Home | History | Annotate | Line # | Download | only in kern
subr_kmem.c revision 1.50.4.1
      1 /*	$NetBSD: subr_kmem.c,v 1.50.4.1 2014/05/18 17:46:07 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2006 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * allocator of kernel wired memory.
     60  */
     61 
     62 /*
     63  * This allocator has some debug features enabled with "option DEBUG".
     64  *
     65  * KMEM_POISON
     66  *	Try to detect modify-after-free bugs.
     67  *
     68  *	Fill freed (in the sense of kmem_free) memory with a garbage pattern.
     69  *	Check the pattern on allocation.
     70  *
     71  * KMEM_REDZONE
     72  *	Try to detect overrun bugs.
     73  *
     74  *	Allocate some more bytes for each allocation.
     75  *	The extra bytes are checked by KMEM_POISON on kmem_free.
     76  *
     77  * KMEM_SIZE
     78  *	Try to detect alloc/free size mismatch bugs.
     79  *
     80  *	Prefix each allocations with a fixed-sized header and record
     81  *	the exact user-requested allocation size in it.
     82  *	When freeing, compare it with kmem_free's "size" argument.
     83  *
     84  * KMEM_GUARD
     85  *	See the below "kmguard" section.
     86  */
     87 
     88 /*
     89  * kmguard
     90  *
     91  * A kernel with "option DEBUG" has "kmguard" debugging feature compiled in.
     92  * See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries to
     93  * detect.  Even if compiled in, it's disabled by default because it's very
     94  * expensive.  You can enable it on boot by:
     95  *
     96  * 	boot -d
     97  * 	db> w kmem_guard_depth 0t30000
     98  * 	db> c
     99  *
    100  * The default value of kmem_guard_depth is 0, which means disabled.
    101  * It can be changed by KMEM_GUARD_DEPTH kernel config option.
    102  */
    103 
    104 #include <sys/cdefs.h>
    105 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.50.4.1 2014/05/18 17:46:07 rmind Exp $");
    106 
    107 #include <sys/param.h>
    108 #include <sys/callback.h>
    109 #include <sys/kmem.h>
    110 #include <sys/pool.h>
    111 #include <sys/debug.h>
    112 #include <sys/lockdebug.h>
    113 #include <sys/cpu.h>
    114 
    115 #include <uvm/uvm_extern.h>
    116 #include <uvm/uvm_map.h>
    117 #include <uvm/uvm_kmguard.h>
    118 
    119 #include <lib/libkern/libkern.h>
    120 
    121 struct kmem_cache_info {
    122 	size_t		kc_size;
    123 	const char *	kc_name;
    124 };
    125 
    126 static const struct kmem_cache_info kmem_cache_sizes[] = {
    127 	{  8, "kmem-8" },
    128 	{ 16, "kmem-16" },
    129 	{ 24, "kmem-24" },
    130 	{ 32, "kmem-32" },
    131 	{ 40, "kmem-40" },
    132 	{ 48, "kmem-48" },
    133 	{ 56, "kmem-56" },
    134 	{ 64, "kmem-64" },
    135 	{ 80, "kmem-80" },
    136 	{ 96, "kmem-96" },
    137 	{ 112, "kmem-112" },
    138 	{ 128, "kmem-128" },
    139 	{ 160, "kmem-160" },
    140 	{ 192, "kmem-192" },
    141 	{ 224, "kmem-224" },
    142 	{ 256, "kmem-256" },
    143 	{ 320, "kmem-320" },
    144 	{ 384, "kmem-384" },
    145 	{ 448, "kmem-448" },
    146 	{ 512, "kmem-512" },
    147 	{ 768, "kmem-768" },
    148 	{ 1024, "kmem-1024" },
    149 	{ 0, NULL }
    150 };
    151 
    152 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
    153 	{ 2048, "kmem-2048" },
    154 	{ 4096, "kmem-4096" },
    155 	{ 8192, "kmem-8192" },
    156 	{ 16384, "kmem-16384" },
    157 	{ 0, NULL }
    158 };
    159 
    160 /*
    161  * KMEM_ALIGN is the smallest guaranteed alignment and also the
    162  * smallest allocateable quantum.
    163  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
    164  */
    165 #define	KMEM_ALIGN		8
    166 #define	KMEM_SHIFT		3
    167 #define	KMEM_MAXSIZE		1024
    168 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
    169 
    170 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
    171 static size_t kmem_cache_maxidx __read_mostly;
    172 
    173 #define	KMEM_BIG_ALIGN		2048
    174 #define	KMEM_BIG_SHIFT		11
    175 #define	KMEM_BIG_MAXSIZE	16384
    176 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
    177 
    178 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
    179 static size_t kmem_cache_big_maxidx __read_mostly;
    180 
    181 
    182 #if defined(DEBUG) && defined(_HARDKERNEL)
    183 #ifndef KMEM_GUARD_DEPTH
    184 #define KMEM_GUARD_DEPTH 0
    185 #endif
    186 int kmem_guard_depth = KMEM_GUARD_DEPTH;
    187 size_t kmem_guard_size;
    188 static struct uvm_kmguard kmem_guard;
    189 static void *kmem_freecheck;
    190 #define	KMEM_POISON
    191 #define	KMEM_REDZONE
    192 #define	KMEM_SIZE
    193 #define	KMEM_GUARD
    194 #endif /* defined(DEBUG) */
    195 
    196 #if defined(KMEM_POISON)
    197 static int kmem_poison_ctor(void *, void *, int);
    198 static void kmem_poison_fill(void *, size_t);
    199 static void kmem_poison_check(void *, size_t);
    200 #else /* defined(KMEM_POISON) */
    201 #define	kmem_poison_fill(p, sz)		/* nothing */
    202 #define	kmem_poison_check(p, sz)	/* nothing */
    203 #endif /* defined(KMEM_POISON) */
    204 
    205 #if defined(KMEM_REDZONE)
    206 #define	REDZONE_SIZE	1
    207 #else /* defined(KMEM_REDZONE) */
    208 #define	REDZONE_SIZE	0
    209 #endif /* defined(KMEM_REDZONE) */
    210 
    211 #if defined(KMEM_SIZE)
    212 #define	SIZE_SIZE	(MAX(KMEM_ALIGN, sizeof(size_t)))
    213 static void kmem_size_set(void *, size_t);
    214 static void kmem_size_check(void *, size_t);
    215 #else
    216 #define	SIZE_SIZE	0
    217 #define	kmem_size_set(p, sz)	/* nothing */
    218 #define	kmem_size_check(p, sz)	/* nothing */
    219 #endif
    220 
    221 CTASSERT(KM_SLEEP == PR_WAITOK);
    222 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
    223 
    224 /*
    225  * kmem_intr_alloc: allocate wired memory.
    226  */
    227 
    228 void *
    229 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
    230 {
    231 	size_t allocsz, index;
    232 	size_t size;
    233 	pool_cache_t pc;
    234 	uint8_t *p;
    235 
    236 	KASSERT(requested_size > 0);
    237 
    238 #ifdef KMEM_GUARD
    239 	if (requested_size <= kmem_guard_size) {
    240 		return uvm_kmguard_alloc(&kmem_guard, requested_size,
    241 		    (kmflags & KM_SLEEP) != 0);
    242 	}
    243 #endif
    244 	size = kmem_roundup_size(requested_size);
    245 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    246 
    247 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    248 	    < kmem_cache_maxidx) {
    249 		pc = kmem_cache[index];
    250 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    251             < kmem_cache_big_maxidx) {
    252 		pc = kmem_cache_big[index];
    253 	} else {
    254 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
    255 		    (vsize_t)round_page(size),
    256 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
    257 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
    258 		if (ret) {
    259 			return NULL;
    260 		}
    261 		FREECHECK_OUT(&kmem_freecheck, p);
    262 		return p;
    263 	}
    264 
    265 	p = pool_cache_get(pc, kmflags);
    266 
    267 	if (__predict_true(p != NULL)) {
    268 		kmem_poison_check(p, size);
    269 		FREECHECK_OUT(&kmem_freecheck, p);
    270 		kmem_size_set(p, requested_size);
    271 
    272 		return p + SIZE_SIZE;
    273 	}
    274 	return p;
    275 }
    276 
    277 /*
    278  * kmem_intr_zalloc: allocate zeroed wired memory.
    279  */
    280 
    281 void *
    282 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
    283 {
    284 	void *p;
    285 
    286 	p = kmem_intr_alloc(size, kmflags);
    287 	if (p != NULL) {
    288 		memset(p, 0, size);
    289 	}
    290 	return p;
    291 }
    292 
    293 /*
    294  * kmem_intr_free: free wired memory allocated by kmem_alloc.
    295  */
    296 
    297 void
    298 kmem_intr_free(void *p, size_t requested_size)
    299 {
    300 	size_t allocsz, index;
    301 	size_t size;
    302 	pool_cache_t pc;
    303 
    304 	KASSERT(p != NULL);
    305 	KASSERT(requested_size > 0);
    306 
    307 #ifdef KMEM_GUARD
    308 	if (requested_size <= kmem_guard_size) {
    309 		uvm_kmguard_free(&kmem_guard, requested_size, p);
    310 		return;
    311 	}
    312 #endif
    313 	size = kmem_roundup_size(requested_size);
    314 	allocsz = size + REDZONE_SIZE + SIZE_SIZE;
    315 
    316 	if ((index = ((allocsz -1) >> KMEM_SHIFT))
    317 	    < kmem_cache_maxidx) {
    318 		pc = kmem_cache[index];
    319 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
    320             < kmem_cache_big_maxidx) {
    321 		pc = kmem_cache_big[index];
    322 	} else {
    323 		FREECHECK_IN(&kmem_freecheck, p);
    324 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
    325 		    round_page(size));
    326 		return;
    327 	}
    328 
    329 	p = (uint8_t *)p - SIZE_SIZE;
    330 	kmem_size_check(p, requested_size);
    331 	FREECHECK_IN(&kmem_freecheck, p);
    332 	LOCKDEBUG_MEM_CHECK(p, size);
    333 	kmem_poison_check((uint8_t *)p + SIZE_SIZE + size,
    334       	    allocsz - (SIZE_SIZE + size));
    335 	kmem_poison_fill(p, allocsz);
    336 
    337 	pool_cache_put(pc, p);
    338 }
    339 
    340 /* ---- kmem API */
    341 
    342 /*
    343  * kmem_alloc: allocate wired memory.
    344  * => must not be called from interrupt context.
    345  */
    346 
    347 void *
    348 kmem_alloc(size_t size, km_flag_t kmflags)
    349 {
    350 
    351 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    352 	    "kmem(9) should not be used from the interrupt context");
    353 	return kmem_intr_alloc(size, kmflags);
    354 }
    355 
    356 /*
    357  * kmem_zalloc: allocate zeroed wired memory.
    358  * => must not be called from interrupt context.
    359  */
    360 
    361 void *
    362 kmem_zalloc(size_t size, km_flag_t kmflags)
    363 {
    364 
    365 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
    366 	    "kmem(9) should not be used from the interrupt context");
    367 	return kmem_intr_zalloc(size, kmflags);
    368 }
    369 
    370 /*
    371  * kmem_free: free wired memory allocated by kmem_alloc.
    372  * => must not be called from interrupt context.
    373  */
    374 
    375 void
    376 kmem_free(void *p, size_t size)
    377 {
    378 
    379 	KASSERT(!cpu_intr_p());
    380 	KASSERT(!cpu_softintr_p());
    381 	kmem_intr_free(p, size);
    382 }
    383 
    384 static size_t
    385 kmem_create_caches(const struct kmem_cache_info *array,
    386     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
    387 {
    388 	size_t maxidx = 0;
    389 	size_t table_unit = (1 << shift);
    390 	size_t size = table_unit;
    391 	int i;
    392 
    393 	for (i = 0; array[i].kc_size != 0 ; i++) {
    394 		const char *name = array[i].kc_name;
    395 		size_t cache_size = array[i].kc_size;
    396 		struct pool_allocator *pa;
    397 		int flags = PR_NOALIGN;
    398 		pool_cache_t pc;
    399 		size_t align;
    400 
    401 		if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
    402 			align = CACHE_LINE_SIZE;
    403 		else if ((cache_size & (PAGE_SIZE - 1)) == 0)
    404 			align = PAGE_SIZE;
    405 		else
    406 			align = KMEM_ALIGN;
    407 
    408 		if (cache_size < CACHE_LINE_SIZE)
    409 			flags |= PR_NOTOUCH;
    410 
    411 		/* check if we reached the requested size */
    412 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
    413 			break;
    414 		}
    415 		if ((cache_size >> shift) > maxidx) {
    416 			maxidx = cache_size >> shift;
    417 		}
    418 
    419 		if ((cache_size >> shift) > maxidx) {
    420 			maxidx = cache_size >> shift;
    421 		}
    422 
    423 		pa = &pool_allocator_kmem;
    424 #if defined(KMEM_POISON)
    425 		pc = pool_cache_init(cache_size, align, 0, flags,
    426 		    name, pa, ipl, kmem_poison_ctor,
    427 		    NULL, (void *)cache_size);
    428 #else /* defined(KMEM_POISON) */
    429 		pc = pool_cache_init(cache_size, align, 0, flags,
    430 		    name, pa, ipl, NULL, NULL, NULL);
    431 #endif /* defined(KMEM_POISON) */
    432 
    433 		while (size <= cache_size) {
    434 			alloc_table[(size - 1) >> shift] = pc;
    435 			size += table_unit;
    436 		}
    437 	}
    438 	return maxidx;
    439 }
    440 
    441 void
    442 kmem_init(void)
    443 {
    444 
    445 #ifdef KMEM_GUARD
    446 	uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
    447 	    kmem_va_arena);
    448 #endif
    449 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
    450 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
    451        	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
    452 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
    453 }
    454 
    455 size_t
    456 kmem_roundup_size(size_t size)
    457 {
    458 
    459 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
    460 }
    461 
    462 /* ---- debug */
    463 
    464 #if defined(KMEM_POISON)
    465 
    466 #if defined(_LP64)
    467 #define PRIME 0x9e37fffffffc0000UL
    468 #else /* defined(_LP64) */
    469 #define PRIME 0x9e3779b1
    470 #endif /* defined(_LP64) */
    471 
    472 static inline uint8_t
    473 kmem_poison_pattern(const void *p)
    474 {
    475 
    476 	return (uint8_t)(((uintptr_t)p) * PRIME
    477 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
    478 }
    479 
    480 static int
    481 kmem_poison_ctor(void *arg, void *obj, int flag)
    482 {
    483 	size_t sz = (size_t)arg;
    484 
    485 	kmem_poison_fill(obj, sz);
    486 
    487 	return 0;
    488 }
    489 
    490 static void
    491 kmem_poison_fill(void *p, size_t sz)
    492 {
    493 	uint8_t *cp;
    494 	const uint8_t *ep;
    495 
    496 	cp = p;
    497 	ep = cp + sz;
    498 	while (cp < ep) {
    499 		*cp = kmem_poison_pattern(cp);
    500 		cp++;
    501 	}
    502 }
    503 
    504 static void
    505 kmem_poison_check(void *p, size_t sz)
    506 {
    507 	uint8_t *cp;
    508 	const uint8_t *ep;
    509 
    510 	cp = p;
    511 	ep = cp + sz;
    512 	while (cp < ep) {
    513 		const uint8_t expected = kmem_poison_pattern(cp);
    514 
    515 		if (*cp != expected) {
    516 			panic("%s: %p: 0x%02x != 0x%02x\n",
    517 			   __func__, cp, *cp, expected);
    518 		}
    519 		cp++;
    520 	}
    521 }
    522 
    523 #endif /* defined(KMEM_POISON) */
    524 
    525 #if defined(KMEM_SIZE)
    526 static void
    527 kmem_size_set(void *p, size_t sz)
    528 {
    529 
    530 	memcpy(p, &sz, sizeof(sz));
    531 }
    532 
    533 static void
    534 kmem_size_check(void *p, size_t sz)
    535 {
    536 	size_t psz;
    537 
    538 	memcpy(&psz, p, sizeof(psz));
    539 	if (psz != sz) {
    540 		panic("kmem_free(%p, %zu) != allocated size %zu",
    541 		    (const uint8_t *)p + SIZE_SIZE, sz, psz);
    542 	}
    543 }
    544 #endif	/* defined(KMEM_SIZE) */
    545 
    546 /*
    547  * Used to dynamically allocate string with kmem accordingly to format.
    548  */
    549 char *
    550 kmem_asprintf(const char *fmt, ...)
    551 {
    552 	int size __diagused, len;
    553 	va_list va;
    554 	char *str;
    555 
    556 	va_start(va, fmt);
    557 	len = vsnprintf(NULL, 0, fmt, va);
    558 	va_end(va);
    559 
    560 	str = kmem_alloc(len + 1, KM_SLEEP);
    561 
    562 	va_start(va, fmt);
    563 	size = vsnprintf(str, len + 1, fmt, va);
    564 	va_end(va);
    565 
    566 	KASSERT(size == len);
    567 
    568 	return str;
    569 }
    570