Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.49
      1 /*	$NetBSD: subr_kmem.c,v 1.49 2013/04/22 13:13:20 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * allocator of kernel wired memory.
     60  *
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.49 2013/04/22 13:13:20 yamt Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/callback.h>
     68 #include <sys/kmem.h>
     69 #include <sys/pool.h>
     70 #include <sys/debug.h>
     71 #include <sys/lockdebug.h>
     72 #include <sys/cpu.h>
     73 
     74 #include <uvm/uvm_extern.h>
     75 #include <uvm/uvm_map.h>
     76 #include <uvm/uvm_kmguard.h>
     77 
     78 #include <lib/libkern/libkern.h>
     79 
     80 struct kmem_cache_info {
     81 	size_t		kc_size;
     82 	const char *	kc_name;
     83 };
     84 
     85 static const struct kmem_cache_info kmem_cache_sizes[] = {
     86 	{  8, "kmem-8" },
     87 	{ 16, "kmem-16" },
     88 	{ 24, "kmem-24" },
     89 	{ 32, "kmem-32" },
     90 	{ 40, "kmem-40" },
     91 	{ 48, "kmem-48" },
     92 	{ 56, "kmem-56" },
     93 	{ 64, "kmem-64" },
     94 	{ 80, "kmem-80" },
     95 	{ 96, "kmem-96" },
     96 	{ 112, "kmem-112" },
     97 	{ 128, "kmem-128" },
     98 	{ 160, "kmem-160" },
     99 	{ 192, "kmem-192" },
    100 	{ 224, "kmem-224" },
    101 	{ 256, "kmem-256" },
    102 	{ 320, "kmem-320" },
    103 	{ 384, "kmem-384" },
    104 	{ 448, "kmem-448" },
    105 	{ 512, "kmem-512" },
    106 	{ 768, "kmem-768" },
    107 	{ 1024, "kmem-1024" },
    108 	{ 0, NULL }
    109 };
    110 
    111 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    112 	{ 2048, "kmem-2048" },
    113 	{ 4096, "kmem-4096" },
    114 	{ 8192, "kmem-8192" },
    115 	{ 16384, "kmem-16384" },
    116 	{ 0, NULL }
    117 };
    118 
    119 /*
    120  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    121  * smallest allocateable quantum.
    122  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    123  */
    124 #define	KMEM_ALIGN		8
    125 #define	KMEM_SHIFT		3
    126 #define	KMEM_MAXSIZE		1024
    127 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    128 
    129 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    130 static size_t kmem_cache_maxidx __read_mostly;
    131 
    132 #define	KMEM_BIG_ALIGN		2048
    133 #define	KMEM_BIG_SHIFT		11
    134 #define	KMEM_BIG_MAXSIZE	16384
    135 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    136 
    137 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    138 static size_t kmem_cache_big_maxidx __read_mostly;
    139 
    140 
    141 #if defined(DEBUG) && defined(_HARDKERNEL)
    142 #ifndef KMEM_GUARD_DEPTH
    143 #define KMEM_GUARD_DEPTH 0
    144 #endif
    145 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    146 size_t kmem_guard_size;
    147 static struct uvm_kmguard kmem_guard;
    148 static void *kmem_freecheck;
    149 #define	KMEM_POISON
    150 #define	KMEM_REDZONE
    151 #define	KMEM_SIZE
    152 #define	KMEM_GUARD
    153 #endif /* defined(DEBUG) */
    154 
    155 #if defined(KMEM_POISON)
    156 static int kmem_poison_ctor(void *, void *, int);
    157 static void kmem_poison_fill(void *, size_t);
    158 static void kmem_poison_check(void *, size_t);
    159 #else /* defined(KMEM_POISON) */
    160 #define	kmem_poison_fill(p, sz)		/* nothing */
    161 #define	kmem_poison_check(p, sz)	/* nothing */
    162 #endif /* defined(KMEM_POISON) */
    163 
    164 #if defined(KMEM_REDZONE)
    165 #define	REDZONE_SIZE	1
    166 #else /* defined(KMEM_REDZONE) */
    167 #define	REDZONE_SIZE	0
    168 #endif /* defined(KMEM_REDZONE) */
    169 
    170 #if defined(KMEM_SIZE)
    171 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    172 static void kmem_size_set(void *, size_t);
    173 static void kmem_size_check(void *, size_t);
    174 #else
    175 #define	SIZE_SIZE	0
    176 #define	kmem_size_set(p, sz)	/* nothing */
    177 #define	kmem_size_check(p, sz)	/* nothing */
    178 #endif
    179 
    180 CTASSERT(KM_SLEEP == PR_WAITOK);
    181 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    182 
    183 /*
    184  * kmem_intr_alloc: allocate wired memory.
    185  */
    186 
    187 void *
    188 kmem_intr_alloc(size_t size, km_flag_t kmflags)
    189 {
    190 	size_t allocsz, index;
    191 	pool_cache_t pc;
    192 	uint8_t *p;
    193 
    194 	KASSERT(size > 0);
    195 
    196 #ifdef KMEM_GUARD
    197 	if (size <= kmem_guard_size) {
    198 		return uvm_kmguard_alloc(&kmem_guard, size,
    199 		    (kmflags & KM_SLEEP) != 0);
    200 	}
    201 #endif
    202 	size = kmem_roundup_size(size);
    203 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    204 
    205 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    206 	    < kmem_cache_maxidx) {
    207 		pc = kmem_cache[index];
    208 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    209             < kmem_cache_big_maxidx) {
    210 		pc = kmem_cache_big[index];
    211 	} else {
    212 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    213 		    (vsize_t)round_page(size),
    214 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    215 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    216 		if (ret) {
    217 			return NULL;
    218 		}
    219 		FREECHECK_OUT(&kmem_freecheck, p);
    220 		return p;
    221 	}
    222 
    223 	p = pool_cache_get(pc, kmflags);
    224 
    225 	if (__predict_true(p != NULL)) {
    226 		kmem_poison_check(p, size);
    227 		FREECHECK_OUT(&kmem_freecheck, p);
    228 		kmem_size_set(p, size);
    229 
    230 		return p + SIZE_SIZE;
    231 	}
    232 	return p;
    233 }
    234 
    235 /*
    236  * kmem_intr_zalloc: allocate zeroed wired memory.
    237  */
    238 
    239 void *
    240 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    241 {
    242 	void *p;
    243 
    244 	p = kmem_intr_alloc(size, kmflags);
    245 	if (p != NULL) {
    246 		memset(p, 0, size);
    247 	}
    248 	return p;
    249 }
    250 
    251 /*
    252  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    253  */
    254 
    255 void
    256 kmem_intr_free(void *p, size_t size)
    257 {
    258 	size_t allocsz, index;
    259 	pool_cache_t pc;
    260 
    261 	KASSERT(p != NULL);
    262 	KASSERT(size > 0);
    263 
    264 #ifdef KMEM_GUARD
    265 	if (size <= kmem_guard_size) {
    266 		uvm_kmguard_free(&kmem_guard, size, p);
    267 		return;
    268 	}
    269 #endif
    270 	size = kmem_roundup_size(size);
    271 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    272 
    273 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    274 	    < kmem_cache_maxidx) {
    275 		pc = kmem_cache[index];
    276 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    277             < kmem_cache_big_maxidx) {
    278 		pc = kmem_cache_big[index];
    279 	} else {
    280 		FREECHECK_IN(&kmem_freecheck, p);
    281 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    282 		    round_page(size));
    283 		return;
    284 	}
    285 
    286 	p = (uint8_t *)p - SIZE_SIZE;
    287 	kmem_size_check(p, size);
    288 	FREECHECK_IN(&kmem_freecheck, p);
    289 	LOCKDEBUG_MEM_CHECK(p, size);
    290 	kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
    291       	    allocsz - (SIZE_SIZE + size));
    292 	kmem_poison_fill(p, allocsz);
    293 
    294 	pool_cache_put(pc, p);
    295 }
    296 
    297 /* ---- kmem API */
    298 
    299 /*
    300  * kmem_alloc: allocate wired memory.
    301  * => must not be called from interrupt context.
    302  */
    303 
    304 void *
    305 kmem_alloc(size_t size, km_flag_t kmflags)
    306 {
    307 
    308 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    309 	    "kmem(9) should not be used from the interrupt context");
    310 	return kmem_intr_alloc(size, kmflags);
    311 }
    312 
    313 /*
    314  * kmem_zalloc: allocate zeroed wired memory.
    315  * => must not be called from interrupt context.
    316  */
    317 
    318 void *
    319 kmem_zalloc(size_t size, km_flag_t kmflags)
    320 {
    321 
    322 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    323 	    "kmem(9) should not be used from the interrupt context");
    324 	return kmem_intr_zalloc(size, kmflags);
    325 }
    326 
    327 /*
    328  * kmem_free: free wired memory allocated by kmem_alloc.
    329  * => must not be called from interrupt context.
    330  */
    331 
    332 void
    333 kmem_free(void *p, size_t size)
    334 {
    335 
    336 	KASSERT(!cpu_intr_p());
    337 	KASSERT(!cpu_softintr_p());
    338 	kmem_intr_free(p, size);
    339 }
    340 
    341 static size_t
    342 kmem_create_caches(const struct kmem_cache_info *array,
    343     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    344 {
    345 	size_t maxidx = 0;
    346 	size_t table_unit = (1 << shift);
    347 	size_t size = table_unit;
    348 	int i;
    349 
    350 	for (i = 0; array[i].kc_size != 0 ; i++) {
    351 		const char *name = array[i].kc_name;
    352 		size_t cache_size = array[i].kc_size;
    353 		struct pool_allocator *pa;
    354 		int flags = PR_NOALIGN;
    355 		pool_cache_t pc;
    356 		size_t align;
    357 
    358 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    359 			align = CACHE_LINE_SIZE;
    360 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    361 			align = PAGE_SIZE;
    362 		else
    363 			align = KMEM_ALIGN;
    364 
    365 		if (cache_size < CACHE_LINE_SIZE)
    366 			flags |= PR_NOTOUCH;
    367 
    368 		/* check if we reached the requested size */
    369 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    370 			break;
    371 		}
    372 		if ((cache_size >> shift) > maxidx) {
    373 			maxidx = cache_size >> shift;
    374 		}
    375 
    376 		if ((cache_size >> shift) > maxidx) {
    377 			maxidx = cache_size >> shift;
    378 		}
    379 
    380 		pa = &pool_allocator_kmem;
    381 #if defined(KMEM_POISON)
    382 		pc = pool_cache_init(cache_size, align, 0, flags,
    383 		    name, pa, ipl, kmem_poison_ctor,
    384 		    NULL, (void *)cache_size);
    385 #else /* defined(KMEM_POISON) */
    386 		pc = pool_cache_init(cache_size, align, 0, flags,
    387 		    name, pa, ipl, NULL, NULL, NULL);
    388 #endif /* defined(KMEM_POISON) */
    389 
    390 		while (size <= cache_size) {
    391 			alloc_table[(size - 1) >> shift] = pc;
    392 			size += table_unit;
    393 		}
    394 	}
    395 	return maxidx;
    396 }
    397 
    398 void
    399 kmem_init(void)
    400 {
    401 
    402 #ifdef KMEM_GUARD
    403 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    404 	    kmem_va_arena);
    405 #endif
    406 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    407 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    408        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    409 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    410 }
    411 
    412 size_t
    413 kmem_roundup_size(size_t size)
    414 {
    415 
    416 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    417 }
    418 
    419 /* ---- debug */
    420 
    421 #if defined(KMEM_POISON)
    422 
    423 #if defined(_LP64)
    424 #define PRIME 0x9e37fffffffc0000UL
    425 #else /* defined(_LP64) */
    426 #define PRIME 0x9e3779b1
    427 #endif /* defined(_LP64) */
    428 
    429 static inline uint8_t
    430 kmem_poison_pattern(const void *p)
    431 {
    432 
    433 	return (uint8_t)(((uintptr_t)p) * PRIME
    434 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    435 }
    436 
    437 static int
    438 kmem_poison_ctor(void *arg, void *obj, int flag)
    439 {
    440 	size_t sz = (size_t)arg;
    441 
    442 	kmem_poison_fill(obj, sz);
    443 
    444 	return 0;
    445 }
    446 
    447 static void
    448 kmem_poison_fill(void *p, size_t sz)
    449 {
    450 	uint8_t *cp;
    451 	const uint8_t *ep;
    452 
    453 	cp = p;
    454 	ep = cp + sz;
    455 	while (cp < ep) {
    456 		*cp = kmem_poison_pattern(cp);
    457 		cp++;
    458 	}
    459 }
    460 
    461 static void
    462 kmem_poison_check(void *p, size_t sz)
    463 {
    464 	uint8_t *cp;
    465 	const uint8_t *ep;
    466 
    467 	cp = p;
    468 	ep = cp + sz;
    469 	while (cp < ep) {
    470 		const uint8_t expected = kmem_poison_pattern(cp);
    471 
    472 		if (*cp != expected) {
    473 			panic("%s: %p: 0x%02x != 0x%02x\n",
    474 			   __func__, cp, *cp, expected);
    475 		}
    476 		cp++;
    477 	}
    478 }
    479 
    480 #endif /* defined(KMEM_POISON) */
    481 
    482 #if defined(KMEM_SIZE)
    483 static void
    484 kmem_size_set(void *p, size_t sz)
    485 {
    486 
    487 	memcpy(p, &sz, sizeof(sz));
    488 }
    489 
    490 static void
    491 kmem_size_check(void *p, size_t sz)
    492 {
    493 	size_t psz;
    494 
    495 	memcpy(&psz, p, sizeof(psz));
    496 	if (psz != sz) {
    497 		panic("kmem_free(%p, %zu) != allocated size %zu",
    498 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    499 	}
    500 }
    501 #endif	/* defined(KMEM_SIZE) */
    502 
    503 /*
    504  * Used to dynamically allocate string with kmem accordingly to format.
    505  */
    506 char *
    507 kmem_asprintf(const char *fmt, ...)
    508 {
    509 	int size, len;
    510 	va_list va;
    511 	char *str;
    512 
    513 	va_start(va, fmt);
    514 	len = vsnprintf(NULL, 0, fmt, va);
    515 	va_end(va);
    516 
    517 	str = kmem_alloc(len + 1, KM_SLEEP);
    518 
    519 	va_start(va, fmt);
    520 	size = vsnprintf(str, len + 1, fmt, va);
    521 	va_end(va);
    522 
    523 	KASSERT(size == len);
    524 
    525 	return str;
    526 }
    527