NULL }
159 };
160
161 /*
162 * KMEM_ALIGN is the smallest guaranteed alignment and also the
163 * smallest allocateable quantum.
164 * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
165 */
166 #define KMEM_ALIGN 8
167 #define KMEM_SHIFT 3
168 #define KMEM_MAXSIZE 1024
169 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
170
171 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
172 static size_t kmem_cache_maxidx __read_mostly;
173
174 #define KMEM_BIG_ALIGN 2048
175 #define KMEM_BIG_SHIFT 11
176 #define KMEM_BIG_MAXSIZE 16384
177 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
178
179 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
180 static size_t kmem_cache_big_maxidx __read_mostly;
181
182 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
183 #define KMEM_SIZE
184 #define KMEM_REDZONE
185 #endif /* defined(DIAGNOSTIC) */
186
187 #if defined(DEBUG) && defined(_HARDKERNEL)
188 #define KMEM_SIZE
189 #define KMEM_POISON
190 #define KMEM_GUARD
191 static void *kmem_freecheck;
192 #endif /* defined(DEBUG) */
193
194 #if defined(KMEM_POISON)
195 static int kmem_poison_ctor(void *, void *, int);
196 static void kmem_poison_fill(void *, size_t);
197 static void kmem_poison_check(void *, size_t);
198 #else /* defined(KMEM_POISON) */
199 #define kmem_poison_fill(p, sz) /* nothing */
200 #define kmem_poison_check(p, sz) /* nothing */
201 #endif /* defined(KMEM_POISON) */
202
203 #if defined(KMEM_REDZONE)
204 #define REDZONE_SIZE 2
205 static void kmem_redzone_fill(void *, size_t);
206 static void kmem_redzone_check(void *, size_t);
207 #else /* defined(KMEM_REDZONE) */
208 #define REDZONE_SIZE 0
209 #define kmem_redzone_fill(p, sz) /* nothing */
210 #define kmem_redzone_check(p, sz) /* nothing */
211 #endif /* defined(KMEM_REDZONE) */
212
213 #if defined(KMEM_SIZE)
214 struct kmem_header {
215 size_t size;
216 } __aligned(KMEM_ALIGN);
217 #define SIZE_SIZE sizeof(struct kmem_header)
218 static void kmem_size_set(void *, size_t);
219 static void kmem_size_check(void *, size_t);
220 #else
221 #define SIZE_SIZE 0
222 #define kmem_size_set(p, sz) /* nothing */
223 #define kmem_size_check(p, sz) /* nothing */
224 #endif
225
226 #if defined(KMEM_GUARD)
227 #ifndef KMEM_GUARD_DEPTH
228 #define KMEM_GUARD_DEPTH 0
229 #endif
230 struct kmem_guard {
231 u_int kg_depth;
232 intptr_t * kg_fifo;
233 u_int kg_rotor;
234 vmem_t * kg_vmem;
235 };
236
237 static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
238 static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
239 static void kmem_guard_free(struct kmem_guard *, size_t, void *);
240
241 int kmem_guard_depth = KMEM_GUARD_DEPTH;
242 static bool kmem_guard_enabled;
243 static struct kmem_guard kmem_guard;
244 #endif /* defined(KMEM_GUARD) */
245
246 CTASSERT(KM_SLEEP == PR_WAITOK);
247 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
248
249 /*
250 * kmem_intr_alloc: allocate wired memory.
251 */
252
253 void *
254 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
255 {
256 size_t allocsz, index;
257 size_t size;
258 pool_cache_t pc;
259 uint8_t *p;
260
261 KASSERT(requested_size > 0);
262
263 KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
264 KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
265
266 #ifdef KMEM_GUARD
267 if (kmem_guard_enabled) {
268 return kmem_guard_alloc(&kmem_guard, requested_size,
269 (kmflags & KM_SLEEP) != 0);
270 }
271 #endif
272 size = kmem_roundup_size(requested_size);
273 allocsz = size + SIZE_SIZE;
274
275 #ifdef KMEM_REDZONE
276 if (size - requested_size < REDZONE_SIZE) {
277 /* If there isn't enough space in the padding, allocate
278 * one more memory chunk for the red zone. */
279 allocsz += kmem_roundup_size(REDZONE_SIZE);
280 }
281 #endif
282
283 if ((index = ((allocsz -1) >> KMEM_SHIFT))
284 < kmem_cache_maxidx) {
285 pc = kmem_cache[index];
286 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
287 < kmem_cache_big_maxidx) {
288 pc = kmem_cache_big[index];
289 } else {
290 int ret = uvm_km_kmem_alloc(kmem_va_arena,
291 (vsize_t)round_page(size),
292 ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
293 | VM_INSTANTFIT, (vmem_addr_t *)&p);
294 if (ret) {
295 return NULL;
296 }
297 FREECHECK_OUT(&kmem_freecheck, p);
298 return p;
299 }
300
301 p = pool_cache_get(pc, kmflags);
302
303 if (__predict_true(p != NULL)) {
304 kmem_poison_check(p, allocsz);
305 FREECHECK_OUT(&kmem_freecheck, p);
306 kmem_size_set(p, requested_size);
307 kmem_redzone_fill(p, requested_size + SIZE_SIZE);
308
309 return p + SIZE_SIZE;
310 }
311 return p;
312 }
313
314 /*
315 * kmem_intr_zalloc: allocate zeroed wired memory.
316 */
317
318 void *
319 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
320 {
321 void *p;
322
323 p = kmem_intr_alloc(size, kmflags);
324 if (p != NULL) {
325 memset(p, 0, size);
326 }
327 return p;
328 }
329
330 /*
331 * kmem_intr_free: free wired memory allocated by kmem_alloc.
332 */
333
334 void
335 kmem_intr_free(void *p, size_t requested_size)
336 {
337 size_t allocsz, index;
338 size_t size;
339 pool_cache_t pc;
340
341 KASSERT(p != NULL);
342 KASSERT(requested_size > 0);
343
344 #ifdef KMEM_GUARD
345 if (kmem_guard_enabled) {
346 kmem_guard_free(&kmem_guard, requested_size, p);
347 return;
348 }
349 #endif
350
351 size = kmem_roundup_size(requested_size);
352 allocsz = size + SIZE_SIZE;
353
354 #ifdef KMEM_REDZONE
355 if (size - requested_size < REDZONE_SIZE) {
356 allocsz += kmem_roundup_size(REDZONE_SIZE);
357 }
358 #endif
359
360 if ((index = ((allocsz -1) >> KMEM_SHIFT))
361 < kmem_cache_maxidx) {
362 pc = kmem_cache[index];
363 } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
364 < kmem_cache_big_maxidx) {
365 pc = kmem_cache_big[index];
366 } else {
367 FREECHECK_IN(&kmem_freecheck, p);
368 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
369 round_page(size));
370 return;
371 }
372
373 p = (uint8_t *)p - SIZE_SIZE;
374 kmem_size_check(p, requested_size);
375 kmem_redzone_check(p, requested_size + SIZE_SIZE);
376 FREECHECK_IN(&kmem_freecheck, p);
377 LOCKDEBUG_MEM_CHECK(p, size);
378 kmem_poison_fill(p, allocsz);
379
380 pool_cache_put(pc, p);
381 }
382
383 /* ---- kmem API */
384
385 /*
386 * kmem_alloc: allocate wired memory.
387 * => must not be called from interrupt context.
388 */
389
390 void *
391 kmem_alloc(size_t size, km_flag_t kmflags)
392 {
393 void *v;
394
395 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
396 "kmem(9) should not be used from the interrupt context");
397 v = kmem_intr_alloc(size, kmflags);
398 KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
399 return v;
400 }
401
402 /*
403 * kmem_zalloc: allocate zeroed wired memory.
404 * => must not be called from interrupt context.
405 */
406
407 void *
408 kmem_zalloc(size_t size, km_flag_t kmflags)
409 {
410 void *v;
411
412 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
413 "kmem(9) should not be used from the interrupt context");
414 v = kmem_intr_zalloc(size, kmflags);
415 KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
416 return v;
417 }
418
419 /*
420 * kmem_free: free wired memory allocated by kmem_alloc.
421 * => must not be called from interrupt context.
422 */
423
424 void
425 kmem_free(void *p, size_t size)
426 {
427 KASSERT(!cpu_intr_p());
428 KASSERT(!cpu_softintr_p());
429 kmem_intr_free(p, size);
430 }
431
432 static size_t
433 kmem_create_caches(const struct kmem_cache_info *array,
434 pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
435 {
436 size_t maxidx = 0;
437 size_t table_unit = (1 << shift);
438 size_t size = table_unit;
439 int i;
440
441 for (i = 0; array[i].kc_size != 0 ; i++) {
442 const char *name = array[i].kc_name;
443 size_t cache_size = array[i].kc_size;
444 struct pool_allocator *pa;
445 int flags = PR_NOALIGN;
446 pool_cache_t pc;
447 size_t align;
448
449 if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
450 align = CACHE_LINE_SIZE;
451 else if ((cache_size & (PAGE_SIZE - 1)) == 0)
452 align = PAGE_SIZE;
453 else
454 align = KMEM_ALIGN;
455
456 if (cache_size < CACHE_LINE_SIZE)
457 flags |= PR_NOTOUCH;
458
459 /* check if we reached the requested size */
460 if (cache_size > maxsize || cache_size > PAGE_SIZE) {
461 break;
462 }
463 if ((cache_size >> shift) > maxidx) {
464 maxidx = cache_size >> shift;
465 }
466
467 if ((cache_size >> shift) > maxidx) {
468 maxidx = cache_size >> shift;
469 }
470
471 pa = &pool_allocator_kmem;
472 #if defined(KMEM_POISON)
473 pc = pool_cache_init(cache_size, align, 0, flags,
474 name, pa, ipl, kmem_poison_ctor,
475 NULL, (void *)cache_size);
476 #else /* defined(KMEM_POISON) */
477 pc = pool_cache_init(cache_size, align, 0, flags,
478 name, pa, ipl, NULL, NULL, NULL);
479 #endif /* defined(KMEM_POISON) */
480
481 while (size <= cache_size) {
482 alloc_table[(size - 1) >> shift] = pc;
483 size += table_unit;
484 }
485 }
486 return maxidx;
487 }
488
489 void
490 kmem_init(void)
491 {
492 #ifdef KMEM_GUARD
493 kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
494 kmem_va_arena);
495 #endif
496 kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
497 kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
498 kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
499 kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
500 }
501
502 size_t
503 kmem_roundup_size(size_t size)
504 {
505 return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
506 }
507
508 /*
509 * Used to dynamically allocate string with kmem accordingly to format.
510 */
511 char *
512 kmem_asprintf(const char *fmt, ...)
513 {
514 int size __diagused, len;
515 va_list va;
516 char *str;
517
518 va_start(va, fmt);
519 len = vsnprintf(NULL, 0, fmt, va);
520 va_end(va);
521
522 str = kmem_alloc(len + 1, KM_SLEEP);
523
524 va_start(va, fmt);
525 size = vsnprintf(str, len + 1, fmt, va);
526 va_end(va);
527
528 KASSERT(size == len);
529
530 return str;
531 }
532
533 char *
534 kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
535 {
536 size_t len = strlen(str) + 1;
537 char *ptr = kmem_alloc(len, flags);
538 if (ptr == NULL)
539 return NULL;
540
541 if (lenp)
542 *lenp = len;
543 memcpy(ptr, str, len);
544 return ptr;
545 }
546
547 void
548 kmem_strfree(char *str)
549 {
550 if (str == NULL)
551 return;
552
553 kmem_free(str, strlen(str) + 1);
554 }
555
556 /* ------------------ DEBUG / DIAGNOSTIC ------------------ */
557
558 #if defined(KMEM_POISON) || defined(KMEM_REDZONE)
559 #if defined(_LP64)
560 #define PRIME 0x9e37fffffffc0000UL
561 #else /* defined(_LP64) */
562 #define PRIME 0x9e3779b1
563 #endif /* defined(_LP64) */
564
565 static inline uint8_t
566 kmem_pattern_generate(const void *p)
567 {
568 return (uint8_t)(((uintptr_t)p) * PRIME
569 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
570 }
571 #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
572
573 #if defined(KMEM_POISON)
574 static int
575 kmem_poison_ctor(void *arg, void *obj, int flag)
576 {
577 size_t sz = (size_t)arg;
578
579 kmem_poison_fill(obj, sz);
580
581 return 0;
582 }
583
584 static void
585 kmem_poison_fill(void *p, size_t sz)
586 {
587 uint8_t *cp;
588 const uint8_t *ep;
589
590 cp = p;
591 ep = cp + sz;
592 while (cp < ep) {
593 *cp = kmem_pattern_generate(cp);
594 cp++;
595 }
596 }
597
598 static void
599 kmem_poison_check(void *p, size_t sz)
600 {
601 uint8_t *cp;
602 const uint8_t *ep;
603
604 cp = p;
605 ep = cp + sz;
606 while (cp < ep) {
607 const uint8_t expected = kmem_pattern_generate(cp);
608
609 if (*cp != expected) {
610 panic("%s: %p: 0x%02x != 0x%02x\n",
611 __func__, cp, *cp, expected);
612 }
613 cp++;
614 }
615 }
616 #endif /* defined(KMEM_POISON) */
617
618 #if defined(KMEM_SIZE)
619 static void
620 kmem_size_set(void *p, size_t sz)
621 {
622 struct kmem_header *hd;
623 hd = (struct kmem_header *)p;
624 hd->size = sz;
625 }
626
627 static void
628 kmem_size_check(void *p, size_t sz)
629 {
630 struct kmem_header *hd;
631 size_t hsz;
632
633 hd = (struct kmem_header *)p;
634 hsz = hd->size;
635
636 if (hsz != sz) {
637 panic("kmem_free(%p, %zu) != allocated size %zu",
638 (const uint8_t *)p + SIZE_SIZE, sz, hsz);
639 }
640 }
641 #endif /* defined(KMEM_SIZE) */
642
643 #if defined(KMEM_REDZONE)
644 #define STATIC_BYTE 0xFE
645 CTASSERT(REDZONE_SIZE > 1);
646 static void
647 kmem_redzone_fill(void *p, size_t sz)
648 {
649 uint8_t *cp, pat;
650 const uint8_t *ep;
651
652 cp = (uint8_t *)p + sz;
653 ep = cp + REDZONE_SIZE;
654
655 /*
656 * We really don't want the first byte of the red zone to be '\0';
657 * an off-by-one in a string may not be properly detected.
658 */
659 pat = kmem_pattern_generate(cp);
660 *cp = (pat == '\0') ? STATIC_BYTE: pat;
661 cp++;
662
663 while (cp < ep) {
664 *cp = kmem_pattern_generate(cp);
665 cp++;
666 }
667 }
668
669 static void
670 kmem_redzone_check(void *p, size_t sz)
671 {
672 uint8_t *cp, pat, expected;
673 const uint8_t *ep;
674
675 cp = (uint8_t *)p + sz;
676 ep = cp + REDZONE_SIZE;
677
678 pat = kmem_pattern_generate(cp);
679 expected = (pat == '\0') ? STATIC_BYTE: pat;
680 if (expected != *cp) {
681 panic("%s: %p: 0x%02x != 0x%02x\n",
682 __func__, cp, *cp, expected);
683 }
684 cp++;
685
686 while (cp < ep) {
687 expected = kmem_pattern_generate(cp);
688 if (*cp != expected) {
689 panic("%s: %p: 0x%02x != 0x%02x\n",
690 __func__, cp, *cp, expected);
691 }
692 cp++;
693 }
694 }
695 #endif /* defined(KMEM_REDZONE) */
696
697
698 #if defined(KMEM_GUARD)
699 /*
700 * The ultimate memory allocator for debugging, baby. It tries to catch:
701 *
702 * 1. Overflow, in realtime. A guard page sits immediately after the
703 * requested area; a read/write overflow therefore triggers a page
704 * fault.
705 * 2. Invalid pointer/size passed, at free. A kmem_header structure sits
706 * just before the requested area, and holds the allocated size. Any
707 * difference with what is given at free triggers a panic.
708 * 3. Underflow, at free. If an underflow occurs, the kmem header will be
709 * modified, and 2. will trigger a panic.
710 * 4. Use-after-free. When freeing, the memory is unmapped, and depending
711 * on the value of kmem_guard_depth, the kernel will more or less delay
712 * the recycling of that memory. Which means that any ulterior read/write
713 * access to the memory will trigger a page fault, given it hasn't been
714 * recycled yet.
715 */
716
717 #include <sys/atomic.h>
718 #include <uvm/uvm.h>
719
720 static bool
721 kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
722 {
723 vaddr_t va;
724
725 /* If not enabled, we have nothing to do. */
726 if (depth == 0) {
727 return false;
728 }
729 depth = roundup(depth, PAGE_SIZE / sizeof(void *));
730 KASSERT(depth != 0);
731
732 /*
733 * Allocate fifo.
734 */
735 va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
736 UVM_KMF_WIRED | UVM_KMF_ZERO);
737 if (va == 0) {
738 return false;
739 }
740
741 /*
742 * Init object.
743 */
744 kg->kg_vmem = vm;
745 kg->kg_fifo = (void *)va;
746 kg->kg_depth = depth;
747 kg->kg_rotor = 0;
748
749 printf("kmem_guard(%p): depth %d\n", kg, depth);
750 return true;
751 }
752
753 static void *
754 kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
755 {
756 struct vm_page *pg;
757 vm_flag_t flags;
758 vmem_addr_t va;
759 vaddr_t loopva;
760 vsize_t loopsize;
761 size_t size;
762 void **p;
763
764 /*
765 * Compute the size: take the kmem header into account, and add a guard
766 * page at the end.
767 */
768 size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
769
770 /* Allocate pages of kernel VA, but do not map anything in yet. */
771 flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
772 if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
773 return NULL;
774 }
775
776 loopva = va;
777 loopsize = size - PAGE_SIZE;
778
779 while (loopsize) {
780 pg = uvm_pagealloc(NULL, loopva, NULL, 0);
781 if (__predict_false(pg == NULL)) {
782 if (waitok) {
783 uvm_wait("kmem_guard");
784 continue;
785 } else {
786 uvm_km_pgremove_intrsafe(kernel_map, va,
787 va + size);
788 vmem_free(kg->kg_vmem, va, size);
789 return NULL;
790 }
791 }
792
793 pg->flags &= ~PG_BUSY; /* new page */
794 UVM_PAGE_OWN(pg, NULL);
795 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
796 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
797
798 loopva += PAGE_SIZE;
799 loopsize -= PAGE_SIZE;
800 }
801
802 pmap_update(pmap_kernel());
803
804 /*
805 * Offset the returned pointer so that the unmapped guard page sits
806 * immediately after the returned object.
807 */
808 p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
809 kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
810 return (void *)p;
811 }
812
813 static void
814 kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
815 {
816 vaddr_t va;
817 u_int rotor;
818 size_t size;
819 uint8_t *ptr;
820
821 ptr = (uint8_t *)p - SIZE_SIZE;
822 kmem_size_check(ptr, requested_size);
823 va = trunc_page((vaddr_t)ptr);
824 size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
825
826 KASSERT(pmap_extract(pmap_kernel(), va, NULL));
827 KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
828
829 /*
830 * Unmap and free the pages. The last one is never allocated.
831 */
832 uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
833 pmap_update(pmap_kernel());
834
835 #if 0
836 /*
837 * XXX: Here, we need to atomically register the va and its size in the
838 * fifo.
839 */
840
841 /*
842 * Put the VA allocation into the list and swap an old one out to free.
843 * This behaves mostly like a fifo.
844 */
845 rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
846 va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
847 if (va != 0) {
848 vmem_free(kg->kg_vmem, va, size);
849 }
850 #else
851 (void)rotor;
852 vmem_free(kg->kg_vmem, va, size);
853 #endif
854 }
855
856 #endif /* defined(KMEM_GUARD) */
857